MA 2441.03

Problem Set No. 4. (Solutions)

Dept. of Mathematics (Atkinson College)

1. Prove that the composition of two 1-1 correspondences is a 1-1 correspondence. Reminder. There are three issues to address.

Proof. Let $f:A\to B$ and $g:B\to C$ be 1-1 correspondences. We need to show that $f\circ g:A\to C$, or (what amounts to the same thing) $g\cdot f:A\to C$ is a 1-1 correspondence.†

total: Let $x \in A$. By assumption, f(x) is defined (we can write $f(x) \downarrow$), i.e., f(x) = y, for some y, and thus (by assumption) $g(y) \downarrow$.

1-1: Knowing that $q \cdot f$ is total, we need only show

$$(g \cdot f)(x) = (g \cdot f)(y) \text{ implies } x = y \tag{1}$$

The hypothesis translates to g(f(x)) = g(f(y)), hence f(x) = g(y) since g is 1-1 and total. Finally, x = y, since f is 1-1 and total.

onto: Must show that for any $c \in C$, $(g \cdot f)(x) = c$ has an x-solution. Well, by assumption, there is a b such that g(b) = c. Take x (possible, by assumption) such that f(x) = b. \square

- 2. (a) Prove that if a total relation R on a set A is symmetric and transitive, then it is also reflexive.
 - (b) By an appropriate example show that the assumption on totalness is essential.

Proof. (a) Take any $a \in A$. To show aRa. By totalness, there is a $b \in A$ such that aRb. By symmetry, bRa as well. By transitivity, aRa. \square

Answer. (b) This, of course, is open-ended. Here is a simple counterexample over $A = \{1, 2\}$: $R = \{\langle 1, 1 \rangle\}$. Transitive and symmetric, but not reflexive (not total, of course). \square

3. Let S denote the set of strings over $\Sigma = \{1, 2, 3, +, \times, (,)\}$ defined as the closure of $\mathcal{I} = \{1, 2, 3\}$ under the operations $x, y \mapsto (x + y)$ and $x, y \mapsto (x \times y)$ for all strings x and y.

[†] $f \circ g = g \cdot f$ by definition. The former is relational, the latter is functional composition. Thus, $(g \cdot f)(x) = g(f(x))$.

M2441.03 Discrete Mathematics. Instructor: George Tourlakis. Problem Set#4/S1999.

- (a) Prove that every string x in S has equal numbers of "(" and ")" symbols in it.
- (b) Prove the following claim for every $x \in S$: If x = y * z—where "*" denotes concatenation—and iff $\varepsilon \neq y \neq x$, then y contains more "("-symbols than ")"-symbols.

Proof. (a) Induction on S. Each $x \in \mathcal{I}$ has the property (0 left brackets and 0 right brackets in any of the strings 1, 2 or 3).

I.S (induction step). Show that if x, y have the property, so do the results of each of the two operations. So, let x have m left and m right brackets and y have n left and n right brackets. Then (x + y) and $(x \times y)$ each have m + n + 1 left and m + n + 1 right brackets. \square

Proof. (b) Basis: Since no initial object (here a 1 a 2 or a 3) has nonempty proper prefixes, the claim is vacuously satisfied (i.e., there's nothing to prove).

For the induction steps [there are two, since there are two formation rules or "operations": One that takes two strings x and y and forms (x+y), the other forming $(x \times y)$] assume the claim to be true for strings x, y of S and prove it true for (x+y) and $(x \times y)$ (I omit the latter).

We consider all the "nonempty proper prefix"-cases:

Case of "("-prefix: Trivial.

Case of "(C"-prefix, where C is a nonempty proper prefix of x. By the *induction hypothesis* on x, C has more "(" than it has ")", so adding the extra one up in front does not hurt.

Case of "(x"-prefix: Since x is in S, it has an equal number of "(" and ")" by part (a). Adding a "(" up in front, the "(" have it!

Case of "(x + "-prefix: Adding a "+" does not change the conclusion of the previous case.

Case of "(x + C"-prefix, where C denotes a nonempty proper prefix of y this time. Now the numbers of the left/right brackets in x balance out (part (a)), while C has more "(" than ") by the induction hypothesis. So adding the "(" up in front does not hurt.

Finally, case of "(x + y)"-prefix: The brackets in x and y balance out (by part (a)), so the "(" have it, due to the "(" up in front. \square

4. Let S be the set of strings over $\Sigma = \{0, 1\}$ obtained as the *closure* of $\mathcal{I} = \{01\}$ † under a single operation on strings: $x \mapsto 0x1$ for all strings x.

Prove that $S = \{0^n 1^n : n \ge 1\}$, where v^n for a string v means $\underbrace{v * \cdots * v}_{n \text{ copies of } v}$ for

any n > 1.

[†] This is not a typo. \mathcal{I} contains a single string: 01.

Reminder. There are **two** directions (\subseteq and \supseteq).

Proof. (\subseteq) Induction on S. The (only) initial object 01 is in $\{0^n1^n : n \ge 1\}$. Done.

I.S. Let $x \in \{0^n 1^n : n \ge 1\}$. Thus, $x = 0^k 1^k$ for some $k \ge 1$. The result of the only operation is 0x1. That is, $0^{k+1}1^{k+1}$ which is still in $\{0^n 1^n : n \ge 1\}$.

(\supseteq) Since $S = \{x : x \text{ is } (\mathcal{I}, F)\text{-derived}\}$ we simply need to exhibit a derivation for the arbitrary $0^k 1^k$ $(k \ge 1)$. Such is " $01, 0^2 1^2, \ldots, 0^k 1^k$ ".†

 $[\]dagger$ Alternatively, one can do induction on k for (\supseteq) , not using the result "closure = set of derived objects".