MA3190.03

Problem Set No. 1—Solutions

Dept. of Mathematics and Statistics

1. Suppose we defined " $((\exists x)\mathcal{A}[x])$ is true" to mean that for some value of x in the relevant domain, say c, $\mathcal{A}[c]$ is true. Under such definition, is $(\exists x)y < x$ true over \mathbb{R} ? How about under the "normal" definition?

Answer. (1) Under this definition, " $(\exists x)y < x$ true" means that "for some real c, y < c is true". This does not hold, for the reals are unbounded above.

- (2) Under the "normal" definition, " $(\exists x)y < x$ true" means " $(\forall y)(\exists x)y < x$ true", in words, "for each real y there is a larger real x". This is true.
- **2.** Let a be a set, and consider the class $b = \{x \in a : x \notin x\}$.

Show that, despite similarities with the Russell class R, b is a set. Moreover, show that $b \notin a$.

Answer. (1) $b \subseteq a$, hence b is a set by separation.

(2) Suppose $b \in a$. Then $b \in a$ & $b \notin b$ is true (since $b \notin b$ is true by foundation). Thus, $b \in b$, which is a contradiction (foundation again). We conclude that $b \notin a$.

Here is a better proof. "Better" because it is more "general", since it does not use foundation: We have

$$x \in b \leftrightarrow x \in a \& x \notin x$$

thus

$$b \in b \leftrightarrow b \in a \& b \notin b$$

Now assume that $b \in a$ is true. The above then yields the contradiction

$$b \in b \leftrightarrow b \not\in b$$

3. Show that R (the Russell class)= \mathbb{U} .

Answer. By the way, by "U" we mean \mathbb{U}_M .

We have shown in class that $R \subseteq \mathbb{U}$ (from which, as you recall, we inferred that \mathbb{U} is a proper class).

We only need \supseteq . This follows from $x = x \to x \notin x$, since $x \notin x$ is true by foundation.

M3190.03 Set Theory and Foundations. Instructor: George Tourlakis Problem Set#1/W1999.

[†] Thinking semantically, we have got rid of " $b \in a$ " by applying $\mathcal{A} \leftrightarrow \mathbf{t}$ & \mathcal{A} . Alternatively, thinking formally, we have applied $\mathcal{A} \vdash \mathcal{B} \leftrightarrow \mathcal{A}$ & \mathcal{B} .

4. Show that if a class \mathbb{A} satisfies $\mathbb{A} \subseteq \mathbb{X}$ for all \mathbb{X} , then $\mathbb{A} = \emptyset$.

Answer. Taking $\mathbb{X} = \emptyset$ we get $\mathbb{A} \subseteq \emptyset$. Since $x \neq x \to x \in \mathbb{A}$ is true, we also have $\emptyset \subseteq \mathbb{A}$, hence $\mathbb{A} = \emptyset$ by the definition of equality for class-terms.

5. Without using foundation, show that $\emptyset \neq \{\emptyset\}$.

Answer. If
$$\emptyset = {\emptyset}$$
 then

$$x \in \emptyset \leftrightarrow x \in \{\emptyset\}$$

hence

$$\emptyset \in \emptyset \leftrightarrow \emptyset \in \{\emptyset\}$$

which is false (the left of \leftrightarrow is false, the right is true).

6. What is $\bigcap \emptyset$ (and why)?

Answer.

$$\bigcap \emptyset = \{x : (\forall y)(y \in \emptyset \to x \in y)\}$$
$$= \mathbb{U}_M$$

since $(\forall y)(y \in \emptyset \to x \in y)$ is true (provable) for all x.

7. For any set A, show that $\mathbb{U} - A$ is a proper class.

Answer. If not, let $\mathbb{U} - A = B$, a set. Then $\mathbb{U} = A \cup B$, a set.

8. Show for any classes \mathbb{A}, \mathbb{B} , that $\mathbb{A} - \mathbb{B} = \mathbb{A} - \mathbb{A} \cap \mathbb{B}$.

Answer. (\subseteq). Let $x \in \mathbb{A} - \mathbb{B}$. Then $x \in \mathbb{A}$ and $x \notin \mathbb{B}$. By definition of " \cap ", $x \notin \mathbb{A} \cap \mathbb{B}$, as well. Thus, $x \in \mathbb{A} - \mathbb{A} \cap \mathbb{B}$.

(⊇). Let $x \in \mathbb{A} - \mathbb{A} \cap \mathbb{B}$. Then $x \in \mathbb{A}$ and $x \notin \mathbb{A} \cap \mathbb{B}$. By definition of "∩", $x \notin \mathbb{B}$, as well (since $x \in \mathbb{A}$). Thus, $x \in \mathbb{A} - \mathbb{B}$.

9. For any classes \mathbb{A}, \mathbb{B} show that $\mathbb{A} - (\mathbb{A} - \mathbb{B}) = \mathbb{B}$ iff $\mathbb{B} \subseteq \mathbb{A}$.

Answer. only if-part. Let $x \in \mathbb{B}$. Then $x \in \mathbb{A} - (\mathbb{A} - \mathbb{B})$, hence $x \in \mathbb{A}$. if-part. (\subseteq). Let $x \in \mathbb{A} - (\mathbb{A} - \mathbb{B})$. Then $x \in \mathbb{A}$ and $x \notin \mathbb{A} - \mathbb{B}$, thus, $x \in \mathbb{B}$ (**NB**. The hypothesis, $\mathbb{B} \subseteq \mathbb{A}$, was not needed in this direction).

 (\supseteq) . Let $x \in \mathbb{B}$. By hypothesis, $x \in \mathbb{A}$. Hence $x \notin \mathbb{A} - \mathbb{B}$. Thus, $x \in \mathbb{A} - (\mathbb{A} - \mathbb{B})$.

10. (1) Express $\mathbb{A} \cap \mathbb{B}$ using class difference as the only operation.

Answer. $\mathbb{A} \cap \mathbb{B} = \mathbb{A} - (\mathbb{A} - \mathbb{B})$. One can verify this by the traditional "let $x \in \text{lhs...}$ " and "let $x \in \text{rhs...}$ " arguments.

Here is an alternative, for variety's sake:

Let the classes \mathbb{A} and \mathbb{B} be given by the class-terms $\{x : \mathcal{A}(x)\}$ and $\{x : \mathcal{B}(x)\}$ respectively. By definition of equality between class-terms, one needs to verify that

$$\mathcal{A}(x) \& \mathcal{B}(x) \leftrightarrow \mathcal{A}(x) \& \neg(\mathcal{A}(x) \& \neg\mathcal{B}(x))$$

which follows at once by deMorgan's and distributive laws of logic.

(2) Express $\mathbb{A} \cup \mathbb{B}$ using class difference/complement as the only operations.

Answer. By deMorgan's laws,

$$A \cup \mathbb{B} = \overline{\overline{\mathbb{A}} \cap \overline{\mathbb{B}}}$$
$$= \overline{\overline{\mathbb{A}} - (\overline{\mathbb{A}} - \overline{\mathbb{B}})}$$

where we wrote $\overline{\mathbb{A}}$ for $\mathbb{U}_M - \mathbb{A}$.

11. Show that we cannot have $a \in b \in c \in \cdots \in a$.

Answer. To fix ideas, let us write a_1, a_2, \ldots, a_n instead of the " a, b, c, \ldots " in the above "cycle".

So we are asked to prove that it is impossible to have

$$a_1 \in a_2 \in a_3 \in \dots a_n \in a_1 \tag{1}$$

Let $A = \{a_1, \dots, a_n\}$ (that is, $A = \{x : x = a_1 \lor x = a_1 \lor \dots \lor x = a_n\}$).

NB. While A is a set, \dagger we do not need this fact.

We proceed by contradiction, assuming (1).

By foundation, let $x \in A$ be such that $\neg(\exists y \in A)y \in x$.

By (1) such an x does not exist, for if it does, it is some a_j . But then $a_m \in a_j$, where m = n if j = 1, m = j - 1 otherwise.

[†] This is shown by metamathematical induction on the informal "index", n, using pairing and union. The induction step shows that if $\{a_1,\ldots,a_n\}$ is a set then so is $\{a_1,\ldots,a_n,a_{n+1}\}=\bigcup\{\{a_1,\ldots,a_n\},\{a_{n+1}\}\}$.