MA3190.03

Problem Set No. 2—Solutions

Dept. of Mathematics and Statistics

1. Show that for any class (not just set) \mathbb{A} , $\mathbb{A} \in \mathbb{A}$ is false.

Answer. $\mathbb{A} \in \mathbb{A}$ is true, then \mathbb{A} is a set (for class terms are collections of sets or atoms, and \mathbb{A} is a member of a class term: \mathbb{A}). But that is absurd by foundation.

- 2. (1) Show that \mathbb{A} = "the class of *all* sets that contain at least one element" can be defined by a class-term.
 - (2) Show that \mathbb{A} is a proper class.

Answer. (1) If $\mathbb{A} = \{x : \neg \mathcal{U}(x) \& (\exists y)y \in x\}.$

(2) Consider the class $\mathbb{B} = \{\{x\} : x = x\}$. By replacement $(\{x\} \mapsto x)$, \mathbb{B} is not a set (else so would be \mathbb{U}_M).

Since $\mathbb{B} \subseteq \mathbb{A}$, \mathbb{A} is a proper class by separation.

3. Attach the intuitive meaning to the statement that the set A has n (distinct) elements.

Show then by induction on n, that for $n \geq 0$, if A has n elements, then $\mathbf{P}(A)$ has 2^n elements.

Answer. Let $A = \{a_1, \ldots, a_n\}$. As it is usual, n = 0 means $A = \emptyset$.

So let n = 0. Then $\mathbf{P}(A) = \{\emptyset\}$, so it has exactly $1 = 2^0$ element.

Assume the claim for n (fixed) and go to n + 1.

Now $B = A \cup \{a_{n+1}\}$ is the set we start with (it has n+1 elements).

Clearly, $P(B) = P(A) \cup \{x \cup \{a_{n+1}\} : x \in P(A)\}.$

Thus, $\mathbf{P}(B)$ has exactly twice as many members as $\mathbf{P}(A)$, that is (using I.H.), $2^n + 2^n = 2^{n+1}$.

4. Show (without the use of foundation) that $\{\{a\}, \{a,b\}\} = \{\{a'\}, \{a',b'\}\}$ implies a = a' and b = b'.

Answer. $\bigcap \{\{a\}, \{a,b\}\} = \bigcap \{\{a'\}, \{a',b'\}\}, \text{ that is, } \{a\} = \{a'\}, \text{ hence}$

$$a = a' \tag{1}$$

M3190.03 Set Theory and Foundations. Instructor: George Tourlakis Problem Set#2/W1999.

Similarly,
$$\bigcup \{\{a\}, \{a,b\}\} = \bigcup \{\{a'\}, \{a',b'\}\}$$
, that is, by (1), $\{a,b\} = \{a,b'\}$

From this last equality, exactly as in the text, it follows that b = b' (recall that we did not use foundation in the text for this last implication).

5. For any sets x, y show that $x \cup \{x\} = y \cup \{y\} \rightarrow x = y$. (*Hint*: Use foundation.)

Answer. In the text.

6. For any \mathbb{A} , \mathbb{B} show that $\emptyset = \mathbb{A} \times \mathbb{B}$ iff $\mathbb{A} = \emptyset$ or $\mathbb{B} = \emptyset$.

Answer. (\rightarrow) Do the contrapositive: Let $\emptyset \neq \mathbb{A}$ and $\emptyset \neq \mathbb{B}$. Then, let $a \in \mathbb{A}$ and $b \in \mathbb{B}$. Therefore, $\langle a, b \rangle \in \mathbb{A} \times \mathbb{B}$. Hence $\emptyset \neq \mathbb{A} \times \mathbb{B}$.

 (\leftarrow) Suppose $\emptyset = \mathbb{A}$. Now, $\langle x, y \rangle \in \mathbb{A} \times \mathbb{B}$ iff $x \in \mathbb{A}$ & $y \in \mathbb{B}$. But the rhs of "iff" is false, for " $x \in \mathbb{A}$ " is.

7. Show that $\mathbb{U}_M^3 \subseteq \mathbb{U}_M^2$.

Answer. Let
$$\langle x, y, z \rangle \in \mathbb{U}_M^3$$
. But $\langle x, y, z \rangle = \langle \langle x, y \rangle, z \rangle \in \mathbb{U}_M^2$.

- **8.** Let $\mathbb{F}: \mathbb{X} \to \mathbb{Y}$ be a function, and $\mathbb{A} \subseteq \mathbb{Y}$, $\mathbb{B} \subseteq \mathbb{Y}$. Prove
 - (a) $\mathbb{F}^{-1}[\mathbb{A} \cup \mathbb{B}] = \mathbb{F}^{-1}[\mathbb{A}] \cup \mathbb{F}^{-1}[\mathbb{B}]$

 - (b) $\mathbb{F}^{-1}[\mathbb{A} \cap \mathbb{B}] = \mathbb{F}^{-1}[\mathbb{A}] \cap \mathbb{F}^{-1}[\mathbb{B}]$ (c) if $\mathbb{A} \subseteq \mathbb{B}$, then $\mathbb{F}^{-1}[\mathbb{B} \mathbb{A}] = \mathbb{F}^{-1}[\mathbb{B}] \mathbb{F}^{-1}[\mathbb{A}]$.

Is this last equality true if $\mathbb{A} \subseteq \mathbb{B}$? Why?

Answer.

getting (c).

(a)
$$x \in \mathbb{F}^{-1}[\mathbb{A} \cup \mathbb{B}] \leftrightarrow \mathbb{F}(x) \in \mathbb{A} \cup \mathbb{B}$$

$$\leftrightarrow \mathbb{F}(x) \in \mathbb{A} \vee \mathbb{F}(x) \in \mathbb{B}$$

$$\leftrightarrow x \in \mathbb{F}^{-1}[\mathbb{A}] \vee x \in \mathbb{F}^{-1}[\mathbb{B}]$$

$$\leftrightarrow x \in \mathbb{F}^{-1}[\mathbb{A}] \cup \mathbb{F}^{-1}[\mathbb{B}]$$
(b)
$$x \in \mathbb{F}^{-1}[\mathbb{A} \cap \mathbb{B}] \leftrightarrow \mathbb{F}(x) \in \mathbb{A} \cap \mathbb{B}$$

$$\leftrightarrow \mathbb{F}(x) \in \mathbb{A} \& \mathbb{F}(x) \in \mathbb{B}$$

$$\leftrightarrow x \in \mathbb{F}^{-1}[\mathbb{A}] \& x \in \mathbb{F}^{-1}[\mathbb{B}]$$

$$\leftrightarrow x \in \mathbb{F}^{-1}[\mathbb{A}] \cap \mathbb{F}^{-1}[\mathbb{B}]$$
(c)
$$x \in \mathbb{F}^{-1}[\mathbb{B} - \mathbb{A}] \leftrightarrow \mathbb{F}(x) \in \mathbb{B} - \mathbb{A}$$

 $\leftrightarrow x \in \mathbb{F}^{-1}[\mathbb{B}] \ \& \ x \notin \mathbb{F}^{-1}[\mathbb{A}]$ $\leftrightarrow x \in \mathbb{F}^{-1}[\mathbb{B}] - \mathbb{F}^{-1}[\mathbb{A}]$ Is this last equality true if $\mathbb{A} \not\subseteq \mathbb{B}$? Why? Yes, we did not need the assumption in

 $\leftrightarrow \mathbb{F}(x) \in \mathbb{B} \& \mathbb{F}(x) \notin \mathbb{A}$

9. Using only the axioms of union and separation, show that if a function \mathbb{F} is a set, then so are both dom(\mathbb{F}) and ran(\mathbb{F}).

Answer. \mathbb{F} is a class (here set) of pairs $\langle x, y \rangle$. Recall that $\langle x, y \rangle = \{x, \{x, y\}\}$. Thus,

$$\mathrm{dom}(\mathbb{F})\subseteq\bigcup\mathbb{F}$$

and

$$\mathrm{ran}(\mathbb{F})\subseteq\bigcup\bigcup\mathbb{F}$$

10. Show that if for a relation \mathbb{S} , both the range and the domain are sets, then \mathbb{S} is a set.

Answer. $\mathbb{S} \subseteq \text{dom}(\mathbb{S}) \times \text{ran}(\mathbb{S})$.

11. Show for any relation S, that if S is a set then so is S^{-1} .

Answer. Directly, by replacement $\langle x, y \rangle \mapsto \langle y, x \rangle$.

Or, with more fuss, we know (by 9) that dom(S) and ran(S) are sets. $S^{-1} \subseteq ran(S) \times dom(S)$.