MA3190.03

Problem Set No. 1

Dept. of Mathematics and Statistics

Date: January 21, 1999 Due: In two weeks

- 1. Suppose we defined " $((\exists x)A[x])$ is true" to mean that for some value of x in the relevant domain, say c, A[c] is true. Under such definition, is $(\exists x)y < x$ true over \mathbb{R} ? How about under the "normal" definition?
- **2.** Let a be a set, and consider the class $b = \{x \in a : x \notin x\}$. Show that, despite similarities with the Russell class R, b is a set. Moreover, show that $b \notin a$.
- **3.** Show that R (the Russell class)= \mathbb{U} .
- **4.** Show that if a class \mathbb{A} satisfies $\mathbb{A} \subseteq \mathbb{X}$ for all \mathbb{X} , then $\mathbb{A} = \emptyset$.
- **5.** Without using foundation, show that $\emptyset \neq \{\emptyset\}$.
- **6.** What is $\bigcap \emptyset$ (and why)?
- 7. For any set A, show that $\mathbb{U} A$ is a proper class.
- **8.** Show for any classes \mathbb{A}, \mathbb{B} , that $\mathbb{A} \mathbb{B} = \mathbb{A} \mathbb{A} \cap \mathbb{B}$.
- **9.** For any classes \mathbb{A} , \mathbb{B} show that $\mathbb{A} (\mathbb{A} \mathbb{B}) = \mathbb{B}$ iff $\mathbb{B} \subseteq \mathbb{A}$.
- **10.** (1) Express $\mathbb{A} \cap \mathbb{B}$ using class difference as the only operation.
 - (2) Express $\mathbb{A} \cup \mathbb{B}$ using class difference/complement as the only operations.
- 11. Show that we cannot have $a \in b \in c \in \cdots \in a$.