MA3190.03

Problem Set No. 2

Dept. of Mathematics and Statistics

Date: Feb 11, 1999 **Due:** In three weeks

- 1. Show that for any class (not just set) \mathbb{A} , $\mathbb{A} \in \mathbb{A}$ is false.
- 2. (1) Show that \mathbb{A} = "the class of all sets that contain at least one element" can be defined by a class-term.
 - (2) Show that \mathbb{A} is a proper class.
- **3.** Attach the intuitive meaning to the statement that the set A has n (distinct) ele-

Show then by induction on n, that for $n \geq 0$, if A has n elements, then $\mathbf{P}(A)$ has 2^n elements.

- **4.** Show (without the use of foundation) that $\{\{a\}, \{a,b\}\} = \{\{a'\}, \{a',b'\}\}$ implies a = a' and b = b'.
- **5.** For any sets x, y show that $x \cup \{x\} = y \cup \{y\} \rightarrow x = y$. (*Hint*: Use foundation.)
- **6.** For any \mathbb{A} , \mathbb{B} show that $\emptyset = \mathbb{A} \times \mathbb{B}$ iff $\mathbb{A} = \emptyset$ or $\mathbb{B} = \emptyset$.
- 7. Show that $\mathbb{U}_M^3 \subseteq \mathbb{U}_M^2$.
- **8.** Let $\mathbb{F}: \mathbb{X} \to \mathbb{Y}$ be a function, and $\mathbb{A} \subseteq \mathbb{Y}$, $\mathbb{B} \subseteq \mathbb{Y}$. Prove

 - $\begin{array}{ccc} (a) \ \mathbb{F}^{-1}[\mathbb{A} \cup \mathbb{B}] = \mathbb{F}^{-1}[\mathbb{A}] \cup \mathbb{F}^{-1}[\mathbb{B}] \\ (b) \ \mathbb{F}^{-1}[\mathbb{A} \cap \mathbb{B}] = \mathbb{F}^{-1}[\mathbb{A}] \cap \mathbb{F}^{-1}[\mathbb{B}] \end{array}$
 - (c) if $\mathbb{A} \subseteq \mathbb{B}$, then $\mathbb{F}^{-1}[\mathbb{B} \mathbb{A}] = \mathbb{F}^{-1}[\mathbb{B}] \mathbb{F}^{-1}[\mathbb{A}]$.

Is this last equality true if $\mathbb{A} \subseteq \mathbb{B}$? Why?

- **9.** Using only the axioms of union and separation, show that if a function \mathbb{F} is a set, then so are both $dom(\mathbb{F})$ and $ran(\mathbb{F})$.
- 10. Show that if for a relation \mathbb{S} , both the range and the domain are sets, then \mathbb{S} is a set.
- 11. Show for any relation S, that if S is a set then so is S^{-1} .

M3190.03 Set Theory and Foundations. Instructor: George Tourlakis Problem Set#2/W1999.