MA3190.03 ## Problem Set No. 3—Solutions ## Dept. of Mathematics and Statistics 1. Prove that for any formula $\mathcal{F}(x)$, $$(\forall n \in \omega) ((\forall m < n \in \omega) \mathcal{F}(m) \to \mathcal{F}(n)) \vdash (\forall n \in \omega) \mathcal{F}(n)$$ or, in words, "if for any $n \in \omega$ we can prove $\mathcal{F}(n)$ on the *induction hypothesis* that $\mathcal{F}(m)$ holds for all m < n, then this is as good as having proved $(\forall n \in \omega)\mathcal{F}(n)$ ". This type of induction is called *course-of-values induction*. (*Hint*. Consider the formula $\mathcal{G}(n)$ defined as $(\forall m < n \in \omega)\mathcal{F}(m)$ and apply (ordinary) induction on n to prove—under the I.H. for $\mathcal{F}(x)$ —that $(\forall n \in \omega)\mathcal{G}(n)$. Note how the "basis" is buried inside the I.H. of course-of-values induction.) **Answer.** We follow the hint. Basis. $\mathcal{G}(0)$ is $(\forall m)(m < 0 \to \mathcal{F}(m))$, which is true since m < 0 is false. Assume $\mathcal{G}(n)$ for fixed n (I.H.) and proceed to prove $\mathcal{G}(n+1)$. Now $$\begin{split} \mathcal{G}(n+1) &\equiv (\forall m)(m < n+1 \to \mathcal{F}(m)) \\ &\equiv (\forall m)(m < n \lor m = n \to \mathcal{F}(m)) \\ &\equiv (\forall m)(m < n \to \mathcal{F}(m) \ \& \ m = n \to \mathcal{F}(m)), \qquad \text{by Logic} \\ &\equiv (\forall m)(m < n \to \mathcal{F}(m)) \ \& \ (\forall m)(m = n \to \mathcal{F}(m)), \text{by more Logic} \\ &\equiv \mathcal{G}(n) \ \& \ (\forall m)(m = n \to \mathcal{F}(m)) \\ &\equiv \mathcal{G}(n) \ \& \ \mathcal{F}(n), \qquad \qquad \text{by a bit more Logic} \end{split}$$ Now, we have $\mathcal{G}(n)$ by I.H., hence we have $\mathcal{F}(n)$ since $(\forall m < n)\mathcal{F}(m) \to \mathcal{F}(n)$, i.e., $$\mathcal{G}(n) \to \mathcal{F}(n)$$ (1) By the above equivalences, we got $\mathcal{G}(n+1)$, thus, by simple induction, we now have $\mathcal{G}(n)$. By (1), we also have $\mathcal{F}(n)$. M3190.03 Set Theory and Foundations. Instructor: George Tourlakis Problem Set#3/W1999. **2.** (The "least" number principle over ω .) Prove that every $\emptyset \neq A \subseteq \omega$ has a minimal element, i.e., an $n \in A$ such that for no $m \in A$ is it possible to have m < n. Do so without foundation, using instead course-of-values induction. **Answer.** We argue by contradiction. Let $\emptyset \neq A \subseteq \omega$, yet A has no minimal elements. We contradict this by showing $\omega - A = \omega$ (what does this contradict?) We use course-of-values induction: Basis. $0 \in \omega - A$, otherwise $0 \in A$, and clearly then 0 would be a minimal element of A. Assume the claim, that $m \in \omega - A$, for all $m \le n$ (fixed n). We now argue the case for n+1: Suppose $n+1 \notin \omega - A$. Then $n+1 \in A$. But then, n+1 is minimal in A, for no m < n+1 is in A, by I.H. Once more, we arrived at a (final) contradiction. **3.** Redo the proof of Theorem 1.20 (existence part) so that it goes through *even if* trichotomy of \in over ω did not hold. **Answer.** we need to redo the passage (from the proof of 1.20) below: "... hence, by collection, \mathcal{F} is a set. So is then $$\widehat{f} \stackrel{\text{def}}{=} \bigcup \mathcal{F} \tag{2}$$ Observe first that \widehat{f} is a function: Let $\langle a,b\rangle \in \widehat{f}$ and also $\langle a,c\rangle \in \widehat{f}$. Then, by (2), f(a) = b and f'(a) = c for some f,f' in \mathcal{F} . Without loss of generality, applying trichotomy, $dom(f) \in dom(f')\dagger$ By uniqueness, $f = f' \restriction dom(f)$ since both sides of f satisfy the same recurrence on f dom(f). OK, so, let $\langle a,b\rangle \in \widehat{f}$ and also $\langle a,c\rangle \in \widehat{f}$. Then, by (2), f(a)=b and f'(a)=c for some f,f' in \mathcal{F} . Let $n=\mathrm{dom}(f)$ while $m=\mathrm{dom}(f')$. Thus $a\in n\cap m$. But then $a+1\subseteq n\cap m$ (Why?). By the uniqueness part of the proof, $f\upharpoonright (a+1)=f'\upharpoonright (a+1)$, in particular, f(a)=f'(a). - **4.** Prove that a set x is a natural number iff it satisfies (1) and (2) below. - (1) it and all its members are transitive - (2) it and all its members are successors or \emptyset . **Answer.** The *only if* is from the text (which theorems?). Here is the if. We prove that if (1) and (2) are satisfied, then $x \in \omega$. Well, suppose not, and let x_0 be \in -minimal (by foundation) that satisfies (1) and (2), yet $$x_0 \notin \omega$$ (3) Let $x \in x_0$. Now, x is transitive (by (1)). Let $y \in x$. Then $y \in x_0$, again by (1). One more invocation of (1), yields that y is transitive. [†] If dom(f) = dom(f') then f = f' by uniqueness, hence b = c. Thus x satisfies (1). x satisfies (2) as well: Indeed, by $x \in x_0$, x is a successor or 0 (since x_0 satisfies (2)). But if $y \in x$, then $y \in x_0$, so, a member of x is also a successor or 0. Thus, x satisfies (1) and (2), hence, by \in -minimality of $x_0, x \in \omega$. By (3), $x_0 \neq 0$. By (2), it is a successor. Say, $x_0 = z \cup \{z\}$. Since $z \in x_0$, we have just seen that $z \in \omega$. Hence $x_0 \in \omega$, since ω is inductive. We have just contradicted (3).