MAS3190.03
Problem Set No. 3—Solutions

Dept. of Mathematics and Statistics

. Prove that for any formula F(x),
(Vn € w)((Ym < n € w)F(m) — F(n)) F (Vn € w)F(n)

or, in words, “if for any n € w we can prove F(n) on the induction hypothesis that
F(m) holds for all m < n, then this is as good as having proved (Vn € w)F(n)”.

This type of induction is called course-of-values induction.

(Hint. Consider the formula G(n) defined as (Ym < n € w)F(m) and apply (ordi-
nary) induction on n to prove—under the I.H. for F(z)—that (Vn € w)G(n). Note
how the “basis” is buried inside the I.H. of course-of-values induction.)

Answer. We follow the hint.
Basis.  G(0) is (Vm)(m < 0 — F(m)), which is true since m < 0 is false.

Assume G(n) for fixed n (I.H.) and proceed to prove G(n + 1).
Now

Gn+1)= (Ym)(m <n+1— F(m))
= (Vm)(m <nVm=n— F(m))
(Vm)(
(

= (Vm)(m <n — F(m) & m=n — F(m)), by Logic

= (Ym)(m <n— F(m)) & (Ym)(m =n — F(m)),by more Logic
=G(n) & (Vm)(m =n — F(m))

=G(n) & F(n), by a bit more Logic

Now, we have G(n) by L.H., hence we have F(n) since (Vm < n)F(m) — F(n), i.e.,
G(n) — F(n) (1)

By the above equivalences, we got G(n + 1), thus, by simple induction, we now
have G(n). By (1), we also have F(n).
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(The “least” number principle over w.) Prove that every (§ # A C w has a minimal
element, i.e., an n € A such that for no m € A is it possible to have m < n. Do so
without foundation, using instead course-of-values induction.

Answer. We argue by contradiction. Let } # A C w, yet A has no minimal
elements. We contradict this by showing w — A = w (what does this contradict?)

We use course-of-values induction:

Basis. 0 € w — A, otherwise 0 € A, and clearly then 0 would be a minimal
element of A.

Assume the claim, that m € w — A, for all m < n (fixed n).

We now argue the case for n + 1: Suppose n+1 ¢ w — A. Then n+1 € A.
But then, n 4+ 1 is minimal in A, for no m < n+ 1 is in A, by I.LH. Once more, we
arrived at a (final) contradiction.

. Redo the proof of Theorem 1.20 (existence part) so that it goes through even if

trichotomy of € over w did not hold.

Answer. we need to redo the passage (from the proof of 1.20) below:

“... hence, by collection, F is a set. So is then
o def
r=yr 2)

Observe first that f is a function: Let (a,b) € f and also (a,c) € f. Then,
by (2), f(a) =b and f’(a) = ¢ for some f, f’ in F. Without loss of generality,
applying trichotomy, dom(f) € dom(f’)} By uniqueness, f = f’ | dom(f)
since both sides of = satisfy the same recurrence on dom(f). ”

OK, so, let (a,b) € f and also (a,c) € f. Then, by (2), f(a) =band f'(a) =c
for some f, f"in F. Let n = dom(f) while m = dom(f’). Thus a € nNm. But then
a+1 C nNm (Why?). By the uniqueness part of the proof, f | (a+1) = f' | (a+1),
in particular, f(a) = f'(a).

. Prove that a set x is a natural number iff it satisfies (1) and (2) below.

(1) it and all its members are transitive
(2) it and all its members are successors or ().

Answer. The only if is from the text (which theorems?).
Here is the if. We prove that if (1) and (2) are satisfied, then z € w. Well,
suppose not, and let zg be €-minimal (by foundation) that satisfies (1) and (2), yet

X0 ¢ w (3)

Let « € xg. Now, x is transitive (by (1)). Let y € . Then y € z, again by (1).
One more invocation of (1), yields that y is transitive.

1 If dom(f) = dom(f’) then f = f’ by uniqueness, hence b = c.



Thus x satisfies (1).

x satisfies (2) as well: Indeed, by = € o, = is a successor or 0 (since zo sat-
isfies (2)). But if y € x, then y € xg, so, a member of z is also a successor or
0.

Thus, x satisfies (1) and (2), hence, by €-minimality of xq, z € w.

By (3), zo # 0. By (2), it is a successor. Say, g = z U {z}. Since z € xo,
we have just seen that z € w. Hence ¢ € w, since w is inductive. We have just
contradicted (3).



