MA3190.03

Problem Set No. 3

Dept. of Mathematics and Statistics

Date: March 4, 1999 Due: In two weeks

1. Prove that for any formula $\mathcal{F}(x)$,

$$(\forall n \in \omega)((\forall m < n \in \omega)\mathcal{F}(m) \to \mathcal{F}(n)) \vdash (\forall n \in \omega)\mathcal{F}(n)$$

or, in words, "if for any $n \in \omega$ we can prove $\mathcal{F}(n)$ on the induction hypothesis that $\mathcal{F}(m)$ holds for all m < n, then this is as good as having proved $(\forall n \in \omega)\mathcal{F}(n)$ ".

This type of induction is called *course-of-values induction*.

(*Hint.* Consider the formula $\mathcal{G}(n)$ defined as $(\forall m < n \in \omega)\mathcal{F}(m)$ and apply (ordinary) induction on n to prove—under the I.H. for $\mathcal{F}(x)$ —that $(\forall n \in \omega)\mathcal{G}(n)$. Note how the "basis" is buried inside the I.H. of course-of-values induction.)

- **2.** (The "least" number principle over ω .) Prove that every $\emptyset \neq A \subseteq \omega$ has a minimal element, i.e., an $n \in A$ such that for no $m \in A$ is it possible to have m < n. Do so without foundation, using instead course-of-values induction.
- **3.** Redo the proof of Theorem 1.20 (existence part) so that it goes through *even if* trichotomy of \in over ω did not hold.
- **4.** Prove that a set x is a natural number iff it satisfies (1) and (2) below.
 - (1) it and all its members are transitive
 - (2) it and all its members are successors or \emptyset .