MATH 6030.03 ## A/W 1990-2000 Date: Sep 21, 1999 Due: Soon ## Problem Set No. 1 1) Why is " $\neg\neg$ (" not a term? (Give a proof). 2) Why is $A[x \leftarrow x]$ the same string as A? (Give a proof by induction on A). 3) Prove that $\vdash t = s \rightarrow s = r \rightarrow t = r$, for any terms t, s, and r. 4) We have shown in class that if $\mathcal{F} + \neg \mathcal{A}$ is inconsistent, where \mathcal{A} is a sentence, then $\mathcal{F} \vdash \mathcal{A}$. Is this true for any wff \mathcal{A} (not necessarily closed)? Prove or disprove. 5) (The proof-by-auxiliary-constant metatheorem) Prove 4.23. 6) Prove the Leibniz Rule. 7) Prove that if $\mathcal{F} \vdash t_i = s_i$ for $i = 1, \ldots, n$, and \overline{A} is the wff obtained from A by replacing some (possibly all) occurrences of t_i in A by s_i , then $$\mathcal{F} \vdash A \leftrightarrow \overline{A}$$. 8) Prove that for any \mathcal{A} , $(\forall x)(\forall y)\mathcal{A} \vdash (\forall y)(\forall x)\mathcal{A}$. Is it also the case that $\vdash (\forall x)(\forall y)\mathcal{A} \to (\forall y)(\forall x)\mathcal{A}$? Prove or disprove.