0.0.1 Lecture \#3 -continued

Recall

0.0.1 Definition. (Boolean formulas or wff) A string (or expression) A over the alphabet of Boolean symbols \mathcal{V} is called a Boolean formula or a Boolean well-formed formula (in short wff) iff it occurs in some formula construction.

The set of all wff we denote by the all-capitals WFF.

The wff that are either propositional variables $p, q, p^{\prime \prime}, r_{123}, \ldots$ or \perp or \top, in short, variables or constants, we call Atomic wff.

2 Notation. We often want to say things such as "... bla-bla ...for all variables p...".
Well this is not exactly right! There is only ONE variable p !
We get around this difficulty by having informal names (in the metatheory as we say) for Boolean variables: $\mathbf{p}, \mathbf{q}, \mathbf{r}^{\prime}$, etc.

Any such bold face informal variable can stand for any actual variable of our alphabet \mathcal{V} whatsoever.

So "all p" means "any of the actual variables $p, q, r_{1110001}, \ldots$ that \mathbf{p} may stand for" while "all $p "$ is meaningless!

We can give a definition of formulas that is independent from formula constructions: OK, the above Definition 0.0.1 says that A is a wff iff it appears in a construction as

1. Atomic: \perp, \top, \mathbf{p}
2. A negation $(\neg B)$, where B appeared earlier in the construction
3. An expression $(B \wedge C)$ or $(B \vee C)$ or $(B \rightarrow C)$ or $(B \equiv C)$, where B and C appeared earlier in the construction and

We can stop referring to constructions by changing - by Definition 0.0.1 the blue and red statements 2 and 3 above to read instead " B is a wff" and " B and C are each a wff" respectively.

Thus we have
0.0.2 Definition. (The Inductive Definition of wff) An expression A over \mathcal{V} is a wff just in case A is:
(1) Atomic $(\mathbf{p}, \perp, \top)$
or one of
(2) $(\neg B),(B \wedge C),(B \vee C),(B \rightarrow C),(B \equiv C)$, where B and C are wff.
0.0.3 Remark. The formulas $(\neg A),(A \wedge B),(A \vee B),(A \rightarrow B),(A \equiv B)$ are read, from left to right, "not A ", " A and B ", " A or B ", "if A then B " (but also " A implies B "), " A is equivalent to B ".

The above ff have the same names with their "last glue", namely, negation, conjunction, disjunction. implication and equivalence.

Pause. Why "LAST" glue?
0.0.4 Example. Using 0.0 .1 let us verify that $((p \vee q) \vee r)$ is a whf.

Well, here is a formula construction written with annotations:

(1)	p	\langle atomic \rangle
(2)	q	\langle atomic \rangle
(3)	r	\langle atomic \rangle
(4)	$(p \vee q)$	$\langle 1+2+\vee$-glue \rangle
(5)	$((p \vee q) \vee r)$	$\langle 4+3+\vee$-glue \rangle

Do we have to write down all the atomic mf at the very beginning? Not really, but it is important to write them BEFORE they are needed!

Intuitively, immediate predecessors of a wff are the formulas we used to apply the last glue.
0.0.5 Definition. (Immediate predecessors (i.p.)) No atomic formula has immediate predecessors.

Any of the following wff $(A \wedge B),(A \vee B),(A \rightarrow B),(A \equiv B)$ has as i.p. A and B.
A is an i.p. of $(\neg A)$.

0.0.6 Example.

- The i.p. of $((p \vee q) \vee r)$ are $(p \vee q)$ and r
- The i.p. of $(p \vee q)$ are p and q
- The only i.p. of $(\neg T)$ is T
0.0.7 Remark. (Priorities of glue (connectives)) The priorities of glue form left to right go from strongest to weakest according to the sequence

$$
\begin{equation*}
\neg, \wedge, \vee, \rightarrow, \equiv \tag{1}
\end{equation*}
$$

Why do we care? What does "priority" do?

Well, suppose we do not want to always write mf down with all the brackets that definition 0.0 .1 and 0.0 .2 require.

Why wouldn't we? For better readability!

Thus we agree to judiciously omit brackets in a manner that we can reinsert them correctly if we are required to!

That is, we agree on how to write formulas sloppily and get away with it!
Is there any other way to do this?
Yes, BUT: As with any agreement between any two people, there can be ONLY one agreement.

So please do follow (1) above and the clarifications that follow below. Anything else will be wrong.

The "algorithm" is that whenever two pieces of glue compete for a variable as in

$$
\ldots \vee p \wedge \ldots
$$

then \wedge wins (higher priority) and "gets" the p. This means brackets were intended -and hence are reinserted - this way:

$$
\ldots \vee(p \wedge \ldots
$$

What if we have the situation

$$
\begin{equation*}
\ldots \vee p \vee \ldots \tag{2}
\end{equation*}
$$

i.e., same glue left and right of p ?

We have the agreement that all glue is right-associative, that is, in a chain like (2) the glue on the right wins! We insert brackets this way:

$$
\ldots \vee(p \vee \ldots
$$

In particular

$$
\neg \neg \neg p
$$

means

$$
(\neg(\neg(\neg p)))
$$

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.
0.0.8 Definition. (Complexity of a wff) The complexity of a wff is the number of occurrences of connectives (glue) in it. Counting occurrences means that multiplicity matters and counts!
0.0.9 Example. Clearly we can compute complexity correctly whether we wrote a formula with all its brackets or not.

For example, the complexity of $p \rightarrow \perp \rightarrow r$ is 2 whether we wrote it with no brackets or wrote it as Definitions 0.0.1 and 0.0.2 want: $(p \rightarrow(\perp \rightarrow r))$.

Directly from the definition above, every atomic formula has complexity zero.

All the theorems (and their corollaries) in this section are ABOUT formulas of Boolean logic, and their $F O R M$.

They are not theorems OF Boolean logic. This concept we have not defined yet!!

Theorems that are ABOUT logic we call METAtheorems.
0.0.10 Theorem. Every formula A has equal numbers of left and right brackets.

Proof. Induction on the complexity, let's call it n, of A.

1. Basis. $n=0$. Then A has no glue, so it is atomic. But an atomic formula has no left or right brackets!

Since $0=0$ we are good!
2. Induction Hypothesis, in short "I.H." Fix an n and assume the statement for all A of complexity $\leq n$.
3. Induction Step, in short "I.S.", is for any A of complexity $n+1$. As $n+1>0, A$ is NOT atomic THEREFORE it has one of TWO forms:
(a) A is $(\neg B)$. By I.H. -applicable since A has complexity $n+1$ hence the complexity of B is $\leq n-B$ has equal number of left and right brackets. Forming A we added one of each type of bracket. So, total left=total right for A.
(b) A is $(B \circ C)$, where we wrote " \circ " as a metasymbol that stands for any binary glue among $\wedge, \vee, \rightarrow, \equiv$.
(2) How you glue TWO formulas, with what glue, will not change the number of brackets you will insert!

Now by the I.H. (since each of B and C have complexity $\leq n$) we have that the total number of left brackets from B and C equal their total number of right brackets.
A has ONE extra left, and ONE extra right brackets that the totals above. So A has the property! DONE!

Lecture \#4 Sept. 18.

(2) IMPORTANT! You will note that the induction for the formula A above essentially went like this:

- Prove the property for the atomic formulas \mathbf{p}, \perp, \top

We assumed the I.H. that all the i.p. of A have the property.

Then we proved (I.S.)

- If A is $(\neg B)$, then A has the property since the i.p. B does (WHY B does?).
- If A is $(B \circ C)$, then A has the property since the two i.p. B and C do.

The technique above is called Induction on (the shape of) formulas and does not need the concept of complexity.

This is how we will do it in our inductions going forward.
0.0.11 Corollary. Every nonempty proper prefix of a wff A has an excess of left (compared to right) brackets.

Proof. We do induction on the formula A.

- Basis. A is atomic. Then we are done since A has NO nonempty proper prefix!

People also say "then there is nothing to prove" or "the statement is vacuously satisfied".

2
What just happened here?! Well, I am claiming "the statement is true" and suppose that you are claiming "the statement is false".
It is for you to give me a counterexample to what I said in order to show that you are right: Namely,

You must produce a nonempty proper prefix of A that fails the property.
BUT there is no way! There is NO nonempty proper prefix of A !

So I win!

- Assume the I.H. that all the i.p. of A have the property.
- For the I.S. we examine $A L L$ possible forms of nonempty proper prefixes. These are:

1. Case where A is $(\neg B)$. A nonempty proper prefix of A has one of the four forms below:
(a) (Then clearly we have an excess of "(" The I.H. was NOT needed.
(b) $(\neg \quad$ Then clearly we have an excess of "(" The I.H. again was NOT needed.
(c) $(\neg D, \quad$ where D is an nonempty proper prefix of $B . \quad D$ already has an excess of "(" by the I.H. that applies since B is an i.p. of A. So, ad $\overline{\text { ding to them the leading red "(" does no harm! }}$
(d) $(\neg B \quad$ Now $0.0 .10 B$ has equal number of lefts and rights. The leading (red)"(" contributes an excess. The I.H. again was NOT needed.
2. A is $(B \circ C)$. A nonempty proper prefix of A has one of the six forms below:
(a) (Then clearly we have an excess of "(" The I.H. was NOT needed.
(b) $\left(B^{\prime}, \quad\right.$ where B^{\prime} is an nonempty proper prefix of $B . \quad B^{\prime}$ already has an excess of "(" by the I.H. that applies since B is an i.p. of A. So, adding to them the leading "(" does no harm!
(c) $B \quad B$ has balanced bracket numbers by 0.0 .10 , thus the leading "(" creates a majority of "(".
(d) $(B \circ$ As \circ adds no brackets we are done by the previous case.
(e) $\left(B \circ C^{\prime} \quad\right.$ Here B is a formula so it contributes 0 excess. C^{\prime} is a nonempty proper prefix of C and the I.H. applies to the latter as it is an i.p. of A.

So C^{\prime} has an excess of "(" and the leading "(" of A helps too.
(f) ($B \circ C \quad$ Neither B nor C contribute an excess of "(" as both are formulas. The leading red "(" breaks the balance in favour of "(".

This is easy:
0.0.12 Theorem. Every formula A begins with an atomic wff, or with a "(".

Proof. By 0.0.2, A is one of

- Atomic \mathbf{p}, \perp, \top
- $(\neg B)$
- $(B \circ C)$ where $\circ \in\{\wedge, \vee, \rightarrow, \equiv\}$

So, in the first case A begins with an atomic wff, and in the other two begins with an "(".

No Induction was used or needed!
0.0.13 Theorem. (Unique Readability) The i.p. of any formula A are unique.

So we can "deconstruct" or "parse" a formula in a unique way: It is exactly one of atomic, a negation, a disjunction, a conjunction, an implication, an equivalence.
Proof.

- Clearly no atomic formula can be read also as one of a negation, a disjunction, a conjunction, an implication, an equivalence since it has no glue, but the all the others do.
- Can we read a formula A as two distinct negations? That is, using here "=" as equality of strings, can we have

$$
A=(\neg B)=(\neg C) ?
$$

No, since $(\neg B)=(\neg C)$ implies that after we match the first two symbols (left to right) then we will continue matching all symbols - by position - until we match all of B with C and finally match the rightmost ")".

- Can we read a formula A as a negation and as a disjunction, or a conjunction, or an implication, or an equivalence? That is, can I have

$$
A=(\neg B)=(C \circ D) ?
$$

No, since if we have $(\neg B)=(C \circ D)$, then from left to right the first position is OK (match) but the 2nd is NOT: C cannot begin with" \neg " (see 0.0.12).

- Can we read a formula A as a $(B \circ C)$ and also as a $(D \diamond Q)$, where \diamond stands for any binary glue?

Let's assume that we can and get a contradiction.

Well, note first that if $(B \circ C)=(D \diamond Q)$ then if we have $B=D$ then this forces $\circ=\diamond$ and hence also that C) $=Q$) which trivially (remove the ending ")") leads to $C=Q$.

BUT this is not the case that we are looking at.

So, assume that $B \neq D$. There are two cases.
Case 1. B is a nonempty proper prefix of D. Then, by $0.0 .11, B$ has an excess of left brackets. But being a wff it also has balanced numbers of left/right brackets. Contradiction!

Case 2. D is a nonempty proper prefix of B. Then, by $0.0 .11, D$ has an excess of left brackets. But being a wff it also has balanced numbers of left/right brackets. Contradiction!

Why do we care about unique readability?
Well, there is an old programming language called "PL/1" (from "Programming Language 1").
The language defines "statement" to be any instruction.
It has two kinds of if-statements, namely

- IF Con THEN St
and
- IF Con THEN St ${ }_{1}$ ELSE St ${ }_{2}$
where "Con" stands for any condition and "St", "St t_{1} " and "St t_{2} " can be any statements.
So what does the following do?
IF Con_{1} THEN IF Con_{2} THEN St_{1} ELSE St_{2}
We DON'T KNOW! The above is ambiguous! (No unique way to go backwards to figure out what it says)

To fix the context, say Con_{1} evaluates as false.
Now, one meaning of (1) is

$$
\begin{equation*}
\text { IF Con }{ }_{1} \text { THEN }\left\{\text { IF Con }{ }_{2} \text { THEN St }{ }_{1} \text { ELSE St }{ }_{2}\right\} \tag{2}
\end{equation*}
$$

which does nothing (skips all) and control goes to the next statement, whatever that is.
Another meaning of (1) is

$$
\begin{equation*}
\text { IF } \mathrm{Con}_{1} \text { THEN }\left\{\text { IF Con }{ }_{2} \text { THEN St }{ }_{1}\right\} \text { ELSE St }{ }_{2} \tag{3}
\end{equation*}
$$

which causes the execution of St_{2}.

POSTSCRIPT The PL/1 language was not redefined to remove the ambiguity! Rather, the Compiler was programmed to "believe" that (2)) above was meant (rule "ELSE matches the closest IF")

Boolean Semantics

Boolean Logic is about the behaviour of glue. That is, we use it to find out how glue leads to (computes) the value of a formula, if values are arbitrarily assigned to the atomic formulas.

What values do we have in mind?
The so-called truth-values, true and false.
These values are OUTSIDE Boolean Logic.
Did you see them in the alphabet \mathcal{V} ? Nor did I!!
They are in the metatheory of Boolean Logic, that is in the domain were we are speaking about the logic, rather than using it.
0.0.14 Definition. A state $v($ or s) is a function that assigns the value \mathbf{f} (false) or \mathbf{t} (true) to every Boolean variable, while the constants \perp and \top, necessarily, always get the values \mathbf{f} and \mathbf{t} respectively.

None of these symbols $-v, s, \mathbf{t}, \mathbf{f}-$ are in the Boolean logic alphabet \mathcal{V}. They are metasymbols in the metatheory.

The \mathbf{f} and \mathbf{t} we call truth values.

On paper or on the chalk board one usually underlines rather than bolds -as bolding is cumbersome - so one denotes \mathbf{f} as \underline{f} and \mathbf{t} as \underline{t} respectively.

The fact that v gives (assigns) the value \mathbf{f} to the variable $q^{\prime \prime}$ is denoted by $v\left(q^{\prime \prime}\right)=\mathbf{f}$.
2) Therefore a state v is (think of MATH 1019/1028 here!) an infinite input/output table like the one Il below

input	output
\perp	\mathbf{f}
\top	\mathbf{t}
p	\mathbf{t}
q	\mathbf{f}
\vdots	\vdots

where no two rows can have the same input but different outputs.

Why an infinite table?

Because our Boolean logic language has infinitely many variables and a state, by definition, assigns a value to each of them.
0.0.15 Definition. (Truth tables) In the metatheory of Boolean logic there are five operations we are interested in applied on the members of the set of truth values $\{\mathbf{t}, \mathbf{f}\}$.

Each operation takes its input(s) from the above set, and its outputs are also in this set.

We have one operation for each connective (glue) and in order to keep track of which is which we use the generic letter F (for "function") subscripted by the name of the corresponding glue.

These functions of the metatheory are called Boolean functions and are the following.

$$
F_{\neg}(x), F_{\vee}(x, y), F_{\wedge}(x, y), F_{\rightarrow}(x, y), F_{\equiv}(x, y)
$$

The behaviour of these functions -input/output behaviour, that is- is fully described by the following table that goes by the nickname "truth table".

x	y	$F_{\neg}(x)$	$F_{\vee}(x, y)$	$F_{\wedge}(x, y)$	$F_{\rightarrow}(x, y)$	$F_{\equiv}(x, y)$
\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{t}
\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{f}
\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{t}	\mathbf{f}	\mathbf{f}	\mathbf{f}
\mathbf{t}	\mathbf{t}	\mathbf{f}	\mathbf{t}	\mathbf{t}	\mathbf{t}	\mathbf{t}

