
1

0.0.1 Example. Russell’s Paradox

We represent sets either by listing,

• {0}

• {$,#, 3, 42}

• {0, 1, 2, 3, 4, . . .}

or by “defining property”: The set of all objects x that make P (x) true, in symbols

S = {x : P (x)} (1)

As we know from high-school, (1) says the same thing, or as we say, is equivalent to

x ∈ S ≡ P (x) (2)

BTW, saying “all x (such) that . . . ” means “all values of x (such) that . . . ”

Moreover, writing “P (x)” is the same as writing “P (x) is true”.

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



2

Cantor believed (as did the philosopher Frege) that, for any property P (x), (1) defines a set.

Russell begged to differ, so he said: “Oh, yeah? How about”

R = {x : x /∈ x}

where the property here is “x /∈ x”

Now, by (2) we have
x ∈ R ≡ x /∈ x

If R is a set, then we can plug it in the set variable x above to obtain

R ∈ R ≡ R /∈ R

How do we avoid this contradiction?

By admitting that R is NOT a set! �

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



3

So Cantor was sloppy about what a set is and how sets get formed.

Formal logic was invented by Russell and Whitehead, and Hilbert to salvage Mathematics from
“antinomies” and “paradoxes”, both words derived from Greek, and meaning contradictions.

In the text, a passage enclosed between two “�” signs is IMPORTANT.

A passage enclosed between two double-signs, “� �” is to be omitted at first reading.

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



4

Connection with Programming

(1) In programming we use syntactic rules to write a program in order to solve some problem
computationally.

(2) In logic you use the syntactic rules to write a proof that establishes a theorem.

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



5

Kinds of logic reasoning that we will thoroughly examine and use.

1. Equational logic —also known as calculational logic.

Introduced by [DS90] and simplified by [GS94] and later by [Tou08] to make it accessible to
undergraduates.

2. Hilbert-style logic. This is the logic which most people use to write their mathematical
arguments in publications, lectures, etc.

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



6

Logic is meant to certify mathematical truths syntactically.

Logic is normally learnt by

• A LOT of practice.

• By presenting it gradually.

1. First learning the Propositional Logic (also known as Boolean Logic).

Here one learns how logical truths combine using connectives familiar from programming
like OR, AND, and NOT.

Boolean logic is not expressive enough to formulate statements about mathematical ob-
jects. Naturally, if you cannot ask it —a question about such objects— then you cannot
answer it either.

2. Next learning Predicate Logic (also known as First-Order Logic).

This is the full logic for the mathematician and computer scientist as it lets you

formulate and explore statements that involve mathematical objects like num-
bers, strings and trees, and many others.

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



7

Decision Problem of Logic (Entscheidungsproblem of Hilbert’s): It asks: Is this formula
a theorem of logic?

� Here we are ahead of ourselves: What is a “formula”? What is a “theorem”?

I will tell you soon!

1. Boolean Logic: Its Decision Problem, because of Post’s theorem that we will learn in this
course, does have an algorithmic solution, for example, via truth tables.

There is a catch: The solution is in general useless because the algorithm takes tons of time
to give an answer.

I am saying that at the present state of knowledge of algorithms, the truth table method is
unpractically slow. To get an answer from a n× n table it takes 2n steps.

2. Predicate Logic: Things get desperate here: We have a totally negative answer to the
Decision Problem. There is no algorithm at all that will solve it! This result is due to Church
([Chu36])

� So it makes sense to find ways to certify truth, which rely on human ingenuity and sound methodology

rather than on some machine and a computer program, and do so both for

• Boolean logic where the decision problem has an unfeasible algorithm that solves it,

and

• Predicate logic where the decision problem has no algorithm to be discovered —ever.

This we will learn in this course: How to certify truth by syntactic means, through practice and
sound methodology. �

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



8

0.0.1 Lecture #2 (Sep. 11)

A look back at strings

0.0.2 Definition. (Strings; also called Expressions)

1. What is a string over some alphabet of symbols?

It is an ordered finite sequence of symbols from the alphabet —with no gaps between symbols.

0.0.3 Example. If the alphabet is {a, b} then here are a few strings:

(a) a

(b) aaabb

(c) bbaaa

(d) bbbbbbb

�

What do we mean by “ordered”? We mean that order matters! For example, aaabb and bbaaa
are different strings. We indicate this by writing aaabb 6= bbaaa.

� Two strings are equal iff † they have the same length n and at each position
—from 1 to n— both strings have the same symbol. So, aba = aba, but aa 6= a and
aba 6= baa. �

†If and only if.

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



9

A Bad Alphabet

Consider the alphabet B = {a, aa}.

This is bad. WHY?

Because if we write the string aaa over this alphabet we do not know what we mean by just
looking at the string!

Do we mean 3 a like
a a a

Or do we mean
a aa

Or perhaps
aa a

We say that alphabet B leads to ambiguity.

Since we use NO separators between symbols in denoting strings we MUST ALWAYS choose
alphabets with single-symbol items.

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



10

2. Names of strings: A,A′′, A5, B, C, S, T .

What for ? CONVENIENCE AND EASE OF EXPRESSION.

Thus A = bba gives the string bba the name A.

Names vs IS : Practicing mathematicians and computer scientists take a sloppy attitude
in using “IS”. In the case of “let A be a string” they mean “let A name a string”.

Same as in “let x be a rational number”. Well x is not a number at all! It is a letter! We
mean “let x STAND for, or NAME, a rational number”

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



11

3. Operations on strings: Concatenation. From a string aab and baa, concatenation in the order
given is aabbaa.

We say that if A is a string (meaning names) and B is another. Their concatenation AB is
not a concatenation of names but a concatenation of contents. If A = aaaa and B = 101 then
AB = aaaa101.

Incidentally,
BA = 101aaaa 6= aaaa101 = AB

Thus in general concatenation is not commutative as we say.

Why “in general”?

Well, if X = aa and Y = a then XY = aaa = Y X.

Special cases where concatenation commutes exist!

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



12

4. Associativity of concatenation. It is expressed as (AB)C = A(BC) where bracketing here
denote invisible symbols (not part of any string!) that simply indicate the order in which we
GROUP, from left to right.

At the left of the “=” we first concatenate A and B and then glue C at the right end.

To the right of “=” we first glue B and C and then glue A to the left of the result.

In either case we did not change the relative positions of A, B and C.

The property is self-evident.

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



13

5. Empty string. A string with no symbols, hence with length 0. Denoted by λ.

� How is λ different than ∅ the empty set?

Well one is of string type and the other is of set type. So? The former is an ORDERED empty
set, the latter is an UNORDERED empty set that moreover is oblivious to repetitions.

I mean, aaa 6= a but {a, a, a} = {a}. �

6. Clearly, for any string A we have Aλ = λA as concatenation adds nothing to either end.

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



14

7. Substrings. A string A is a substring of B iff A appears as is as a part of B.

So if A = aa and B = aba then A is NOT a substring of B.

Its members both appear in B (the two a) but are not together as they are in A. A does not
appear “as is”.

Can we get rid of all this bla-bla with a proper definition? Sure:

A is a substring of B iff for some strings (named) U and V we have B = UAV .

� We also say A is part of B. �

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



15

8. Prefix and suffix . A is a prefix of B if for some string V , B = AV .

So A is part of B up in front!

A is a suffix of B if for some string U , B = UA. �

Example: λ is a prefix and a suffix, indeed a part, of any string B. Here are the “proofs” of
the two cases I enumerated:

• B = λB

• B = Bλ

WHAT ABOUT THE THIRD CASE?

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



16

Lecture #3 (Sept. 16) Formulas or well-formed-formulas (wff)

The Syntax of logic. Boolean Logic at first!

0.0.4 Definition. (Alphabet of Symbols)

A1. Names for variables, which we call “propositional” or “Boolean” variables.

These are p, q, r, with or without primes or subscripts (indices) (e.g., p, q, r, p′, q13, r
′′′
51 are all

names for Boolean variables).

A2. Two symbols denote the Boolean constants, > and ⊥. We pronounce them “top” and “bot”
respectively.

What are > and ⊥ good for? We will soon see!

A3. (Round) brackets, i.e., “(” and “)” (employed without the quotes, of course).

A4. Boolean “connectives” that I will usually call “glue”.

We use glue to put a formula together much like we do so when we build model cars or
airplanes.

The symbols for Boolean connectives are

¬ ∧ ∨ → ≡ (1)

and are read from left to right as “negation, conjunction, disjunction, implication, equiva-
lence”. �

� We stick to the above symbols for glue (no pun!) in this course! Just like

in programming. You cannot use any symbols you please or like. You use THE symbols of the
programming language as GIVEN. Same holds for logic! �

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



17

0.0.5 Definition. (Formula Construction (process)) A formula construction (in the text “for-
mula calculation”) is any finite (ordered) sequence of strings the alphabet of Boolean logic V that
obeys the following three specifications:

C1. At any step we may write precisely one symbol from categories A1. or A2. above (0.0.4).

C2. At any step we may write precisely one string of the form (¬A), as long as we have written
the string (named !) A already at a previous step.

So, “(¬A)” is a string that has (¬ as a prefix, then it has a part we named A, and then it has
) as a suffix.

� I must stress that the letter A names the string that we write down. Just as in a program:
When you issue the command “print X” you mean to print what the X contains as value

—what it names. You do not mean to print the letter “X”! �

C3. At any step we may write precisely one of the strings (A∧B), (A∨B), (A→ B), (A ≡ B),
as long as we have already written each of the strings A and B earlier.

� We do not care which we wrote first, A or B. �

�

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



18

0.0.6 Definition. (Boolean or Propositional formulas (wff)) Any string A over the alpha-
bet V (A1.–A4.) is called a a Boolean formula or propositional formula —in short wff— iff A is a
string that appears in some formula construction. �

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



19

0.0.7 Example. First off, the above says more than it pretends to:

For example, it says that every string that appears in a formula construction is a wff. The
definition also says,

“do you want to know if A is a wff? Just make sure you can build a formula construction where
A appears.”

We normally write formula constructions vertically. Below I use numbering and annotation
(in “〈·〉” brackets) to explain each step.

•

(1) ⊥ 〈C1〉
(2) p 〈C1〉
(3) (¬⊥) 〈(1) + (C2)〉
(4) ⊥ 〈C1〉
(5) > 〈C1〉

Note that we can have redundancy and repetitions. Ostensibly the only nontrivial info in the
above is that (¬⊥) is a formula. But it also establishes that ⊥ and > and p are formulas.

•

(1) ⊥ 〈C1〉
(2) p 〈C1〉
(3) (¬>) 〈oops!〉
(4) ⊥ 〈C1〉
(5) > 〈C1〉

The above is wrong at step (3). I have not written > in the construction before I attempted
to use it!

�

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



20

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.



21

Bibliography

[Chu36] Alonzo Church, A note on the Entscheidungsproblem, J. Symbolic Logic 1 (1936), 40–41,
101–102.

[DS90] Edsger W. Dijkstra and Carel S. Scholten, Predicate Calculus and Program Semantics,
Springer-Verlag, New York, 1990.

[GS94] David Gries and Fred B. Schneider, A Logical Approach to Discrete Math, Springer-Verlag,
New York, 1994.

[Tou08] G. Tourlakis, Mathematical Logic, John Wiley & Sons, Hoboken, NJ, 2008.

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.


	blueLecture #2 (Sep. 11)

