Chapter 1

General Associativity for \equiv, \lor and \land

This chapter retells (from the text, [Tou08]), hopefully more simply, the fact that Axiom Schema 1, namely,

$$\left((A \equiv B) \equiv C \right) \equiv \left(A \equiv (B \equiv C) \right) \tag{1}$$

implies that in a *chain of equivalences*

$$A_1 \equiv A_2 \equiv \dots \equiv A_n \tag{2}$$

it is unimportant how brackets are inserted

This *unimportance* means that we claim the following theorem, (3), which we will prove here.

$$\vdash \left(A_1, A_2, \cdots, A_n\right) \equiv \left(A_1 \equiv \left(A_2 \equiv \left(A_3 \equiv \cdots \equiv A_n \cdots\right)\right)\right)$$
(3)

where " (A_1, A_2, \dots, A_n) " denotes a fully parenthesised version of (2) with one among the *many* possible bracketings being chosen, while the rhs of the red \equiv denotes the formula with the *canonical insertion of brackets* (assuming all were missing), from right to left, as we learnt to do in class/text.

And this is not all! As the technique is the same for all three connectives \equiv, \lor and \land , we in fact **prove that**

If \circ is one of \equiv, \lor and \land , then

$$\vdash \left(A_1, A_2, \cdots, A_n\right) \equiv \left(A_1 \circ \left(A_2 \circ \left(A_3 \circ \cdots \circ A_n \cdots^*\right)\right)\right) \qquad (GAssoc)$$

General Associativity and Commutatitivity© 2018, by George Tourlakis

^{*}The red · · · are all right brackets; right?

where " (A_1, A_2, \dots, A_n) " denotes a fully parenthesised version of (4) below with one among the many possible bracketings being chosen, while the rhs of the red \equiv in (*GAssoc*) denotes the formula in (4), this time with the *canonical insertion of brackets* (assuming all were initially removed), from right to left, as we learnt to do in class/text.

 $A_1 \circ A_2 \circ \dots \circ A_n \tag{4}$

The (meta) proof is by induction on n. This meta proof has formal (Equationalstyle) proofs embedded in it. Each A_i is assumed to **NOT** be of the form $B_1 \circ B_2 \circ \cdots$, that is, all the \circ that "glue" the chain (4) together are shown in (4) —there are n-1 of them.

Each A_i is a wff, so in particular is fully parenthesised.

Proof. The proof hinges on the result

$$\vdash \left((A \circ B) \circ C \right) \equiv \left(A \circ (B \circ C) \right) \tag{Assoc}$$

For \circ being \equiv or \lor , we have (Assoc) by Axiom Schemata 1 or 5 respectively. For \circ being \land , we have (Assoc) as a **theorem**.

A good starting point for the induction is n = 3, since if n = 1 we have just A_1 and there is nothing to prove, and if we have n = 2 then we have $(A_1 \circ A_2)$ and thus there are no further brackets to insert, one way or another; $(A_1 \circ A_2)$ is a wff as is.

So, **basis**: n = 3. The claim is correct (that is, (*GAssoc*) is indeed an *absolute theorem*) since the lhs of the red \equiv is **one** of

- $(A_1 \circ (A_2 \circ A_3))$ in which case we are done by the theorem (class/text) $\vdash X \equiv X$
- $((A_1 \circ A_2) \circ A_3)$ in which case we are done by the result (Assoc) above

Take as I.H. that, for all k < n, the claim (*GAssoc*) on p.1 is true, and prove the case for n (this is the I.S.).

This "*n*" is always thought of as the number of the A_i 's —not just the last subscript. Thus, if we are looking, say, at (A_3, A_4, \dots, A_n) then we have $n - 2 A_i$'s here, and the I.H. applies!

Let's now do the I.S. We have two cases:

a) Case where brackets in the lhs (of the red \equiv) in (*GAssoc*) are inserted so that the last glue applied was the leftmost \circ , that is, like this

General Associativity and Commutatitivity© 2018, by George Tourlakis

Ş

Ş

We now have a short Equational proof that settles the I.S. in this case on the I.H. that we have

$$\vdash (A_2, \cdots, A_n) \equiv (A_2 \circ (A_3 \circ \cdots \circ A_n \cdots)) \qquad (I.H. \text{ for Case a})$$
$$\begin{pmatrix} A_1 \circ (A_2, \cdots, A_n) \end{pmatrix}$$
$$\Leftrightarrow \langle Leib + I.H. \text{ for Case a; Denom: } A_1 \circ \mathbf{p}, \mathbf{p} \text{ fresh} \rangle$$
$$\begin{pmatrix} A_1 \circ (A_2 \circ (A_3 \circ \cdots \circ A_n \cdots)) \end{pmatrix} \end{pmatrix}$$

b) Case where brackets in the lhs (of the red ≡) in (GAssoc) are inserted so that the last glue applied was NOT the leftmost o, that is, the situation is like this:

$$\left(\left(A_1, A_2, \cdots, A_k\right) \circ \left(A_{k+1}, \cdots, A_n\right)\right)$$

where $2 \le k < n$. Why k < n?

By the I.H. we have

$$\vdash (A_1, A_2, \cdots A_k) \equiv (A_1 \circ (A_2 \circ \cdots \circ A_k \cdots)) \qquad (I.H. \text{ for Case b})$$

We now have a short Equational proof that settles the I.S. in this case as well:

$$\begin{pmatrix} \left(A_{1}, A_{2}, \cdots A_{k}\right) \circ \left(A_{k+1}, \cdots, A_{n}\right) \end{pmatrix}$$

$$\Leftrightarrow \left\langle Leib + I.H. \text{ for Case b; Denom: } \mathbf{p} \circ \left(A_{k+1}, \cdots, A_{n}\right), \mathbf{p} \text{ fresh} \right\rangle$$

$$\begin{pmatrix} \left(A_{1} \circ \left(A_{2} \circ \cdots \circ A_{k} \cdots\right)\right) \circ \left(A_{k+1}, \cdots, A_{n}\right) \end{pmatrix}$$

$$\Leftrightarrow \left\langle Assoc, p.2 \right\rangle$$

$$\begin{pmatrix} A_{1} \circ \left(\left(A_{2} \circ \cdots \circ A_{k} \cdots\right) \circ \left(A_{k+1}, \cdots, A_{n}\right) \end{pmatrix} \end{pmatrix} \end{pmatrix}$$

$$\Leftrightarrow \left\langle \text{by Case b} \right\rangle$$

$$\begin{pmatrix} A_{1} \circ \left(A_{2} \circ \left(A_{3} \circ \cdots \circ A_{n} \cdots\right) \right) \end{pmatrix}$$

1.0.1 Exercise. Prove the theorem *Assoc* on p.2 for the case where \circ is \land . \Box

General Associativity and Commutatitivity© 2018, by George Tourlakis

4 1. General Associativity for \equiv , \lor and \land

General Associativity and Commutatitivity© 2018, by George Tourlakis

Chapter 2

General Commutativity for \equiv, \lor and \land

This chapter retells (from the text) in a unified manner the fact that the **Commutativity Theorem Schema** below

$$\vdash A \circ B \equiv B \circ A \tag{Comm}$$

where \circ is one of \equiv, \lor or \land , implies that

$$\vdash A_1 \circ A_2 \circ \dots \circ A_n \equiv A_{j_1} \circ A_{j_2} \circ A_{j_3} \circ \dots \circ A_{j_n} \tag{GComm}$$

where the o-chain $A_{j_1} \circ A_{j_2} \circ A_{j_3} \circ \cdots \circ A_{j_n}$ is any permutation of the o-chain $A_1 \circ A_2 \circ \cdots \circ A_n$ that we may choose.

As for (Comm), it is an **Axiom Schema** ((2) and (6) for the cases where \circ is \equiv or \lor respectively)) or an **absolute theorem schema** (case where \circ is \land).

Note that according to the results of Chapter 1, brackets need only be inserted if we need to achieve some visual effect.

2.0.1 Lemma. (Swapping two End-Formulas (red)) $\vdash B \circ C \circ D \equiv D \circ C \circ B$.

Proof.

 $\begin{array}{l} B \circ C \circ D \\ \Leftrightarrow \ \langle (Comm) \ \text{above, pretending we inserted brackets around} \ B \circ C \rangle \\ D \circ B \circ C \\ \Leftrightarrow \ \langle (Comm) + (Leib); \ \text{Denom:} \ D \circ \mathbf{p} \rangle \\ D \circ C \circ B \end{array}$

Note: Of course, C may be a long or short \circ -chain.

General Associativity and Commutativity© 2018, by George Tourlakis

Ş

2.0.2 Metatheorem. (On swapping any two formulas (red) in a \circ -chain) $\vdash A \circ B \circ C \circ D \circ E \equiv A \circ D \circ C \circ B \circ E$.

Proof.

$$\begin{array}{l} A \circ B \circ C \circ D \circ E \\ \Leftrightarrow \langle (Leib) + \text{Lemma; Denom: } A \circ \mathbf{p} \circ E \rangle \\ A \circ D \circ C \circ B \circ E \end{array}$$

Note: Of course, A, C, E may be long or short \circ -chains.

2.0.3 Exercise. Prove the theorem (*Comm*) on p.5 for the case where \circ is \wedge .

Bibliography

[Tou08] G. Tourlakis, *Mathematical Logic*, John Wiley & Sons, Hoboken, NJ, 2008.

General Associativity and Commutatitivity C 2018, by George Tourlakis