
Chapter 1

General Associativity for
≡,∨ and ∧

This chapter retells (from the text, [Tou08]), hopefully more simply, the fact
that Axiom Schema 1, namely,(

(A ≡ B) ≡ C
)
≡
(
A ≡ (B ≡ C)

)
(1)

implies that in a chain of equivalences

A1 ≡ A2 ≡ · · · ≡ An (2)

it is unimportant how brackets are inserted

This unimportance means that we claim the following theorem, (3), which we
will prove here.

`
(
A1, A2, · · · , An

)
≡
(
A1 ≡

(
A2 ≡

(
A3 ≡ · · · ≡ An · · ·

)))
(3)

where “

(
A1, A2, · · · , An

)
” denotes a fully parenthesised version of (2)

with one among the many possible bracketings being chosen, while the rhs of
the red ≡ denotes the formula with the canonical insertion of brackets (as-
suming all were missing), from right to left, as we learnt to do in class/text.

� And this is not all ! As the technique is the same for all three connectives ≡,∨
and ∧, we in fact prove that

If ◦ is one of ≡,∨ and ∧, then

`
(
A1, A2, · · · , An

)
≡
(
A1 ◦

(
A2 ◦

(
A3 ◦ · · · ◦An· · ·∗

)))
(GAssoc)

∗The red · · · are all right brackets; right?
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2 1. General Associativity for ≡,∨ and ∧

where “

(
A1, A2, · · · , An

)
” denotes a fully parenthesised version of (4) be-

low with one among the many possible bracketings being chosen, while the rhs
of the red ≡ in (GAssoc) denotes the formula in (4), this time with the canonical
insertion of brackets (assuming all were initially removed), from right to left,
as we learnt to do in class/text.

A1 ◦A2 ◦ · · · ◦An (4)

The (meta) proof is by induction on n. This meta proof has formal (Equational-
style) proofs embedded in it. Each Ai is assumed to NOT be of the form
B1 ◦B2 ◦ · · · , that is, all the ◦ that “glue” the chain (4) together are shown in
(4) —there are n− 1 of them.

Each Ai is a wff, so in particular is fully parenthesised. �

Proof. The proof hinges on the result

`
(

(A ◦B) ◦ C
)
≡
(
A ◦ (B ◦ C)

)
(Assoc)

For ◦ being ≡ or ∨, we have (Assoc) by Axiom Schemata 1 or 5 respectively.
For ◦ being ∧, we have (Assoc) as a theorem.

A good starting point for the induction is n = 3, since if n = 1 we have just
A1 and there is nothing to prove, and if we have n = 2 then we have (A1 ◦A2)
and thus there are no further brackets to insert, one way or another; (A1 ◦A2)
is a wff as is.

So, basis: n = 3. The claim is correct (that is, (GAssoc) is indeed an
absolute theorem) since the lhs of the red ≡ is one of

•
(
A1 ◦ (A2 ◦ A3)

)
in which case we are done by the theorem (class/text)

` X ≡ X

•
(
(A1 ◦A2) ◦A3

)
in which case we are done by the result (Assoc) above

Take as I.H. that, for all k < n, the claim (GAssoc) on p.1 is true,
and prove the case for n (this is the I.S.).

� This “n” is always thought of as the number of the Ai’s —not just the

last subscript. Thus, if we are looking, say, at

(
A3, A4, · · · , An

)
then we

have n− 2 Ai’s here, and the I.H. applies! �

Let’s now do the I.S. We have two cases:

a) Case where brackets in the lhs (of the red ≡) in (GAssoc) are inserted so
that the last glue applied was the leftmost ◦, that is, like this(

A1 ◦
(
A2, · · · , An

))
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We now have a short Equational proof that settles the I.S. in this case on
the I.H. that we have

`
(
A2, · · · , An

)
≡
(
A2 ◦

(
A3 ◦ · · · ◦An · · ·

))
(I.H. for Case a)

(
A1 ◦

(
A2, · · · , An

))
⇔ 〈Leib + I.H. for Case a; Denom: A1 ◦ p, p fresh〉(

A1 ◦
(
A2 ◦

(
A3 ◦ · · · ◦An · · ·

)))
b) Case where brackets in the lhs (of the red ≡) in (GAssoc) are inserted so

that the last glue applied was NOT the leftmost ◦, that is, the situation is
like this: ((

A1, A2, · · ·Ak

)
◦
(
Ak+1, · · · , An

))
where 2 ≤ k < n. Why k < n?

By the I.H. we have

`
(
A1, A2, · · ·Ak

)
≡
(
A1 ◦

(
A2 ◦ · · · ◦Ak · · ·

))
(I.H. for Case b)

We now have a short Equational proof that settles the I.S. in this case as
well: ((

A1, A2, · · ·Ak

)
◦
(
Ak+1, · · · , An

))
⇔
〈
Leib + I.H. for Case b; Denom: p ◦

(
Ak+1, · · · , An

)
, p fresh

〉
((

A1 ◦
(
A2 ◦ · · · ◦Ak · · ·

))
◦
(
Ak+1, · · · , An

))
⇔ 〈Assoc, p.2〉(

A1 ◦
((

A2 ◦ · · · ◦Ak · · ·
)
◦
(
Ak+1, · · · , An

)))
⇔ 〈by Case b〉(

A1 ◦
(
A2 ◦

(
A3 ◦ · · · ◦An · · ·

)))
�

1.0.1 Exercise. Prove the theorem Assoc on p.2 for the case where ◦ is ∧. �
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Chapter 2

General Commutativity for
≡,∨ and ∧

This chapter retells (from the text) in a unified manner the fact that the Com-
mutativity Theorem Schema below

` A ◦B ≡ B ◦A (Comm)

where ◦ is one of ≡,∨ or ∧, implies that

` A1 ◦A2 ◦ · · · ◦An≡Aj1 ◦Aj2 ◦Aj3 ◦ · · · ◦Ajn (GComm)

where the ◦-chain Aj1 ◦Aj2 ◦Aj3 ◦ · · · ◦Ajn is any permutation of the ◦-chain
A1 ◦A2 ◦ · · · ◦An that we may choose.

As for (Comm), it is an Axiom Schema ((2) and (6) for the cases where ◦
is ≡ or ∨ respectively)) or an absolute theorem schema (case where ◦ is ∧).

� Note that according to the results of Chapter 1, brackets need only be inserted
if we need to achieve some visual effect. �

2.0.1 Lemma. (Swapping two End-Formulas (red)) ` B ◦ C ◦ D ≡ D ◦
C ◦B.

Proof.

B ◦ C ◦D
⇔ 〈(Comm) above, pretending we inserted brackets around B ◦ C〉

D ◦B ◦ C
⇔ 〈(Comm) + (Leib); Denom: D ◦ p〉

D ◦ C ◦B

Note: Of course, C may be a long or short ◦-chain. �
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2.0.2 Metatheorem. (On swapping any two formulas (red) in a ◦-chain)
` A ◦B ◦ C ◦D ◦ E ≡ A ◦D ◦ C ◦B ◦ E.

Proof.

A ◦B ◦ C ◦D ◦ E
⇔ 〈(Leib) + Lemma; Denom: A ◦ p ◦ E〉

A ◦D ◦ C ◦B ◦ E

Note: Of course, A,C,E may be long or short ◦-chains. �

2.0.3 Exercise. Prove the theorem (Comm) on p.5 for the case where ◦ is ∧.

�
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