Chapter 1

General Associativity for \equiv, \vee and \wedge

This chapter retells (from the text, [Tou08]), hopefully more simply, the fact that Axiom Schema 1, namely,

$$
\begin{equation*}
((A \equiv B) \equiv C) \equiv(A \equiv(B \equiv C)) \tag{1}
\end{equation*}
$$

implies that in a chain of equivalences

$$
\begin{equation*}
A_{1} \equiv A_{2} \equiv \cdots \equiv A_{n} \tag{2}
\end{equation*}
$$

it is unimportant how brackets are inserted
This unimportance means that we claim the following theorem, (3), which we will prove here.

$$
\begin{equation*}
\vdash\left(A_{1}, A_{2}, \cdots, A_{n}\right) \equiv\left(A_{1} \equiv\left(A_{2} \equiv\left(A_{3} \equiv \cdots \equiv A_{n} \cdots\right)\right)\right) \tag{3}
\end{equation*}
$$

where " $\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ " denotes a fully parenthesised version of (2) with one among the many possible bracketings being chosen, while the rhs of the red \equiv denotes the formula with the canonical insertion of brackets (assuming all were missing), from right to left, as we learnt to do in class/text.
2) And this is not all! As the technique is the same for all three connectives \equiv, \vee and \wedge, we in fact prove that

If \circ is one of \equiv, \vee and \wedge, then

$$
\begin{equation*}
\vdash\left(A_{1}, A_{2}, \cdots, A_{n}\right) \equiv\left(A_{1} \circ\left(A_{2} \circ\left(A_{3} \circ \cdots \circ A_{n} \cdots *\right)\right)\right) \tag{GAssoc}
\end{equation*}
$$

[^0]where " $\left(A_{1}, A_{2}, \cdots, A_{n}\right)$ " denotes a fully parenthesised version of (4) below with one among the many possible bracketing being chosen, while the res of the red \equiv in (GAssoc) denotes the formula in (4), this time with the canonical insertion of brackets (assuming all were initially removed), from right to left, as we learnt to do in class/text.
\[

$$
\begin{equation*}
A_{1} \circ A_{2} \circ \cdots \circ A_{n} \tag{4}
\end{equation*}
$$

\]

The (meta) proof is by induction on n. This meta proof has formal (Equationalstyle) proofs embedded in it. Each A_{i} is assumed to NOT be of the form $B_{1} \circ B_{2} \circ \cdots$, that is, all the o that "glue" the chain (4) together are shown in (4) -there are $n-1$ of them.

Each A_{i} is a wff, so in particular is fully parenthesised.
Proof. The proof hinges on the result

$$
\begin{equation*}
\vdash((A \circ B) \circ C) \equiv(A \circ(B \circ C)) \tag{Assoc}
\end{equation*}
$$

For \circ being \equiv or \vee, we have (Assoc) by Axiom Schemata 1 or 5 respectively. For \circ being \wedge, we have (Assoc) as a theorem.

A good starting point for the induction is $n=3$, since if $n=1$ we have just A_{1} and there is nothing to prove, and if we have $n=2$ then we have $\left(A_{1} \circ A_{2}\right)$ and thus there are no further brackets to insert, one way or another; $\left(A_{1} \circ A_{2}\right)$ is a whf as is.

So, basis: $n=3$. The claim is correct (that is, (GAssoc) is indeed an absolute theorem) since the lis of the red \equiv is one of

- $\left(A_{1} \circ\left(A_{2} \circ A_{3}\right)\right)$ in which case we are done by the theorem (class/text) $\vdash X \equiv X$
- $\left(\left(A_{1} \circ A_{2}\right) \circ A_{3}\right)$ in which case we are done by the result (Assoc) above

Take as I.H. that, for all $k<n$, the claim (GAssoc) on p. 1 is true, and prove the case for n (this is the I.S.).

This " n " is always thought of as the number of the A_{i} 's - not just the last subscript. Thus, if we are looking, say, at $\left(A_{3}, A_{4}, \cdots, A_{n}\right)$ then we have $n-2 A_{i}$'s here, and the I.H. applies!

Let's now do the I.S. We have two cases:
a) Case where brackets in the lis (of the red \equiv) in ($G A s s o c$) are inserted so that the last glue applied was the leftmost \circ, that is, like this

$$
\left(A_{1} \circ\left(A_{2}, \cdots, A_{n}\right)\right)
$$

We now have a short Equational proof that settles the I.S. in this case on the I.H. that we have

$$
\begin{aligned}
& \vdash\left(A_{2}, \cdots, A_{n}\right) \equiv\left(A_{2} \circ\left(A_{3} \circ \cdots \circ A_{n} \cdots\right)\right) \quad(I . H . \text { for Case a) } \\
&\left(A_{1} \circ\left(A_{2}, \cdots, A_{n}\right)\right) \\
& \Leftrightarrow\left\langle L e i b+\text { I.H. for Case a; Denom: } A_{1} \circ \mathbf{p}, \mathbf{p} \text { fresh }\right\rangle \\
&\left(A_{1} \circ\left(A_{2} \circ\left(A_{3} \circ \cdots \circ A_{n} \cdots\right)\right)\right)
\end{aligned}
$$

b) Case where brackets in the lhs (of the red \equiv) in (GAssoc) are inserted so that the last glue applied was NOT the leftmost \circ, that is, the situation is like this:

$$
\left(\left(A_{1}, A_{2}, \cdots A_{k}\right) \circ\left(A_{k+1}, \cdots, A_{n}\right)\right)
$$

where $2 \leq k<n$. Why $k<n$?

By the I.H. we have

$$
\vdash\left(A_{1}, A_{2}, \cdots A_{k}\right) \equiv\left(A_{1} \circ\left(A_{2} \circ \cdots \circ A_{k} \cdots\right)\right) \quad(I . H . \text { for Case b) }
$$

We now have a short Equational proof that settles the I.S. in this case as well:

$$
\begin{aligned}
& \left(\left(A_{1}, A_{2}, \cdots A_{k}\right) \circ\left(A_{k+1}, \cdots, A_{n}\right)\right) \\
\Leftrightarrow & \left\langle\text { Leib }+ \text { I.H. for Case b; Denom: } \mathbf{p} \circ\left(A_{k+1}, \cdots, A_{n}\right), \mathbf{p} \text { fresh }\right\rangle \\
& \left(\left(A_{1} \circ\left(A_{2} \circ \cdots \circ A_{k} \cdots\right)\right) \circ\left(A_{k+1}, \cdots, A_{n}\right)\right) \\
\Leftrightarrow & \langle\text { Assoc, p. } 2\rangle \\
& \left(A_{1} \circ\left(\left(A_{2} \circ \cdots \circ A_{k} \cdots\right) \circ\left(A_{k+1}, \cdots, A_{n}\right)\right)\right) \\
\Leftrightarrow & \langle\text { by Case b }\rangle \\
& \left(A_{1} \circ\left(A_{2} \circ\left(A_{3} \circ \cdots \circ A_{n} \cdots\right)\right)\right)
\end{aligned}
$$

1.0.1 Exercise. Prove the theorem Assoc on p. 2 for the case where \circ is \wedge.

1. General Associativity for \equiv, \vee and \wedge

Chapter 2

General Commutativity for \equiv, \vee and \wedge

This chapter retells (from the text) in a unified manner the fact that the Commutativity Theorem Schema below

$$
\begin{equation*}
\vdash A \circ B \equiv B \circ A \tag{Comm}
\end{equation*}
$$

where \circ is one of \equiv, \vee or \wedge, implies that

$$
\vdash A_{1} \circ A_{2} \circ \cdots \circ A_{n} \equiv A_{j_{1}} \circ A_{j_{2}} \circ A_{j_{3}} \circ \cdots \circ A_{j_{n}} \quad(G C o m m)
$$

where the o-chain $A_{j_{1}} \circ A_{j_{2}} \circ A_{j_{3}} \circ \cdots \circ A_{j_{n}}$ is any permutation of the o-chain $A_{1} \circ A_{2} \circ \cdots \circ A_{n}$ that we may choose.

As for (Comm), it is an Axiom Schema ((2) and (6) for the cases where o is \equiv or \vee respectively)) or an absolute theorem schema (case where \circ is \wedge).
(2) Note that according to the results of Chapter 1, brackets need only be inserted II if we need to achieve some visual effect.
2.0.1 Lemma. (Swapping two End-Formulas (red)) $\vdash B \circ C \circ D \equiv D \circ$ $C \circ B$.

Proof.

$$
\begin{aligned}
& B \circ C \circ D \\
\Leftrightarrow & \langle(C o m m) \text { above, pretending we inserted brackets around } B \circ C\rangle \\
& D \circ B \circ C \\
\Leftrightarrow & \langle(C o m m)+(\text { Leib }) ; \text { Denom: } D \circ \mathbf{p}\rangle \\
& D \circ C \circ B
\end{aligned}
$$

Note: Of course, C may be a long or short o-chain.
2.0.2 Metatheorem. (On swapping any two formulas (red) in a o-chain) $\vdash A \circ B \circ C \circ D \circ E \equiv A \circ D \circ C \circ B \circ E$.

Proof.

$$
\begin{aligned}
& A \circ B \circ C \circ D \circ E \\
\Leftrightarrow & \langle(\text { Leib })+\text { Lemma; Denom: } A \circ \mathbf{p} \circ E\rangle \\
& A \circ D \circ C \circ B \circ E
\end{aligned}
$$

Note: Of course, A, C, E may be long or short o-chains.
2.0.3 Exercise. Prove the theorem $(C o m m)$ on p. 5 for the case where \circ is \wedge.

Bibliography

[Tou08] G. Tourlakis, Mathematical Logic, John Wiley \& Sons, Hoboken, NJ, 2008.

[^0]: *The red \cdot. are all right brackets; right?

