
A Subset of the URM
Language; FA and NFA

0.0.1 Definition. If M is a FA, then its L(M) is called
the regular set associated with M , or even the reg-
ular language recognised/accepted (decided, actually)
by M . �

This Note continues from where Note #9 left but we
will present first a few more simple examples of automata∗

that decide /recognise some given set of strings over some
alphabet.

∗Plural of automaton.
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0.1. Examples

0.1.1 Example. We want to specify (to “program”!) an
automaton M over Σ = {0, 1}, such that L(M) = {0n1 :
n ≥ 0}.

We recall that, for any string x, x0 =Def λ, while

xn+1 Def
= xn ∗ x induction!

=
n+1 copies of x︷ ︸︸ ︷
x ∗ x ∗ . . . ∗ x

where I denoted concatenation by ∗. Thus the strings in
{0n1 : n ≥ 0} are

1, 01, 001, 0001, 00001, . . . (1)

We readily see that the following automaton’s only ac-
cepting paths will follow zero or more times the “loop”
labeled 0 (attached to the start state), and then the edge
labeled 1 to end up with an accepting state.

0

1

0 1

0, 1
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The state at the very bottom is a trap state. What is
the need for it?

Well, the FA must be fully specified, so I am obliged
to say what the accepting state does when it sees one or
the other legal input.

� And remember: Accepting states do NOT stop the
machine! Any state stops the machine IFF it has just
scanned eof . �
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� A new thing we learnt in the above example is that in
depicting an automaton as a graph we do not necessarily
need to name the states! �

As in all mathematical arguments, we will of course
assign names to objects (in particular to states) if we
need to refer to them in the course of the argument
—it is convenient to refer to them by name!

� The reader should also note the use of two shorthand
notations in labeling: �

One, we used two labels on the vertical down-pointing
edge.

This abbreviates the use of two edges going from the
accepting to the trap state, one labeled 0, the other 1.

We could also have used the label “0, 1” both at the
left or right of the arrow, “,” serving as a separator. This
latter notational convention was used in labeling the loop
attached to the trap state. �
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0.1.2 Example. The two FAs below, each over the in-
put alphabet {0, 1}, accept the languages ∅ (the top one)
and {0, 1}∗ (the bottom one).

0, 1

0, 1

�
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0.1.3 Example. The FA below over the input alphabet
{0, 1} accepts the language {λ}.

0, 1

0, 1

Indeed, we saw in Notes #9 that making the start (ini-
tial) state also accepting we do accept λ. Moreover, the
FA above accepts nothing else since any input symbol
leads to the rejecting trap state. �
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0.2. Some Closure Properties of Regular Lan-
guages

0.2.1 Theorem. The set of all regular languages over
an alphabet Σ is closed under complement. That is, if
L ⊆ Σ∗ is regular, then so is L =Def Σ∗ − L.

Proof. Let L = L(M) for some FA M over input alpha-
bet Σ and state alphabet Q. Moreover, let F ⊆ Q be
the set of accepting states of M .

We need a FA that recognises/decides L.

Trivially, we want to swap the “yes” (accepting state)
and “no” (rejecting state) behaviour of M , changing noth-
ing else.

Thus, L = L(M̃), where the FA M̃ is the same as M ,

except that M̃ ’s set of accepting states is Q− F . �

� What makes the above proof tick is that FA are “total”:
Every input string will be scanned all the way to its eof .
Only the yes/no decision changes. �
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0.2.2 Example. The automaton that accepts the com-
plement of the language in Example 0.1.1 is found with-
out comment below, just following the construction of
the L(M) complement for some FA M , given above.

0

1

0 1

0, 1

�
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0.2.3 Theorem. The set of all regular languages over
an alphabet Σ is closed under union. That is, if L ⊆ Σ∗

and L′ ⊆ Σ∗ are regular, then so is L ∪ L′.

Proof. This proof will wait until after the introduction of NFA
which make the proof much easier! �

0.2.4 Corollary. The set of all regular languages over
an alphabet Σ is closed under intersection. That is, if
L ⊆ Σ∗ and L′ ⊆ Σ∗ are regular, then so is L ∩ L′.

Proof. L ∩ L′ = L ∪ L′. �
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0.3. Proving Negative Results for FA; Pumping
Lemma

Lecture #20, Nov. 25

Is there a FA M such that L(M) = {0n1n : n ≥ 0}?

How can we tell?

Surely, not by trying each FA (infinitely many) out
there as a possible fit for this language!

The following theorem, known as the pumping lemma
can be used to prove “negative” results such as: There
is no FA M such as L(M) = {0n1n : n ≥ 0}. In short,
the language {0n1n : n ≥ 0} is not regular.
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0.3.1 Theorem. (Pumping Lemma) If the language
S is regular, i.e., S = L(M) for some FA M , then there
is a constant C that we will refer to as a pumping con-
stant such that for any string x ∈ S, if |x| ≥ C, then we
can decompose it as x = uvw so that

(1) v 6= λ

(2) uviw ∈ S, for all i ≥ 0

and

(3) |uv| ≤ C.

� A pumping constant is not uniquely determined by S. �

Proof. So, let S = L(M) for some FA M of n states. We
will show that if we take C = n† this will work.

Let then x = a1a2 · · · an · · · am be a string of S. As cho-
sen, it satisfies |x| ≥ C. An accepting computation path
of M with input x looks like this:

.....

Say repeats as

.....

where p1, p2, . . . denotes a (notationally) convenient renaming‡

of the states visited after q0 in the computation.

†You see why C is not unique, since for any S that is an L(M) we can have infinitely many
different M that accept S. Can we not?

‡Why rename? What is wrong with q1, q2, . . .? Well, the set Q is given as something
like {q0, q1, q2, q3, . . .} using some arbitrary fixed enumeration order without repetition for its
members. Now, it would be wrong to expect that the arbitrary input x caused the FA to walk
precisely along q1, q2, q3, etc., after it saw the first symbol of x.
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In the sequence

q0, p1, p2, . . . , pn

we have named n+ 1 states, while we only have n states
in the FA’s “Q”.

Thus, at least two names “pi and pj” refer to the same
state “qr” —as we say, two states repeat.

We may redraw the computation above as follows tak-
ing without loss of generality that pi = pj indicating the
repeating state pi = pj:

... ......

...

We can now partition x into u, v and w parts from the
picture above: We set

u = a1a2 . . . ai

v = ai+1ai+2 . . . aj

and

w = aj+1aj+2 . . . am

Note that

Intro to Automata© 2020, by George Tourlakis
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(1) v 6= λ, since there is at least one edge (labelled ai+1)
emanating from pi on the sub-path that connects this
state to the (identical) state pj. In short ai+1 is part
of v.

(2) We may utilize the loop v zero or more times (along
with u in the front and w at the tail) to always obtain
a NEW accepting path. Thus, all of uviw belong to
L(M) —i.e., S.

(3) Since |uv| = j ≤ n, we have also verified that |uv| ≤
C. �

� The repeating pair pi, pj may occur anywhere between q0
and pn. A different “graphical proof” is common in the
literature.

Let x = a1a2 . . . am as above.

Below we show the original x as an input stream array
x = a1 . . . ai+1 . . . ajaj+1 . . . an . . . am, where the repeating
pi = pj is shown.

x =

u︷ ︸︸ ︷
a1 a2 . . . ai

pi
↓
ai+1 . . . aj︸ ︷︷ ︸

v

w︷ ︸︸ ︷
aj+1

↑
pj

. . . an an+1 . . . am

Observe:

1. By determinism, the subcomputation that starts at
symbol aj+1 (blue) —while in state pj ( = pi)— will
end at the eof after consuming the string w and will
be uniquely at (accepting) state pm.
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2. After consuming the prefix a1 . . . ai of x the FA is
uniquely at state pi.

3. By determinism, the subcomputation that starts at
symbol ai+1 (red) in state pi, will consume v and end
at pj —uniquely, today, tomorrow and in 10350000

years from now— ready to process aj+1 (blue).

Thus, all of uv, uvvw, uvvvw, . . . , uvnw, . . . are in L(M).
Of course, so is x = uvw (given). �
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0.3.2 Example. The language over {0, 1} given as L =
{0n1n : n ≥ 0} is not regular.

Suppose it is. Then the pumping lemma holds for L,
so let C be an appropriate pumping constant and con-
sider the string x = 0C1C of L. We can then decompose
x as uvw with |uv| ≤ C so that we can “pump” v 6= λ
as much as we like and the obtained uviw will all be in L.

We will prove the statement in red false, so we cannot
pump; but then L cannot be regular!§

“The red statement” is false due to the observations:

1. By |uv| ≤ C, uv (and hence v) lie entirely in the
0C-part of the chosen x = 0C1C .

2. So, if we pump down —or above with i ≥ 2 (i.e., use
v0 or vi, i ≥ 2) we obtain uw ∈ L or uviw ∈ L, i ≥ 2.

But uw = 0K1C where K < C since |v| ≥ 1. But such
unbalanced 0-1 strings cannot be in L, by specification,
so we contradicted the pumping lemma. �

§All sufficiently long strings of regular languages can be pumped by 0.3.1 and stay in L.
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� All proofs by Pumping Lemma 0.3.1 are by contradiction
and they prove non acceptability by any FA (or, equiva-
lently, NFA to be introduced in Section 0.4.1). �
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0.3.3 Example. We introduced FA as special URMs that
cannot write.

Is it then an immediate conclusion that they cannot
compute functions?

Not at all! Such a general conclusion is false!

For example, we can agree that by “compute f(x)” we
mean “ decide the graph y = f (x)”.

For example, we can “compute” λx.3 by accepting all
strings, but no others, of the form 0n1000 over the al-
phabet {0, 1}.

That is, we use 1 as a separator between input n ≥ 0
(depicted as 0n) and output 3 (depicted as 000), then the
following FA decides (accepts/recognises) the language
L = {0n1000 : n ≥ 0}.

0

1 0

0

0

0, 1

1

0, 1

1

1T

�
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0.3.4 Example. FA cannot compute λx.x+ 1.

“Surely”, you say, “how can they add 1 if they cannot
do arithmetic or write anything at all?”

Wrong reason!

Again, how about deciding the “graph”-language over
A = {0, 1}, given by T = {0n10n+1 : n ≥ 0}?

Here “0n” represents input n, “0n+1” represents out-
put n+1 and 1 is a separator as in the previous example.

I Alas, no FA can do this.

Say T is FA-decidable, and let C be an appropriate
pumping constant. Choose x = 0C10C+1. Splitting x as
uvw with |uv| ≤ C we see that 1 is to the right of v.
v is all zeros.
Thus, uw (using v0) is not in T since the relation be-

tween the 0s to the left and those to the right of 1 is
destroyed. This contradicts the assumption that T is
FA-decidable. �

0.3.5� Exercise. Indeed FA cannot even compute the
identity function, λx.x, as it should be clear from the
proof in 0.3.2. Adapt that proof to show the graph lan-
guage for λx.x, namely, {0n10n : n ≥ 0} is not regular.

� �
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0.3.6 Example. The set over the alphabet {0} given by
P = {0q : q is a prime number} is not FA-decidable.

Assume the contrary, and let C be an appropriate
pumping constant. Let Q ≥ C be prime.

We show that considering the string x = 0Q will lead
us to a contradiction. Well, as x is longer than C, let
us write —according to 0.3.1— x = uvw. By PL, we
must have that all numbers |u|+ i|v|+ |w|, for i ≥ 0 are
prime. These numbers have the form

ai+ b (1)

where a = |v| ≥ 1 and b = |u| + |w|. Can REALLY all
these numbers in (1) (for all i) be prime?

Here is why not, and hence our contradiction. We
consider cases:

• Case where b = 0. This is impossible, since the num-
bers in (1) now have the form ai. But, e.g., a4 is not
prime.

• Case where b > 0. We have Subcases!

– Subcase b > 1. Then taking i = b, one of the
numbers of the form (1) is (a+ 1)b. But (a+ 1)b
is not prime (recall that a+ 1 ≥ 2 since a ≥ 1).

– Subcase b = 1. Then take i = 2 +a to obtain the
number (of type (1)) a(2+a)+1 = a2 +2a+1 =
(a+ 1)2. But this is not prime! �
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� The preceding shows that we can have a set that is suf-
ficiently complex and thus fails to be FA-decidable even
over a single-symbol alphabet. Here is another such case. �

0.3.7 Example. Consider Q = {0n2

: n ≥ 0} over the
alphabet A = {0}. It will not come as a surprise that Q
is not FA-decidable.

For suppose it is. Then, if C is an appropriate pump-

ing constant, consider x = 0C
2

.

• Clearly, x ∈ Q and is long enough.

So, split it as x = uvw with |uv| ≤ C and v 6= λ.

Now, by 0.3.1,
uvvw ∈ Q (1)

But

C2 = |uvw| < |uvvw| ≤ |uvw|+ |uv| ≤ C2 + C

< C2 + 2C + 1 = (C + 1)2

Thus, the number |uvvw| is NOT a perfect square being
between two successive ones.

But this will not do, because by (1), for some n, we
have uvvw = 0n

2

and thus |uvvw| = n2 —a perfect
square after all! �
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0.4. Nondeterministic Finite Automata

The FA formalism provides us with tools to finitely de-
fine certain languages:

Such a language —defined as an L(M) over some al-
phabet A, for some FA M— contains a string x iff there
is an accepting path —within the FA— whose labels from
left to right form x.

q
0

q...

The computation above, that is, the path labeled x within the FA,
is uniquely determined by x since the automaton is deterministic.

Much is to be gained in theoretical and practical flex-
ibility if we relax both “deterministic” requirements
NFA 1) and NFA 2) below

NFA 1) Every state is defined on all inputs from the in-
put alphabet (totaleness)

NFA 2) No state has two different responses (i.e., does not
send the process to either of two different states)
for the same input.
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AND moreover we profit —theoretically and prac-
tically— from ADDING the feature

NFA 3) The automaton can have empty-moves, that is,
λ-moves, meaning it can go from state q to state
p WITHOUT CONSUMING ANY INPUT.

An empty move from q to p is depicted in the
flow diagram as:

q
λ−→ p

0.4.1 Definition. (NFA) A so relaxed FA —that is also
augmented by the feature “NFA 3)” above— is called
Non Deterministic Finite Automaton, in short, NFA.

An NFA M accepts a string x iff there is a path from
its start state (generically depicted as) “q0” to some ac-
cepting state p whose edge-labels concatenated from q0
toward p in order form the string x.

Of course empty moves do not contribute to the path
name!

IMPORTANT! Every FA is also an NFA —but NOT
vice versa— since the enhancements in NFA 1) – NFA
3) above are NOT compulsory! �
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0.4.2 Example. The displayed flow diagram below, over
the alphabet {0, 1}, incorporates all the liberties in nota-
tion and conventions introduced in Definition 0.4.1 and
the items NFA 1) – NFA 3) preceding the definition.

We have two λ moves, and the string “1” can be ac-
cepted in two distinct ways: One is to follow the top λ
move, and then go once around the loop, consuming in-
put 1. The other is to follow the bottom λ move, and
then follow the transition labeled 1 to the accepting state
at the bottom (reading 1 in the process).

Folklore jargon —not based on science or theory— will
have us speak of guessing when we describe what the di-
agram does with an input.

For example, to accept the input 00 one would say
that the NFA guesses that it should follow the upper λ,
and then it would go twice around the top loop, on input
0 in each case.

0, 1

1

1

This diagram is an example of a nondeterministic finite
automaton, or NFA;
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• it has λ moves,

• its transition relation —as depicted by the arrows—
is not a function (e.g., the top accepting state has
two distinct responses on input 1),

• nor is it total.

For example, the bottom accepting state is not de-
fined on any input; nor is the start state: λ is not
an input! �
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Lecture #21, Nov.30

� Returning to the issue of guessing, we emphasize that
this use of this term is an unfortunate habit in the liter-
ature.

Nobody and Nothing guesses Anything!

A NFA simply provides the mathematical framework within
which we can formulate and verify an existential MATH-
EMATICAL statement of the type

for a given input x, an accepting path exists (1)

Given an acceptable input, the NFA does NOT actually
guess “correct” moves (from among a set of choices), ei-
ther in a hidden manner (consulting the Oracle in Delphi,
for example!), or in an explicit computational manner
(e.g., parallelism, backtracking) toward finding an ac-
cepting path for said x.

� Simply, the NFA formalism allows us to state, and pro-
vides tools so that we can verify, the statement (1) above
by verifying an accepting path exists! (0.4.1) �

This is analogous with the fact that the language of
logic allows us to state statements such as (∃y)F (y, x),
and offers tools to us to prove them.
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In the case of NFA, an independent agent, which could
be ourselves or a FA —YES, we will see that every NFA
can be simulated by some FA!— can effect the verification
that indeed an accepting path labeled x exists. �
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0.4.3 Example. The following is a NFA but not a FA
(why? Compare with 0.1.1). It decides the language
{0n1 : n ≥ 0}.

0

1

�

0.4.4 Example. NFA are much easier to construct than
FA, partly because of the convenience of the λ moves,
and the ability to “guess” (cf. earlier discussion about
“guessing”).

Also, partly due to lack of concern for totalness: we
do not have to worry about “installing” a trap state.

For example, the following NFA over A = {0, 1} de-
cides/recognises just its alphabet A and nothing else as
we can trivially see that there are just two accepting
paths: one named “0” and one named “1”.

0

1
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�

0.5. From FA to NFA and Back

We noted earlier that any FA is a NFA (Def. 0.4.1), thus
the NFA are at least as powerful as the FA.

They can do all that the deterministic model can do.

It is a bit of a surprise that the opposite is also true:
For every NFA M we can construct a FA N , such that
L(M) = L(N).

• Thus, in the case of these very simple machines, non-
determinism (“guessing”) buys ONLY convenience,
but not real power.
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How does one simulate a NFA on an input x?

The most straightforward idea is to trace all possi-
ble paths labeled x (due to nondeterminism they may be
more than one —or none at all) in parallel and accept
iff one (or more) of those is accepting.

The principle of this idea is illustrated below.

a

a

a

b

b
b

Say, the input to the NFA M is x = ab . . . Suppose that
a leads the start state —which is at “level 0”— to three
states; we draw all three. These are at level 1.

We repeat for each state at level 1 on input b:

Say, for the sake of discussion, that, of the three states
at level 1, the first leads to one state on input b, the sec-
ond leads to two and the third leads to none.

We draw these three states obtained on input b; they
are at level 2. Etc.
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An FA can keep track of all the states at the various
levels since they can be no more than the totality
of states of the NFA M !

The amount of information at each level is independent
of the input size —i.e., it is a constant— and moreover
can be coded as a single FA-state (depicted in the figure
by an ellipse) that uses a “compound” name, consisting
of all the NFA state names at that level.

This has led to the idea that the simulating FA must
have as states nodes whose names are sets of state names
of the NFA.

Clearly, for this construction, state names are impor-
tant, through which we can keep track of and describe
what we are doing.

Here are the details:
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0.5.1 Definition. (a-successors) LetM be a NFA over
an input alphabet Σ, q be a state, and a ∈ Σ.

A state p is an a-successor of q iff there is an edge
from q to p, labeled a. �

� In a NFA a-successors need not be unique, nor need to
exist —for all pairs (q, a).

On the other hand, in a FA they exist and are unique. �
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0.5.2 Definition. (λ-closure) Let M be a NFA with
state-set Q and let S ⊆ Q. The λ-closure of S, denoted
by λ(S), is defined to be the smallest set that includes
S but also includes all q ∈ Q, such that there is a path,
named λ, from some p ∈ S to q.

When we speak of the λ-closure of a state q, we mean
that of the set {q} and write λ(q) rather than λ({q}).

�
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� Note that a path named λ will have all its edges named
λ since the concatenation of a sequence of strings is λ iff
each string in the sequence is. �

0.5.3 Example. Consider the NFA below.

0

1

a

b c

d e

 

We compute some λ-closures: λ(a) = {a, b, d}; λ(c) =
{c, a, b, d}. �
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0.5.4 Theorem. Let M be a NFA with state set Q and
input alphabet Σ. Then there is a FA N that has as state
set a subset of P(Q) —the power set of Q— and the
same input alphabet as that of M .

N satisfies L(M) = L(N).

� We say that two automata M and N (whether both are
FA or both are NFA, or we have one of each kind) are
equivalent iff L(M) = L(N).

Thus, the above says that for any NFA there is an
equivalent FA.

In fact, this can be strengthened as the proof shows:
We can construct the equivalent FA.

We show how in the definition below, BEFORE we
start the proof proper. �

0.5.5 Definition. (NFA to FA Construction) • The
start state of N is λ(q0), where q0 is the start state
of NFA M .

• A state of N is accepting iff its name contains at
least one accepting state name of NFA M .

• Let S be a state of N and let a ∈ Σ. The unique
a-successor of S in N is constructed as follows:

(1) Construct the set of all a-successors in M of all
component-names of S. Call T this set of a-successors.

(2) Construct λ(T ); this is the a-successor of S in N .

�
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� As an illustration, we compute some 0-successors in the
FA constructed as above if the given NFA is that of Ex-
ample 0.5.3.

(I) For state {a, b, d} step (1) yields {c}. Step (2)
yields the λ-closure of {c}: The state {c, a, b, d} is the
0-successor.

(II) For state {c, a, b, d} step (1) yields {c}. Step (2)
yields the λ-closure of {c}: The state {c, a, b, d} is the
0-successor; that is, the 0-edge loops back to where it
started: at state {c, a, b, d}. �
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Proof. Of 0.5.4.
With the FA N constructed as in 0.5.5 from the NFA

M , we need to prove two things:

Direction1. L(M) ⊆ L(N).

Direction2. L(N) ⊆ L(M).

• L(M) ⊆ L(N) direction:

Let
x = a1a2 · · · an ∈ L(M) (1)

Prove that x ∈ L(N) (2)

Without loss of generality, we have an accepting path
in M that is labeled as follows:

x = λj1a1λ
j2a2λ

j3a3 · · ·λjnanλjn+1 (3)

where each λji depicts ji ≥ 0 consecutive path edges,
each labeled λ, where ji = 0 in this context means
that the ji group has no λ-moves.

� An accepting path for the exact string —λ and all—
in (3) is the zig-zag path depicted in Fig. 2 below. �

To prove (2) we need a path in FA N the edges of
which are labeled by the ai in x = a1a2 . . . an in the
indicated order, while the nodes are states of N with
the first node being the initial one, and that last one
is an accepting state.
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Here is how to do this:

I It suffices to show that for each level i = 0, 1, 2, . . .,
the N -path of N-states and labelled edges, consists of
the indicated ellipses in Fig. 2 —and partially shown
in Fig. 1— which contain in their name the enclosed
“horizontal” M -nodes shown. Why “suffices”? Read
on!

...

... p

q

r

level i

level i+1

Figure 1: Idea for L(M) ⊆ L(N) proof

I Regarding the above Figure, if we assume that at
level i the elliptical N -node indeed includes all the
indicated M -nodes in its name (these are M-nodes
from the M-computation!), then so does the N -node
at level i+ 1 —that is, the ai+1-successor of the N-
node at level i.

This is so by Def. 0.5.5 since at level i + 1 we have
the λ-closure of all ai+1-successors —in M . But r
is ONE such successor and thus all horizontal nodes
will be in the name too! J
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Now, clearly, λ(q0), THE start state of N —depicted
by the level-0 ellipse in Fig. 2— will contain all hor-
izontal nodes shown.

...

...

...

...

...

...

...

p

q

r

r' p'

q' level 0

level 1

level i

level i+1

level n

Figure 2: Equivalence of NFA and FA

Then —by (1) and (3) on p.36— the next ellipse
(N -state) at level 1 must contain r′ (by Def. 0.5.5)
and hence also all horizontal nodes (as sub-names)
shown at level 1.

By the “Induction step” in the I J-passage on p.37
all depicted elliptical nodes of N in Fig. 2 contain
the nodes from M shown.
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Clearly Fig. 2 depicts and FA N -computation that
consumes x = a1a2 . . . an and ends with an accepting
N -state. It is ACCEPTING because it contains in
its name an accepting M-state.

All in all: x ∈ L(N). We proved (2) (p.36).

• L(N) ⊆ L(M) direction:

So let x = a1a2 . . . an ∈ L(N) this time. (†)

We will argue that also

x ∈ L(M) (‡)

We will reuse Fig. 2.

Observe that by (†) we have a path in N from the
elliptical start-state to some accepting elliptical N-
state.
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We will construct an accepting path for x in the NFA
M .

In our construction we start from the end (accepting
N -state) and proceed BACKWARDS towards the N
start state.

All the work is shown in Fig. 2 where now we retrace
the M -path backwards.

OK. The accepting N state must have an accepting
NFA state in its name.

I How did this get there?

– Either as an an-successor in NFA M of some name
found in the elliptical state immediately above,

or, more generally,

– It is at the end of a λ-path starting at an an-
successor in NFA M —here named “s”— found
in the last ellipse. This general case is depicted
in Fig. 2.

To understand how the construction propagates UP-
WARDS (BACKWARDS) imagine that an = ai+2.

Then the question is “whose ai+2-successor (in M) is
s? Well, we named it p in Fig. 2.

The next question is: “How did p get in the name of
the ellipse at level n− 1 = i+ 1?”

Well, as above,
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– Either as an ai+1-successor in NFA M of some
name found in the elliptical state immediately above
—at level n− 2 = i,

or, more generally,

– p is at the end of a λ-path starting at an ai+1-
successor r in NFA M found in the last ellipse.
This general case is depicted in Fig. 2.

Continuing the construction like this we find that the
presence of q′ in the start state of N is either that it
is the same as the state “q0” of the NFA M , OR q′ is
connected to q0 by a backwards λ-path, in general,
as depicted in Fig. 2.

We have just constructed a path labelled

λj1a1λ
j2a2λ

j3a3 · · ·λjnanλjn+1 = a1a2a3 · · · an

in the NFA M from its q0 to some accepting state!

Thus x ∈ L(M). �
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� In theory, to construct a FA for a given NFA we draw
all the states of the latter —named by all subsets of the
state-set Q of the NFA— and then determine the inter-
connections via edges, for each state-pair of the FA and
each member of the input alphabet Σ.

In practice we may achieve significant economy of ef-
fort if we start building the FA “from the start state
down”: That is, starting with the start state (level 0) we
determine all its (elliptical) a-successors, for each a ∈ Σ.

At the end of this step we will have drawn all states at
“level 1”.

In the next step for each state at level 1, draw its a-
successors, for each a ∈ Σ. And so on.

This sequence of steps terminates since there are only
a finite number of states in the FA and we cannot keep
writing new ones

Sooner or later we will stop introducing new states:
edges will point “back” to existing states.

See the following example. �
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0.5.6 Example. We convert the NFA of 0.5.3 to a FA.
See below, and review the above comment and the proof
of 0.5.4, in particular the three bullets on p.34, to verify
that the given is correct, and follows procedure.

You will notice the aforementioned economy of effort
achieved by our process. We have only three states in
the FA as opposed to the predicted 32 ( = 25) of the
proof of Theorem 0.5.4. But what happened to the other
states? Why are they not listed by our procedure?

Because OUR procedure only constructs FA states that
are accessible FROM the start state via a computation
path.

These are the only ones that can possibly participate in
an accepting path. The others are irrelevant to accepting
computations —indeed to any computations that start
with the start state— and can be omitted without af-
fecting the set decided by the FA. �
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0.5.7� Example. Suppose that we have converted a NFA
M into a FA N .

Let a be in the input alphabet.

What is the a-successor of the state named ∅ in N?

Well, there are no states in ∅ to start the determinis-
tic a-successor process of Def. 0.5.5!

So the set of successor states we get is empty; we are
back to ∅.

Thus, the set of a-successors (in M) of states from ∅
is itself the empty set. In other words, the a-successor of
∅ in N is ∅. The edge labeled a loops back to it.

Therefore, in the context of the NFA-to-FA conversion,
∅ is a trap state in N . � �
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