A Subset of the URM Language; FA and NFA

Lecture \#22; Nov. 30

The FA and NFA of Notes \#9 and \#10 provide finite descriptions of regular languages, since an FA/NFA M is finite (a graph, say) and a regular language is an $L(M)$ for some M.

The next section proposes another type of finite description of regular languages.

0.1. Regular Expressions

Regular expressions are familiar to users of the UNIX operating system.

They are names for regular sets as we will see.

- Do they name ALL regular sets, i.e., all sets of the type $L(M)$ where M is a FA (or NFA, equivalently)?
- Do they name any NON regular sets?

We will see that we must answer YES, NO.
Regular Expressions are more than "just names" as they embody enough information - as we will see - to be mechanically transformable into a NFA (and thus to a FA as well).

0.1.1 Definition. (Regular expressions over Σ) Given

 the finite alphabet of atomic symbols Σ, we form the extended alphabet$$
\begin{equation*}
\Sigma \cup\{\emptyset,+, \cdot, *,(,)\} \tag{1}
\end{equation*}
$$

where the symbols $\emptyset,+, \cdot, *,($,$) (not including the comma$ separators) are all abstract or formal* and do not occur in Σ. In particular, " \emptyset " in this alphabet is just a symbol do NOT interpret it! (Yet!)

So are "+", ".", "*" and the brackets. All these symbols will be interpreted shortly.

The set of regular expressions over Σ is a set of strings over the augmented alphabet above, given inductively by

Regular expressions are names, formed as strings over the alphabet (1) as follows :

(1) Every member of $\Sigma \cup\{\emptyset\}$ is a regular expression.

Examples for case (1): If $\Sigma=\{0,1\}$ then 0,1 , and \emptyset, all viewed as abstract symbols with no interpretation are each a regular expression.
(2) If α and β are (names of) regular expressions, then so is the string $(\alpha+\beta)$
(3) If α and β are (names of) regular expressions, then so is the string $(\alpha \cdot \beta)$
(4) If α is a (name of) regular expression, then so is the string $\left(\alpha^{*}\right)$

[^0]The letters α, β, γ are used as metavariables (syntactic variables) in this definition. They will stand for arbitrary regular expressions (we may add primes or subscripts to increase the number of our metavariables).

(2) 0.1.2 Remark.

(i) We emphasize that regular expressions are built starting from the objects contained in $\Sigma \cup\{\emptyset\}$.

We also emphasize that we have NOT talked about semantics yet, that is, we did NOT say YET what sets these expressions will name, nor, what "+, "." and "*" mean.
(ii) We will often omit the "dot" in $(\alpha \cdot \beta)$ and write simply $(\alpha \beta)$.
(iii) We assign the highest priority to *, the next lower to \cdot and the lowest to + .

We will let $\alpha \circ \alpha^{\prime} \circ \alpha^{\prime \prime} \circ \alpha^{\prime \prime \prime}$ group ("associate") from right to left, for any $\circ \in\left\{+, \cdot,{ }^{*}\right\}$.

Given these priorities, we may omit some brackets, as is usual.

Thus, $\alpha+\beta \gamma^{*}$ means $\left(\alpha+\left(\beta\left(\gamma^{*}\right)\right)\right)$
and $\alpha \beta \gamma$ means $(\alpha(\beta \gamma))$.

We next define what sets these expressions name (semantics).

0.1.3 Definition. (Regular expression semantics)

We define the semantics of any regular expression over Σ by recursion on the Definition 0.1.1.

We use the notation $L(\alpha)$ to indicate the set named by α.
(1) $L(\emptyset)=\emptyset$, where the left " \emptyset " is the symbol in the augmented alphabet (1) above, while the right " \emptyset " is the name of the empty set in ordinary MATH.
(2) $L(a)=\{a\}$, for each $a \in \Sigma$
(3) $L(\alpha+\beta)=L(\alpha) \cup L(\beta)$
(4) $L(\alpha \cdot \beta)=L(\alpha) L(\beta)$-where for two languages (sets of strings!) L and $L^{\prime}, L L^{\prime}$-the concatenation of the SETS in this order- stands for $\left\{x y: x \in L \wedge y \in L^{\prime}\right\}$.
(5) $L\left(\alpha^{*}\right)=(L(\alpha))^{*} \dagger$ where for any set $S-$ finite or not- S^{*} denotes the set of all strings $x_{1} x_{2} \ldots x_{n}$, for $n \geq 0$, and where all (strings) $x_{i} \in S$ where $n=0$ means that $x_{1} x_{2} \ldots x_{n}=\lambda$.

Thus, in particular, we have always $\lambda \in S^{*}$.

[^1]0.1.4 Example. Let $\Sigma=\{0,1\}$. Then $L\left((0+1)^{*}\right)=$ Σ^{*}. Indeed, this is because $L(0+1)=L(0) \cup L(1)=$ $\{0\} \cup\{1\}=\{0,1\}=\Sigma$.
0.1.5 Example. We note that $L\left(\emptyset^{*}\right)=(L(\emptyset))^{*}=\emptyset^{*}=$ $\{\lambda\}$.

Why so?
Because Σ^{*} is λ along with the set of all strings formed using symbols from Σ.
\emptyset has no symbols to form strings with. So all we got is λ.

See last "red" comment in Def. 0.1.3.

Because of the above, we add " λ " as a DEFINED NAME - not in the original alphabet- for the set $\{\lambda\}$.

Of course, two regular expressions α and β over the same alphabet Σ are equal, written $\alpha=\beta$, iff they are so as strings.

We also have another, semantic, concept of regular expression "equality":

0.1.6 Definition. (Regular expression equivalence)

 We say that two regular expressions α and β over the same alphabet Σ are equivalent, written $\alpha \sim \beta$, iff they name the same set/language, that is, iff $L(\alpha)=L(\beta)$.0.1.7 Example. Let $\Sigma=\{0,1\}$. Then $(0+1)^{*} \sim\left(0^{*} 1^{*}\right)^{*}$. Indeed, $L\left((0+1)^{*}\right)=\Sigma^{*}$, by 0.1.4.

So, if anything, we do have

$$
L\left((0+1)^{*}\right) \supseteq L\left(\left(0^{*} 1^{*}\right)^{*}\right)
$$

Now -for $L\left((0+1)^{*}\right) \subseteq L\left(\left(0^{*} 1^{*}\right)^{*}\right)$ - the set

$$
L((\underbrace{0^{*} 1^{*}}_{A})^{*})
$$

is A^{*} where

$$
A=L\left(0^{*} 1^{*}\right)=\left\{0^{n} 1^{m}: n \geq 0 \wedge m \geq 0\right\}
$$

because

$$
L\left(0^{*}\right)=L(0)^{*}=\{0\}^{*}=\left\{0^{n}: n \geq 0\right\}
$$

and similarly for

$$
L\left(1^{*}\right)=L(1)^{*}=\{1\}^{*}=\left\{1^{m}: m \geq 0\right\}
$$

(2) It should be clear that any string of $0 s$ and 1 s can be built using as building blocks $0^{n} 1^{m}$ judiciously choosing n and m values.
E.g., $01^{10} 0^{11}$ can be thought of as

$$
0^{1} 1^{0} 0^{0} 1^{10} 0^{11} 1^{0}
$$

More generally, to show that an arbitrary string over Σ,

$$
\begin{equation*}
\ldots 0^{k} \ldots 1^{r} \ldots \tag{1}
\end{equation*}
$$

is in A^{*} view (1) as

$$
\ldots 0^{k} 1^{0} \ldots 0^{0} 1^{r} \ldots
$$

But then the statement between the signs simply says that $\Sigma^{*} \subseteq L\left(\left(0^{*} 1^{*}\right)^{*}\right)$. Done.
(2) By the above example, $\alpha \sim \beta$ does NOT imply $\alpha=\beta$.

0.2. From a Regular Expression to NFA and Back

There is a mechanical procedure (algorithm), which from a given regular expression α constructs a NFA M so that $L(\alpha)=L(M)$, and conversely:

Given a NFA M constructs a regular expression α so that $L(\alpha)=L(M)$.

We split the procedure into two directions. First, we go from regular expression to a NFA.
0.2.1 Theorem. (Kleene) For any regular expression α over an alphabet Σ we can construct a NFA M with input alphabet Σ so that $L(\alpha)=L(M)$.

Proof. Induction over the closure of Definition 0.1.1 that is, on the formation of a regular expression α according to the said definition. For the basis we consider the cases

- $\alpha=\emptyset$; the NFA below works

- $\alpha=a$, where $a \in \Sigma$; the NFA below works

Both of the above NFA have EXACTLY ONE accepting state. Our construction maintains this property throughout.

That is, all the NFA we construct in this proof will have that form, namely

Assume now (the I.H. on regular expressions!) that we have built NFA for α and $\beta-M$ and $N-$ so that $L(\alpha)=L(M)$ and $L(\beta)=L(N)$. Moreover, these M and N have the form above. For the induction step we have three cases:

- To build a NFA for $\alpha+\beta$, that is, one that accepts the language $L(M) \cup L(N)$. The NFA below works since the accepting paths are precisely those from M and those from N.

However, to maintain the single accepting state form, we modify it as the NFA below.

- To build a NFA for $\alpha \beta$, that is, one that accepts the language $L(M) L(N)$.

The NFA below works - since the accepting paths are precisely those formed by concatenating an accepting path of M (labeled by some $x \in L(M)$) with an λ move and then with an accepting path of N (labeled by some $y \in L(N)$);
in that left to right order.

The λ that connects M and N will not affect the path name: $x \lambda y=x y$.

- To build a NFA for α^{*}, that is, one that accepts the language $L(M)^{*}$. The NFA below, that we call P, works. That is, $L(P)=L(M)^{*}$.

Lecture \#23, Dec. 7
0.2.2 Theorem. (Kleene) For any FA or NFA M with input alphabet Σ we can construct a regular expression α over Σ so that $L(\alpha)=L(M)$.

Proof. Given a FA M (if a NFA is given, then we convert it to a FA first).

We will construct an α with the required properties. The idea is to express $L(M)$ in terms of simple to describe (indeed, regular themselves) sets of strings over Σ by repeatedly using the operations $\cdot \cup \cup$ and Kleene star, a finite number of times.
(2) These regular sets - NAMEABLE by RegEXs - are called by Kleene " $R_{i j}^{k}$ ", where $k \leq n$ and where the state set of the FA is

$$
q_{1}, q_{2}, \ldots, q_{n} \text { - the same " } n \text { " as above }
$$

It turns out that " $\bigcup_{j} R_{1 j}^{n}$ " is the set of all FA-acceptable strings, the union taken over all accepting q_{j}.

So let $Q=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\}$ be the set of states of M, where q_{1} is the start state. ${ }^{\dagger}$ We will refer to the set of M 's accepting states as F.

We next define several sets of strings (over Σ) —denoted by $R_{i j}^{k}$, for $k=0,1, \ldots, n$ and each i and j ranging from 1 to n.
$R_{i j}^{k}=\left\{x \in \Sigma^{*}: x\right.$ labels a path from q_{i} to q_{j} and every q_{m} in this path, other than the endpoints q_{i} and q_{j}, satisfies $\left.m \leq k\right\}$
(2) A superscript of n removes the restriction on the path

$$
\begin{equation*}
q_{i} \stackrel{x}{\curvearrowleft} q_{j} \tag{2}
\end{equation*}
$$

since every state q_{m} satisfies $m \leq n$.
Thus $R_{i j}^{n}$ contains ALL strings that name FA-paths from q_{i} to $q_{j}-\underline{\text { no restriction }}$ on where these paths pass through.

[^2]We first note that for $k=0$ we get very small finite sets.

Indeed, since state numbering starts at 1 , the condition $m \leq 0$ is false and therefore in $R_{i j}^{0}$ we have the cases:

- if we have $i \neq j$, then the condition (2) on p. 17 can hold precisely when $x=a \in \Sigma$ for some a-since there can be no nodes in the interior of x.
That is, we have precisely the case:

$$
\left.q_{i}\right) \xrightarrow{a} q_{j}
$$

- The case $i=j$ also allows λ in the set, since we have ONE state:

In words, "I can go from q_{i} to q_{j} DETERMINISTICALLY without consuming ANY input".

To summarize, for all i and j we have

$$
R_{i j}^{0}= \begin{cases}\{a \in \Sigma: \text { Case }(\dagger)\} & \text { if } i \neq j \tag{3}\\ \{\lambda\} \cup\{a \in \Sigma: \text { Case }(\dagger)\} & \text { if } i=j\end{cases}
$$

Since every finite set of strings can be named by a regular expression (Exercise!), there are RegEx: $\alpha_{i j}^{0}$ such that $L\left(\alpha_{i j}^{0}\right)=R_{i j}^{0}$, for all i, j

For example, say $A=\{3,5,8, \lambda\}$. This is a finite set. It is NOT an alphabet (contains λ).

Then the RegEX $3+5+8+\lambda=3+5+8+\emptyset^{*}$ NAMES A.
Why? Because $A=\{3\} \cup\{5\} \cup\{8\} \cup\{\lambda\}$.

Next note that the $R_{i j}^{k}$ can be COMPUTED recursively using k as the recursion variable and i, j as parameters, and taking (3) as the basis of the recursion.

To see this, consider a path labeled x in $R_{i j}^{k}$, for $k>0$. It is possible that all q_{m} (other than q_{i} and q_{j}) that occur in the path have $m<k$. Then this x also belongs to $R_{i j}^{k-1}$.

If on the other hand we DO have q_{k} appear in the interior of the path labeled x, one or more times, then we have the picture below.

where the q_{k} occurrences start immediately after the path named z_{0} and are connected by paths named z_{i}, for $i=$ $1, \ldots, t$. Thus, $x=z_{0} z_{1} z_{2} \ldots z_{t} z_{t+1}$. Noting that $z_{0} \in$ $R_{i k}^{k-1}, z_{i} \in R_{k k}^{k-1}$-for $i=1, \ldots, t$ - and $z_{t+1} \in R_{k j}^{k-1}$, we have that $x \in R_{i k}^{k-1} \cdot\left(R_{k k}^{k-1}\right)^{*} \cdot R_{k j}^{k-1}$. We have established, for all $k \geq 1$ and all i, j, that

$$
\begin{equation*}
R_{i j}^{k}=R_{i j}^{k-1} \cup R_{i k}^{k-1} \cdot\left(R_{k k}^{k-1}\right)^{*} \cdot R_{k j}^{k-1} \tag{4}
\end{equation*}
$$

(2) Explanation. Noting that

$$
\begin{aligned}
& \left(R_{k k}^{k-1}\right)^{*}=\{\lambda\} \cup R_{k k}^{k-1} \cup \\
& \quad R_{k k}^{k-1} R_{k k}^{k-1} \cup R_{k k}^{k-1} R_{k k}^{k-1} R_{k k}^{k-1} \cup R_{k k}^{k-1} R_{k k}^{k-1} R_{k k}^{k-1} R_{k k}^{k-1} \cup \ldots
\end{aligned}
$$

the set of paths, from q_{i} to q_{j} depicted in the following part of (4):

$$
R_{i k}^{k-1} \cdot\left(R_{k k}^{k-1}\right)^{*} \cdot R_{k j}^{k-1}
$$

may contain
one interior q_{k} case corresponds to λ
two interior q_{k} case corresponds to $R_{k k}^{k-1}$
three interior q_{k} case corresponds to $R_{k k}^{k-1} R_{k k}^{k-1}$
four interior q_{k} case corresponds to $R_{k k}^{k-1} R_{k k}^{k-1} R_{k k}^{k-1}$ five interior q_{k} case corresponds to $R_{k k}^{k-1} R_{k k}^{k-1} R_{k k}^{k-1} R_{k k}^{k-1}$ etc.

3

Now take the I.H. that for $k-1 \geq 0$ (fixed!) and all values of i and j we have regular expressions $\alpha_{i j}^{k-1}$ such that $L\left(\alpha_{i j}^{k-1}\right)=R_{i j}^{k-1}$-that is, $\alpha_{i j}^{k-1}$ NAMES the set $R_{i j}^{k-1}$.

We see that we can construct -from the $\alpha_{i j}^{k-1}$ - regular expressions $\alpha_{i j}^{k}$ for the $R_{i j}^{k}$.

Indeed, using the I.H. and (4), we have the RegEX $\alpha_{i j}^{k}$ GIVEN, for all i, j and the fixed k, by

$$
\begin{equation*}
\alpha_{i j}^{k}=\alpha_{i j}^{k-1}+\alpha_{i k}^{k-1}\left(\alpha_{k k}^{k-1}\right)^{*} \alpha_{k j}^{k-1} \tag{5}
\end{equation*}
$$

Along with the basis (3) that the $R_{i j}^{0}$ sets $\underline{C A N}$ be named being finite, this induction proves that all the $R_{i j}^{k}$ can be named by regular expressions, which we may construct, from the basis up.

Finally, the set $L(M)$ can be so named. Indeed,

$$
L(M)=\bigcup_{q_{j} \in F} R_{1 j}^{n}
$$

Therefore, as a RegEX:

$$
\sum_{q_{j} \in F} \alpha_{1 j}^{n}=\overbrace{\alpha_{1 j_{1}}^{n}+\alpha_{1 j_{2}}^{n}+\ldots+\alpha_{1 j_{m}}^{n}}^{\text {finitely many terms }}
$$

The above is a finite union (F is finite!) of sets named by $\alpha_{1 j}^{n}$ with $q_{j} \in F$. Thus we may construct its name as the "sum" (using " + ", that is) of the names $\alpha_{1 j}^{n}$ with $q_{j} \in F$.
0.2.3 Example. Consider the FA below.

We will compute regular expressions for:

- all sets $R_{i j}^{0}$
- all sets $R_{i j}^{1}$
- all sets $R_{i j}^{2}$

Recall the definition of the $R_{i j}^{k}$, here for $k=0,1,2$ and i, j ranging in $\{1,2\}$ (cf. proof of 0.2.2):
$\left\{x:\left(q_{i}\right) \xrightarrow{x} q_{j}\right.$, where no state in this computation,
other than possibly the end-points q_{i} and q_{j}, has index higher than $\left.k\right\}$
This leads - as we saw - to the recurrence:

$$
R_{i j}^{k}=R_{i j}^{k-1} \cup R_{i k}^{k-1}\left(R_{k k}^{k-1}\right)^{*} R_{k j}^{k-1}
$$

Below I employ the abbreviated (regular expression) name " λ " for \emptyset^{*}.

SET	RegEx
R_{11}^{0}	$\lambda+0$
R_{12}^{0}	1
R_{21}^{0}	1
R_{22}^{0}	$\lambda+0$

Superscript 1 now:

SET	RegEx: By Direct Substitution
$R_{11}^{1}=R_{11}^{0} \cup R_{11}^{0}\left(R_{11}^{0}\right)^{*} R_{11}^{0}$	$\lambda+0+(\lambda+0)(\lambda+0)^{*}(\lambda+0)$
$R_{12}^{1}=R_{12}^{0} \cup R_{11}^{0}\left(R_{11}^{0}\right)^{*} R_{12}^{0}$	$1+(\lambda+0)(\lambda+0)^{*} 1$
$R_{21}^{1}=R_{21}^{0} \cup R_{21}^{0}\left(R_{11}^{0}\right)^{*} R_{11}^{0}$	$1+1(\lambda+0)^{*}(\lambda+0)$
$R_{22}^{1}=R_{22}^{0} \cup R_{21}^{0}\left(R_{11}^{0}\right)^{*} R_{12}^{0}$	$\lambda+0+1(\lambda+0)^{*} 1$

Using the previous table, the reader will have no difficulty to fill in the regular expressions under the heading "RegEx: By Direct Substitution" in the next table.

To make things easier it is best to simplify the regular expressions of the previous table, meaning, finding simpler, equivalent ones. For example, $L(\lambda+0+$ $\left(\lambda+\overline{\left.0)(\lambda+0)^{*}(\lambda+0)\right)}=\{\lambda, 0\} \cup\{\lambda, 0\}\{\lambda, 0\}^{*}\{\lambda, 0\}=\right.$ $\{\lambda, 0\} \cup\{\lambda, 0\}\{\lambda, 0,00,000, \ldots\}\{\lambda, 0\}=\{0\}^{*}$, thus

$$
\lambda+0+(\lambda+0)(\lambda+0)^{*}(\lambda+0) \sim 0^{*}
$$

Superscript 2:

SET	RegEx: By Direct Substitution
$R_{11}^{2}=R_{11}^{1} \cup R_{12}^{1}\left(R_{22}^{1}\right)^{*} R_{21}^{1}$	
$R_{12}^{2}=R_{12}^{1} \cup R_{12}^{1}\left(R_{22}^{1}\right)^{2} R_{22}^{1}$	
$R_{21}^{2}=R_{21}^{0} \cup R_{22}^{0}\left(R_{22}^{1}\right)^{*} R_{21}^{1}$	
$R_{22}^{2}=R_{22}^{1} \cup R_{22}^{1}\left(R_{22}^{1}\right)^{*} R_{22}^{1}$	

0.3. Another Example
0.3.1 Example. Let us show another NFA to FA conversion.

OK, given the following NFA which clearly decides the language over $\Sigma=\{0,1\}$ given by the RegEx

$$
(0+1)^{*} 00
$$

that is, the language containing ALL strings that end in two 0s.

The DETERMINISTIC FA equivalent to the above is the following:

Intro to Automata© 2020, by George Tourlakis

[^0]: *Employed to define form or structure.

[^1]: ${ }^{\dagger}$ The $*$ in S^{*} is called the Kleene closure. So S^{*} is the Kleene closure of S.

[^2]: ${ }^{\dagger}$ We start numbering states from 1 rather than 0 for technical convenience; see the blue sentence at the top of next page.

