
A Subset of the URM
Language; FA and NFA

Lecture #22; Nov. 30

The FA and NFA of Notes #9 and #10 provide finite descriptions
of regular languages, since an FA/NFA M is finite (a
graph, say) and a regular language is an L(M) for some
M .

The next section proposes another type of finite de-
scription of regular languages.
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0.1. Regular Expressions

Regular expressions are familiar to users of the UNIX
operating system.

They are names for regular sets as we will see.

• Do they name ALL regular sets, i.e., all sets of the
type L(M) where M is a FA (or NFA, equivalently)?

• Do they name any NON regular sets?

We will see that we must answer YES, NO.

Regular Expressions are more than “just names” as they
embody enough information —as we will see— to be me-
chanically transformable into a NFA (and thus to a FA
as well).
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0.1.1 Definition. (Regular expressions over Σ) Given
the finite alphabet of atomic symbols Σ, we form the ex-
tended alphabet

Σ ∪ {∅,+, ·, ∗, (, )} (1)

where the symbols ∅,+, ·, ∗, (, ) (not including the comma
separators) are all abstract or formal∗ and do not occur in
Σ. In particular, “∅” in this alphabet is just a symbol —
do NOT interpret it! (Yet!)

So are “+”, “·”, “∗” and the brackets. All these sym-
bols will be interpreted shortly.

The set of regular expressions over Σ is a set of strings
over the augmented alphabet above, given inductively by

Regular expressions are names, formed as strings
over the alphabet (1) as follows :

(1) Every member of Σ ∪ {∅} is a regular expression.

Examples for case (1): If Σ = {0, 1} then 0, 1, and ∅,
all viewed as abstract symbols with no interpretation
are each a regular expression.

(2) If α and β are (names of) regular expressions, then
so is the string (α + β)

(3) If α and β are (names of) regular expressions, then
so is the string (α · β)

(4) If α is a (name of) regular expression, then so is the
string (α∗)

∗Employed to define form or structure.
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The letters α, β, γ are used as metavariables (syntactic
variables) in this definition. They will stand for arbitrary
regular expressions (we may add primes or subscripts to
increase the number of our metavariables). �
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0.1.2� Remark.

(i) We emphasize that regular expressions are built
starting from the objects contained in Σ ∪ {∅}.

We also emphasize that we have NOT talked about
semantics yet, that is, we did NOT say YET what
sets these expressions will name, nor, what “+, “·”
and “∗” mean.

(ii) We will often omit the “dot” in (α · β) and write
simply (αβ).

(iii) We assign the highest priority to ∗, the next lower
to · and the lowest to +.

We will let α◦α′ ◦α′′ ◦α′′′ group (“associate”) from
right to left, for any ◦ ∈ {+, ·,∗ }.

Given these priorities, we may omit some brackets,
as is usual.

Thus, α + βγ∗ means
(
α +

(
β(γ∗)

))
and αβγ means (α(βγ)). � �

Intro to Automata© 2020, by George Tourlakis



6

We next define what sets these expressions name (se-
mantics).

0.1.3 Definition. (Regular expression semantics)
We define the semantics of any regular expression over

Σ by recursion on the Definition 0.1.1.

We use the notation L(α) to indicate the set named
by α.

(1) L(∅) = ∅, where the left “∅” is the symbol in the
augmented alphabet (1) above, while the right “∅” is
the name of the empty set in ordinary MATH.

(2) L(a) = {a}, for each a ∈ Σ

(3) L(α + β) = L(α) ∪ L(β)

(4) L(α ·β) = L(α)L(β) —where for two languages (sets
of strings!) L and L′, LL′ —the concatenation of the
SETS in this order— stands for {xy : x ∈ L∧y ∈ L′}.

(5) L(α∗) =
(
L(α)

)∗
† —where for any set S —finite or

not— S∗ denotes the set of all strings

x1x2 . . . xn, for n ≥ 0, and where all (strings) xi ∈ S

where n = 0 means that x1x2 . . . xn = λ.

Thus, in particular, we have always λ ∈ S∗.
�

†The ∗ in S∗ is called the Kleene closure. So S∗ is the Kleene closure of S.
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0.1.4 Example. Let Σ = {0, 1}. Then L
(

(0 + 1)∗
)

=

Σ∗. Indeed, this is because L
(

0 + 1
)

= L(0) ∪ L(1) =

{0} ∪ {1} = {0, 1} = Σ. �

0.1.5 Example. We note that L(∅∗) =
(
L(∅)

)∗
= ∅∗ =

{λ}.

Why so?

Because Σ∗ is λ along with the set of all strings formed
using symbols from Σ.

∅ has no symbols to form strings with. So all we got
is λ.

See last “red” comment in Def. 0.1.3.

Because of the above, we add “λ” as a DEFINED
NAME —not in the original alphabet— for the set {λ}.

�
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Of course, two regular expressions α and β over the
same alphabet Σ are equal, written α = β, iff they are
so as strings.

We also have another, semantic, concept of regular
expression “equality”:

0.1.6 Definition. (Regular expression equivalence)
We say that two regular expressions α and β over the
same alphabet Σ are equivalent, written α ∼ β, iff they
name the same set/language, that is, iff L(α) = L(β).

�
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0.1.7 Example. Let Σ = {0, 1}. Then (0+1)∗ ∼
(
0∗1∗

)∗
.

Indeed, L
(
(0 + 1)∗

)
= Σ∗, by 0.1.4.

So, if anything, we do have

L
(

(0 + 1)∗
)
⊇ L

(
(0∗1∗)∗

)
Now —for L

(
(0 + 1)∗

)
⊆ L

(
(0∗1∗)∗

)
— the set

L
(

(0∗1∗︸︷︷︸
A

)∗
)

is A∗ where

A = L(0∗1∗) = {0n1m : n ≥ 0 ∧m ≥ 0}

because

L(0∗) = L(0)∗ = {0}∗ = {0n : n ≥ 0}

and similarly for

L(1∗) = L(1)∗ = {1}∗ = {1m : m ≥ 0}

� It should be clear that any string of 0s and 1s can be
built using as building blocks 0n1m judiciously choosing n
and m values. �

E.g., 0110011 can be thought of as

0110 00110 01110

More generally, to show that an arbitrary string over Σ,

. . . 0k . . . 1r . . . (1)

is in A∗ view (1) as

. . . 0k10 . . . 001r . . .
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But then the statement between the � signs simply

says that Σ∗ ⊆ L
(

(0∗1∗)∗
)

. Done. �

� By the above example, α ∼ β does NOT imply α = β. �
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0.2. From a Regular Expression to NFA and
Back

There is a mechanical procedure (algorithm), which from
a given regular expression α constructs a NFA M so that
L(α) = L(M), and conversely:

Given a NFA M constructs a regular expression α so
that L(α) = L(M).

We split the procedure into two directions. First, we
go from regular expression to a NFA.
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0.2.1 Theorem. (Kleene) For any regular expression
α over an alphabet Σ we can construct a NFA M with
input alphabet Σ so that L(α) = L(M).

Proof. Induction over the closure of Definition 0.1.1 —
that is, on the formation of a regular expression α ac-
cording to the said definition. For the basis we consider
the cases

• α = ∅; the NFA below works

• α = a, where a ∈ Σ; the NFA below works

a

Both of the above NFA have EXACTLY ONE accepting
state. Our construction maintains this property through-
out.

That is, all the NFA we construct in this proof
will have that form, namely
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Assume now (the I.H. on regular expressions!) that
we have built NFA for α and β —M and N— so that
L(α) = L(M) and L(β) = L(N). Moreover, these M
and N have the form above. For the induction step we
have three cases:

• To build a NFA for α + β, that is, one that accepts
the language L(M) ∪ L(N). The NFA below works
since the accepting paths are precisely those from M

and those from N .

M

N

q

q'

However, to maintain the single accepting state form,
we modify it as the NFA below.

M

N

q

q'
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• To build a NFA for αβ, that is, one that accepts the
language L(M)L(N).

The NFA below works —since the accepting paths are
precisely those formed by concatenating an accepting
path of M (labeled by some x ∈ L(M)) with an λ-
move and then with an accepting path of N (labeled
by some y ∈ L(N));

in that left to right order.

The λ that connects M and N will not affect the
path name: xλy = xy.

M

N
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• To build a NFA for α∗, that is, one that accepts the
language L(M)∗. The NFA below, that we call P ,
works. That is, L(P ) = L(M)∗.

M

�
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Lecture #23, Dec. 7

0.2.2 Theorem. (Kleene) For any FA or NFA M with
input alphabet Σ we can construct a regular expression α
over Σ so that L(α) = L(M).

Proof. Given a FA M (if a NFA is given, then we convert
it to a FA first).

We will construct an α with the required properties.
The idea is to express L(M) in terms of simple to describe
(indeed, regular themselves) sets of strings over Σ by re-
peatedly using the operations ·, ∪ and Kleene star, a finite
number of times.

� These regular sets —NAMEABLE by RegEXs— are called
by Kleene “Rk

ij”, where k ≤ n and where the state set of
the FA is

q1, q2, . . . , qn —the same “n” as above

It turns out that “
⋃
j

Rn
1j” is the set of all FA-acceptable

strings, the union taken over all accepting qj. �
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So let Q = {q1, q2, . . . , qn} be the set of states of M ,
where q1 is the start state.† We will refer to the set of
M ’s accepting states as F .

We next define several sets of strings (over Σ) —denoted
by Rk

ij, for k = 0, 1, . . . , n and each i and j ranging from 1
to n.

Rk
ij = {x ∈ Σ∗ : x labels a path from qi to qj

and every qm in this path, other than the

endpoints qi and qj, satisfies m ≤ k}
(1)

� A superscript of n removes the restriction on the path

qi
x
_qj (2)

since every state qm satisfies m ≤ n.

Thus Rn
ij contains ALL strings that name FA-paths

from qi to qj —no restriction on where these paths pass
through. �

†We start numbering states from 1 rather than 0 for technical convenience; see the blue
sentence at the top of next page.

Intro to Automata© 2020, by George Tourlakis



18

We first note that for k = 0 we get very small finite
sets.

Indeed, since state numbering starts at 1, the condi-
tion m ≤ 0 is false and therefore in R0

ij we have the
cases:

• if we have i 6= j, then the condition (2) on p.17 can
hold precisely when x = a ∈ Σ for some a —since
there can be no nodes in the interior of x.

That is, we have precisely the case:

qi
a→ qj (†)

• The case i = j also allows λ in the set, since we have
ONE state:

qi = qj (‡)

In words, “I can go from qi to qj DETERMINISTI-
CALLY without consuming ANY input”.

To summarize, for all i and j we have

R0
ij =

{
{a ∈ Σ : Case (†)} if i 6= j

{λ} ∪ {a ∈ Σ : Case (†)} if i = j
(3)
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Since every finite set of strings can be named by a reg-
ular expression (Exercise!),

there are RegEx: α0
ij such that L(α0

ij) = R0
ij, for all i, j

(4)

For example, say A = {3, 5, 8, λ}. This is a finite set.
It is NOT an alphabet (contains λ).

Then the RegEX 3+5+8+λ = 3+5+8+∅∗ NAMES A.

Why? Because A = {3} ∪ {5} ∪ {8} ∪ {λ}.
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Next note that the Rk
ij can be COMPUTED recur-

sively using k as the recursion variable and i, j as
parameters, and taking (3) as the basis of the recursion.

To see this, consider a path labeled x in Rk
ij, for k > 0.

It is possible that all qm (other than qi and qj) that occur
in the path have m < k. Then this x also belongs to Rk−1

ij .

If on the other hand we DO have qk appear in the
interior of the path labeled x, one or more times, then
we have the picture below.

...

where the qk occurrences start immediately after the path
named z0 and are connected by paths named zi, for i =
1, . . . , t. Thus, x = z0z1z2 . . . ztzt+1. Noting that z0 ∈
Rk−1

ik , zi ∈ Rk−1
kk —for i = 1, . . . , t— and zt+1 ∈ Rk−1

kj , we

have that x ∈ Rk−1
ik ·

(
Rk−1

kk

)∗ ·Rk−1
kj . We have established,

for all k ≥ 1 and all i, j, that

Rk
ij = Rk−1

ij ∪Rk−1
ik ·

(
Rk−1

kk

)∗ ·Rk−1
kj (4)

� Explanation. Noting that(
Rk−1

kk

)∗
= {λ}∪Rk−1

kk ∪
Rk−1

kk Rk−1
kk ∪R

k−1
kk Rk−1

kk Rk−1
kk ∪R

k−1
kk Rk−1

kk Rk−1
kk Rk−1

kk ∪ . . .
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the set of paths, from qi to qj depicted in the following
part of (4):

Rk−1
ik ·

(
Rk−1

kk

)∗ ·Rk−1
kj

may contain

one interior qk case corresponds to λ
two interior qk case corresponds to Rk−1

kk

three interior qk case corresponds to Rk−1
kk Rk−1

kk

four interior qk case corresponds to Rk−1
kk Rk−1

kk Rk−1
kk

five interior qk case corresponds to Rk−1
kk Rk−1

kk Rk−1
kk Rk−1

kk

etc.

�

Now take the I.H. that for k − 1 ≥ 0 (fixed!) and all
values of i and j we have regular expressions αk−1

ij such

that L(αk−1
ij ) = Rk−1

ij —that is, αk−1
ij NAMES the set

Rk−1
ij .

We see that we can construct —from the αk−1
ij — reg-

ular expressions αk
ij for the Rk

ij.

Indeed, using the I.H. and (4), we have the RegEX
αkij GIVEN, for all i, j and the fixed k, by

αk
ij = αk−1

ij + αk−1
ik

(
αk−1
kk

)∗
αk−1
kj (5)

Along with the basis (3) that the R0
ij sets CAN be named

being finite, this induction proves that all the Rk
ij can be

named by regular expressions, which we may construct,
from the basis up.
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Finally, the set L(M) can be so named. Indeed,

L(M) =
⋃
qj∈F

Rn
1j

Therefore, as a RegEX:

∑
qj∈F

αn
1j =

finitely many terms︷ ︸︸ ︷
αn
1j1

+ αn
1j2

+ . . .+ αn
1jm

The above is a finite union (F is finite!) of sets named
by αn

1j with qj ∈ F . Thus we may construct its name
as the “sum” (using “+”, that is) of the names αn

1j with
qj ∈ F . �
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0.2.3 Example. Consider the FA below.

0 0

1

1

1

2

We will compute regular expressions for:

• all sets R0
ij

• all sets R1
ij

• all sets R2
ij

Recall the definition of the Rk
ij, here for k = 0, 1, 2 and

i, j ranging in {1, 2} (cf. proof of 0.2.2):

{x : qi
x
_ qj , where no state in this computation,

other than possibly the end-points qi and qj, has index higher than k}

This leads —as we saw— to the recurrence:

Rk
ij = Rk−1

ij ∪Rk−1
ik (Rk−1

kk )∗Rk−1
kj

Below I employ the abbreviated (regular expression) name
“λ” for ∅∗.

SET RegEx

R0
11 λ+ 0

R0
12 1

R0
21 1

R0
22 λ+ 0
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Superscript 1 now:

SET RegEx: By Direct Substitution

R1
11 = R0

11 ∪R0
11(R

0
11)
∗R0

11 λ+ 0 + (λ+ 0)(λ+ 0)∗(λ+ 0)

R1
12 = R0

12 ∪R0
11(R

0
11)
∗R0

12 1 + (λ+ 0)(λ+ 0)∗1

R1
21 = R0

21 ∪R0
21(R

0
11)
∗R0

11 1 + 1(λ+ 0)∗(λ+ 0)

R1
22 = R0

22 ∪R0
21(R

0
11)
∗R0

12 λ+ 0 + 1(λ+ 0)∗1

Using the previous table, the reader will have no diffi-
culty to fill in the regular expressions under the heading
“RegEx: By Direct Substitution” in the next table.

To make things easier it is best to simplify the reg-
ular expressions of the previous table, meaning, find-
ing simpler, equivalent ones. For example, L

(
λ + 0 +

(λ + 0)(λ + 0)∗(λ + 0)
)

= {λ, 0} ∪ {λ, 0}{λ, 0}∗{λ, 0} =
{λ, 0} ∪ {λ, 0}{λ, 0, 00, 000, . . .}{λ, 0} = {0}∗, thus

λ+ 0 + (λ+ 0)(λ+ 0)∗(λ+ 0) ∼ 0∗

Superscript 2:

SET RegEx: By Direct Substitution

R2
11 = R1

11 ∪R1
12(R

1
22)
∗R1

21

R2
12 = R1

12 ∪R1
12(R

1
22)
∗R1

22

R2
21 = R0

21 ∪R0
22(R

1
22)
∗R1

21

R2
22 = R1

22 ∪R1
22(R

1
22)
∗R1

22

�
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0.3. Another Example

0.3.1 Example. Let us show another NFA to FA con-
version.

OK, given the following NFA which clearly decides the
language over Σ = {0, 1} given by the RegEx

(0 + 1)∗00

that is, the language containing ALL strings that end in
two 0s.

a b

c

0, 1

0

0

The DETERMINISTIC FA equivalent to the above is
the following:

a

a   b

0
1

0

1

a   b    c

1

0

�
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