
0.1. A THEORY OF COMPUTABILITY 1

Lecture Notes #2.

0.1 A Theory of Computability

Computability is the part of logic and theoretical computer science that gives

a mathematically precise formulation

to the concepts algorithm, mechanical procedure, and calculable/computable
function.

2

The advent of computability was strongly motivated, in the 1930s, by

Hilbert’s program to found mathematics on a (metamathematically provably)
consistent (i.e., free from contradiction) axiomatic basis . . .

. . . in particular by his belief that the Entscheidungsproblem,

or decision problem, for axiomatic theories,

that is, the problem “is this formula a theorem of that theory?” was
solvable by a mechanical procedure that was yet to be discovered.

So what IS a “mechanical procedure”?

0.1. A THEORY OF COMPUTABILITY 3

Now, since antiquity, mathematicians have invented “mechanical procedures”,

e.g., Euclid’s algorithm for the “greatest common divisor”,1 and had no problem
recognizing such procedures when they encountered them.

But how do you mathematically prove the nonexistence of such a me-
chanical procedure for a particular problem?

You need a mathematical formulation of what is a “mechanical
procedure” in order to do that!

1That is, the largest positive integer that is a common divisor of two given integers.

4

0.1.1 A Programming Framework for Computable Func-
tions

So, what is a computable function, mathematically speaking?

There are two main ways to approach this question.

1. One is to define a programming formalism—that
is, a programming language—and say: “a function is computable
precisely if it can be ‘programmed’ in this programming language”.

Examples of such programming languages are

• the Turing Machines (or TMs) of Turing

• and the unbounded register machines (or URMs) of Shepherdson and
Sturgis.

Note that the term machine in each case is a mis-
nomer, as both the TM and the URM formulations
are really programming languages,

A TM being very much like the assembly language
of “real” computers,

A URM reminding us more of (subsets of) Algol (or
Pascal).

0.1. A THEORY OF COMPUTABILITY 5

2. The other main way is to define a set of computable functions
directly—without using a programming language as the agent of defini-
tion:

How? By a devise that resembles a mathematical proof, called a
derivation.

In this approach we say a “ function is computable precisely if it is
derivable”.

6

�

Either way, a computable function is generated by a finite devise (program,
or derivation).

�

In the by-derivation approach we start by accepting some set of initial func-
tions I that are immediately recognizable as “intuitively computable”, and
choose a set O of function-building operations that preserve the “computable”
property.

0.1. A THEORY OF COMPUTABILITY 7

We now embark on defining the high level programming language URM.

The alphabet of the language is

←,+, .−, :, X, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, if , else,goto, stop (1)

Just like any other high level programming language, URM manipulates the
contents of variables.

[SS63] called the variables “registers”.

8

1) These variables are restricted to be of natural number type.

2) Since this programming language is for theoretical analysis only—rather
than practical implementation—every variable is allowed to hold any natu-
ral number whatsoever, without limitations to its size, hence the
“UR” in the language name (“unbounded register”).

3) The syntax of the variables is simple: A variable (name) is a string that
starts with X and continues with one or more 1:

URM variable set: X1, X11, X111, X1111, . . . (2)

4) Nevertheless, as is customary for the sake of convenience, we will utilize
the bold face lower case letters x,y, z,u,v,w, with or without subscripts
or primes as metavariables in most of our discussions of the URM, and in
examples of specific programs (where yet more, convenient metanotations
for variables may be employed).

0.1. A THEORY OF COMPUTABILITY 9

0.1.1.1 Definition. (URM Programs) A URM program is a finite (or-
dered) sequence of instructions (or commands) of the following five types:

L : x← a

L : x← x + 1

L : x← x .− 1 (3)

L : stop

L : if x = 0 goto M else goto R

where L,M,R, a, written in decimal notation,
are in N, and x is some variable.

We call instructions of the last type if-statements.

�

This command is syntactically illegal (meaningless) if any of M or R exceed the
label of the program’s stop instruction.

�

I Each instruction in a URM program must be numbered by its position
number, L, in the program, where “:” separates the position number from the
instruction.

IWe call these numbers labels. Thus, the label of the first instruction MUST
BE “1”.

I The instruction stop must occur only once in a program, as the last
instruction. �

10

The semantics of each command is given below.

0.1.1.2 Definition. (URM Instruction and Computation Semantics)

A URM computation is a sequence of actions caused by the execution
of the instructions of the URM as detailed below.

Every computation begins with the instruction labeled “1” as the current
instruction.

The semantic action of instructions of each type is defined if and
only if they are current, and is as follows:

(i) L : x ← a. Action: The value of x becomes the (natural) number a.
Instruction L+ 1 will be the next current instruction.

(ii) L : x ← x + 1. Action: This causes the value of x to increase by 1. The
instruction labeled L+ 1 will be the next current instruction.

(iii) L : x ← x .− 1. Action: This causes the value of x to decrease by 1, if it
was originally non zero. Otherwise it remains 0. The instruction labeled
L+ 1 will be the next current instruction.

(iv) L : stop. Action: No variable (referenced in the program) changes value.
The next current instruction is still the one labeled L.

(v) L : if x = 0 goto M else goto R. Action: No variable (referenced in the
program) changes value. The next current instruction is numbered M if
x = 0; otherwise it is numbered R.

�

What is missing? Read/Write statements! We will come to that!

0.1. A THEORY OF COMPUTABILITY 11

We say that a computation terminates, or halts, iff it ever makes current (as
we say “reaches”) the instruction stop.

Note that the semantics of “L : stop” appear to require the computation to
continue for ever. . .

. . . but it does so in a trivial manner where no variable changes value, and
the current instruction remains the same: Practically, the computation is
over.

When discussing URM programs (or as we just say,
“URMs”) one usually gives them names like

M,N,P,Q,R, F,H,G

.

12

NOTATION: We write ~xn for the sequence of variables x1,x2, . . . ,xn. We
write ~an for the sequence of values a1, a2, . . . , an.

I It is normal to omit the n (length) from ~xn and ~an if it is understood or
we don’t care, in which case we write ~x and ~a.

0.1.1.3 Definition. (URM As an Input/Output Agent) A computa-
tion by the URM M computes a function that we denote by

M~xn
y

in this precise sense:

The notation means that we chose and designated as input variables of
M the following: x1, . . . ,xn. Also indicates that we chose and designated one
variable y as the output variable.

We now conclude the definition of the function M~xn
y : For every choice we

make for input values ~an from Nn,

Aside: “Nn” is borrowed from set theory. It is the cartesian product of
n copies of N = {0, 1, 2, 3, . . .}, that is, Nn is the set of all length-n sequences
a1, a2, . . . , an where each ai is in N; a natural number.

0.1. A THEORY OF COMPUTABILITY 13

(1) We initialize the computation of URM M , by doing two things:

(a) We initialize the input variables x1, . . . ,xn with the input values

a1, . . . , an

We also initialize all other variables of M to be 0.

This is an implicit read action.

(b) We next make the instruction labeled “1” current, and thus start
the computation.

So, the initialisation is NOT part of the com-
putation!

(2) If the computation terminates, that is, if at some point the instruction stop
becomes current, then the value of y at that point (and hence at any future
point, by (iv) above), is the value of the function M~xn

y for input ~an.

This is an implicit write action. �

14

We resume: Lecture NOTES #3. Sept.16

0.1.1.4 Definition. (Computable Functions) A function f : Nn → N of n

variables x1, . . . , xn is called partial computable iff for some URM, M ,

we have f = Mx1,...,xn
y .

The set of all partial computable functions is denoted by P.

The set of all the total functions in P—that is, those that are defined on
all inputs from N—is the set of computable functions and is denoted by R. The
term recursive is used in the literature synonymously with the term computable.

�

�

Saying COMPUTABLE or RECURSIVE without qualification implies the qual-
ifier TOTAL.

It is OK to add TOTAL on occasion for EMPHASIS!!

“PARTIAL” means “might be total or nontotal”; we
do not care, or we do not know.

�

0.1. A THEORY OF COMPUTABILITY 15

�

BTW, you recall from MATH1019 that the symbol

f :

left field
↓
Nn →

right field
↓
N

simply states that f takes input values from N in each of its input variables and
outputs —if it outputs anything for the given input!— a number from N. Note
also the terminology in red type in the figure above!

�

Probably your 1019 text called Nn and N above “domain” and “range”.
FORGET THAT! What is the domain of f really? (in symbols dom(f))

dom(f)
Def
= {~an : (∃y)f(~an) = y}

that is, the set of all inputs that actually cause an output .

The range is the set of all possible outputs:

ran(f)
Def
= {y : (∃~an)f(~an) = y}

A function f : N→ N is total iff dom(f) = Nn.

Nontotal iff dom(f) (Nn.

If ~an ∈ dom(f) we write simply f(~an) ↓. Either way, we say “f is defined at
~an”.

The opposite situation is denoted by f(~an) ↑ and we say that “f is undefined
at ~an”. We can also say “f is divergent at ~an”.

• Example of a total function: the “x+y” function on the natural numbers.

• Example of a nontotal function: the “bx/yc” function on the natural
numbers. All input pairs of the form “a, 0” fail to produce an output:
ba/0c is undefined. All the other inputs work.

16

0.1.1.5 Example. Let M be the program

1 : x← x + 1
2 : stop

Then Mx
x is the function f given, for all x ∈ N, by f(x) = x+ 1, the successor

function. �

0.1.1.6 Remark. (λ Notation) To avoid saying verbose things such as “Mx
x

is the function f given, for all x ∈ N, by f(x) = x + 1”, we will often use
Church’s λ-notation and write instead “Mx

x = λx.x+ 1”.

In general, the notation “λ · · · .” marks the beginning of a sequence of input
variables “· · · ” by the symbol “λ”, and the end of the sequence by the symbol
“.” What comes after the period “.” is the “rule” that indicates how the output
relates to the input.

The template for λ-notation thus is

λ“input”.“output-rule”

Relating to the above example, we note that f = λx.x + 1 = λy.y + 1 is
correct and we are saying that the two functions viewed as tables are the same.

Note that x, y, are “apparent” variables (“dummy” or bound) and are not
free (for substitution).

0.1. A THEORY OF COMPUTABILITY 17

0.1.1.7 Example. Let M be the program

1 : x← x .− 1
2 : stop

Then Mx
x is the function λx.x .− 1, the predecessor function.

The operation .− is called “proper subtraction” —some people pronounce it
“monus”— and is in general defined by

x .− y =

{
x− y if x ≥ y
0 otherwise

It ensures that subtraction (as modified) does not take us out of the set of

the so-called number-theoretic functions, which are those with inputs
from N and outputs in N. �

18

Pause. Why are we restricting computability theory to
number-theoretic functions? Surely, in practice we can compute with
negative numbers, rational numbers, and with nonnumerical entities, such as
graphs, trees, etc. Theory ought to reflect, and explain, our practices, no?J

It does. Negative numbers and rational numbers can be coded by natural
number pairs.

Computability of number-theoretic functions can handle such pairing (and
unpairing or decoding).

Moreover, finite objects such as graphs, trees, and the like that we manipu-
late via computers can be also coded (and decoded) by natural numbers.

After all, the internal representation of all data in computers is, at the low-
est level, via natural numbers represented in binary notation.

Computers cannot handle infinite objects such as (irrational) real numbers.

But there is an extensive “higher type” computability theory (which orig-
inated with the work of [Kle43]) that can handle such numbers as inputs and
also compute with them.

However, this theory is way beyond our scope.

0.1. A THEORY OF COMPUTABILITY 19

0.1.1.8 Example. Let M be the program

1 : x← 0
2 : stop

Then Mx
x is the function λx.0, the zero function. �

�

In Definition 0.1.1.4 we spoke of partial computable and total computable func-
tions.

We retain the qualifiers partial and total for
all number-theoretic functions, even for those
that may not be computable.

Total vs. nontotal (no hyphen) has been defined with respect to a chosen

and fixed left field for any function in computability.

The set union of all total and nontotal number-theoretic functions is the set
of all partial (number-theoretic) functions. Thus partial is not synonymous
with nontotal.

�

20

0.1.1.9 Example. The unconditional goto instruction, namely, “L : gotoL′”,
can be simulated by L : if x = 0 goto L′ else goto L′. �

0.1.1.10 Example. Let M be the program

1 : x← 0
2 : goto 1
3 : stop

Then Mx
x is the empty function ∅, sometimes written as λx. ↑.

Thus the empty function is partial computable but nontotal. We have just
established ∅ ∈ P −R. �

0.1. A THEORY OF COMPUTABILITY 21

0.1.1.11 Example. Let M be the program segment

k − 1 : x← 0
k : if z = 0 goto k + 4 else goto k + 1
k + 1 : z← z

.− 1
k + 2 : x← x + 1
k + 3 : goto k
k + 4 : . . .

What it does:

By the time the computation reaches instruction k+3, the program segment
has set the value of z to 0, and has made the value of x equal to the value that
z had when instruction k − 1 was current.

In short, the above sequence of instructions simulates the following sequence

L : x← z
L+ 1 : z← 0
L+ 2 : . . .

where the semantics of L : x← z are standard in programming:

They require that, upon execution of the instruction, the value of z is copied
into x but the value of z remains unchanged. �

22

0.1.1.12 Exercise. Write a program segment that simulates precisely L : x←
z; that is, copy the value of z into x without causing z to change as a side-effect.

�

We say that the “normal” assignment x← z is non destructive.

0.1. A THEORY OF COMPUTABILITY 23

Because of Exercise 0.1.1.12 above, without loss of generality, one may as-

sume that any input variable, x, of a URM M is read-only.
This means that its value is retained throughout any computation

of the program.

�

Why “without loss of generality”? Because if x is not such, we can make it
be!

�

Indeed, let’s add a new variable as an input variable, x′ instead of x.

Then, in detail, do this to make x′ read-only:

• Add at the very beginning of M the instruction 1 : x ← x′ of Exer-
cise 0.1.1.12.

• Adjust all the following labels consistently, including, of course, the ones
referenced by if-statements—a tedious but straightforward task.

• Call M ′ the so-obtained URM.

Clearly, M ′ x′,y1,...,yn
z = Mx,y1,...,yn

z , and M ′ does not change
x′.

24

Lecture #4. Sept. 21

0.1.1.13 Example. (Composing Computable Functions)
Suppose that λx~y.f(x, ~y) and λ~z.g(~z) are partial computable, and say

f = Fx,~y
u

while
g = G~z

x

We assume without loss of generality that x is the only
variable common to F and G. Thus, if we concatenate the programs G and

F in that order, and
1. remove the last instruction of G (k : stop, for some k) —call the program

segment that results from this G′, and

2. renumber the instructions of F as k, k + 1, . . . (and, as a result, the refer-

ences that if-statements of F make) in order to give
(
G′F

)
the

correct program structure,

then, λ~y~z.f(g(~z), ~y) = (G′F)~y,~zu .

Note that all non-input variables of F will still hold 0 as soon as the execu-
tion of (G′F) makes the first instruction of F current for the first time.

This is because none of these can be changed by G′ under our assumption,
thus ensuring that F works as designed. �

0.1. A THEORY OF COMPUTABILITY 25

Thus, we have, by repeating the above a finite number of times:

0.1.1.14 Proposition. If λ~yn.f(~yn) and λ~z.gi(~z), for i = 1, . . . , n, are partial
computable, then so is λ~z.f(g1(~z), . . . , gn(~z)).

�

Note that
f(g1(~a), . . . , gn(~a)) ↑

if any gi(~a) ↑

Else f(g1(~a), . . . , gn(~a)) ↓ provided f is defined on all gi(~an).
�

For the record, we will define composition to mean the somewhat rigidly
defined operation used in 0.1.1.14, that is:

0.1.1.15 Definition. Given any partial functions (computable or not) λ~yn.f(~yn)
and λ~z.gi(~z), for i = 1, . . . , n, we say that λ~z.f(g1(~z), . . . , gn(~z)) is the result of
their composition. �

�

We characterized the Definition 0.1.1.15 as “rigid”.

Indeed, note that it requires all the arguments of f to be substituted by
some gi(~z)—unlike Example 0.1.1.13, where we substituted a function invoca-

tion (cf. terminology in 0.1.1.6) only in one variable of f there, and
did nothing with the variables ~y.

Also, for each call gi(. . .) the argument list, “. . .”, must be the same;
in 0.1.1.15 it was ~z.

As we will show in examples later, this rigidity is only apparent.
�

26

We can rephrase 0.1.1.14, saying simply that

0.1.1.16 Theorem. P is closed under composition.

0.1.1.17 Corollary. R is closed under composition.

Proof. Let f , gi be in R.

Then they are in P, hence so is h = λ~y.f
(
g1(~y), . . . , gm(~y)

)
by 0.1.1.16.

By assumption, the f , gi are total. So, for any ~y, we have gi(~y) ↓ —a num-

ber. Hence also f
(
g1(~y), . . . , gm(~y)

)
↓.

That is, h is total, hence, being in P , it is also in R. �

0.1. A THEORY OF COMPUTABILITY 27

Composing a number of times that depends on the value of an
input variable—or as we may say, a variable number of times—is

iteration. The general case of iteration is called primitive recursion.

0.1.1.18 Definition. (Primitive Recursion) A number-theoretic function f
is defined by primitive recursion from given functions λ~y.h(~y) and λx~yz.g(x, ~y, z)
provided, for all x, ~y, its values are given by the two equations below:

f(0, ~y) = h(~y)
f(x+ 1, ~y)= g(x, ~y, f(x, ~y))

h is the basis function, while g is the iterator.

We can take for granted a fundamental (but difficult) result (see EECS 1028,
W20, course notes), that a unique f that satisfies the above schema exists.

Moreover, if both h and g are total, then so is f as it can easily be
shown by induction on x (Later).

It will be useful to use the notation f = prim(h, g) to indicate in shorthand
that f is defined as above from h and g (note the order). �

Note that
f(1, ~y) = g(0, ~y, h(~y)),

f(2, ~y) = g(1, ~y, g(0, ~y, h(~y))),

f(3, ~y) = g(2, ~y, g(1, ~y, g(0, ~y, h(~y)))), etc.

Thus the “x-value”, 0, 1, 2, 3, etc., equals the number of times we compose
g with itself (i.e., the number of times we iterate g).

28

With a little programming experience, it is easy to see that to compute
f(x, ~y) of 0.1.1.18 is computed by the pseudo code below:

1 : z ←h(~y)
2 : for i = 0 to x− 1
3 : z ←g(i, ~y, z)

At the end of the loop, z holds f(x, ~y).

Here is how to implement the above as a URM:

0.1.1.19 Example. (Iterating Computable Functions)
Suppose that λx~yz.g(x, ~y, z) and λ~y.h(~z) are partial computable, and, say,

g = Gi,~y,z
z while h = H~y

z .
By earlier remarks we may assume:
(i) The only variables that H and G have in common are z, ~y.
(ii) The variables ~y are read-only in both H and G.
(iii) i is read-only in G.
(iv) x does not occur in any of H or G.

We can now see that the following URM program, let us call it F , computes

f defined as in 0.1.1.18 from h and g, where H ′ is program H with the stop

instruction removed, G′ is program G that has the stop instruction removed,
and instructions renumbered (and if-statements adjusted) as needed:

H ′ ~y
z

r : i← 0
r + 1 : if x = 0 goto k +m+ 2 else goto r + 2
r + 2 : x← x

.− 1

G′ i,~y,z
z

k : i← i + 1
k + 1 : w1 ← 0
...
k +m : wm ← 0
k +m+ 1 : goto r + 1
k +m+ 2 : stop

The instructions wi ← 0 set explicitly to zero all the variables of G′ other
than i, z, ~y to ensure correct behavior of G′. Note that the wi are implicitly
initialized to zero only the first time G′ is executed. Clearly, the URM F
simulates the pseudo program above, thus f = Fx,~y

z . �

0.1. A THEORY OF COMPUTABILITY 29

Lecture #5 (Sept. 23)

We have at once:

0.1.1.20 Proposition. If f, g, h relate as in Definition 0.1.1.18 and h and g
are in P, then so is f . We say that P is closed under primitive recursion.

0.1.1.21 Corollary. If f, g, h relate as in Definition 0.1.1.18 and h and g are
in R, then so is f . We say that R is closed under primitive recursion.

Proof. As R ⊆ P, we have f ∈ P.

But we saw that if h and g is total, then so is f .

So, f ∈ R. �

30

What does the following pseudo program do, if g = Gx,~y
z for some URM G?

1 : x← 0

2 : while g(x, ~y) 6= 0 do

3 : x← x + 1

(1)

We are out here (exited the while-loop) precisely because

• Testing for g(x, ~y) 6= 0 never got stuck due to calling g with some x = m
that makes g(m,~y) ↑.

• The loop kicked us out exactly when g(k, ~y) = 0 was detected, for some
k, for the first time, in the while-test.

In short, the k satisfies
k = smallest such that g(k, ~y) = 0 ∧ (∀z < k)g(z, ~y) ↓

Now, this k depends on ~y so we may define it as a function f , for all INPUTS ~a in ~y,
by:

k = f(~a)
Def
= min

{
x : g(x,~a) = 0 ∧ (∀y)

(
y < x→ g(y,~a) ↓

)}
�

Kleene has suggested the symbol “µ” to denote the “find the minimum” oper-
ation above, thus the above is rephrased as

f(~a) = (µy)g(y,~a)
Def
=

{
min

{
y : g(y,~a) = 0 ∧ (∀w)w<yg(w,~a) ↓

}
↑ if the min above does not exist

(2)

where (∀y)y<xR(y, . . .) is short for (∀y)(y < x → R(y, . . .)). We call the

operation (µy)g(y,~a) —equivalently, the program segment “while g(x,~a) 6=
0 do”— unbounded search.

�

Why “unbounded” search? Because we do not know a priori how
many times we have to go around the loop. This depends on the
behavior of g.

�

We saw how the minimum can fail to exist in one of two ways:

• Either g(x,~a) ↓ for all x but we never get g(x,~a) = 0; that is, we stay in
the loop going round and round forever

or

• g(b,~a) ↑ for a value b of x before we reach any c such that g(c,~a) = 0, thus
we are stuck forever processing the call g(b,~a) in the while instruction.

0.1. A THEORY OF COMPUTABILITY 31

Can we implement the pseudo-program (1) as a URM F? YES!

0.1.1.22 Example. (Unbounded Search on a URM) So suppose again that

λx~y.g(x, ~y) is partial computable, and, say, g = Gx,~y
z .

By earlier remarks we may assume that ~y and x are read-only in G and that
z is not one of them.

Consider the following program F ~y
x , where G′ is the program G with

the stop instruction removed, where instructions have been renumbered (and
if-statements adjusted) as needed so that its first instruction has label 2.

1 : x← 0

G′

k : if z = 0 goto k + l + 3 else goto k + 1
k + 1 : w1 ← 0 {Comment. Setting all non-input variables to 0; cf. 0.1.1.19.}
...
k + l : wl ← 0 {Comment. Setting all non-input variables to 0; cf. 0.1.1.19.}
k + l + 1 : x← x + 1
k + l + 2 : goto 2
k + l + 3 : stop {Comment. Read answer off x. This is the last x-value used by G′}

�

The result of Example 0.1.1.22 yields at once:

0.1.1.23 Proposition. P is closed under unbounded search; that is, if λx~y.g(x, ~y)
is in P, then so is λ~y.(µx)g(x, ~y).

32

0.1.1.24 Example. Is the function λ~xn.xi, where 1 ≤ i ≤ n, in P? Yes, and
here is a program, M , for it:

1 : w1 ← w1 + 1
...
i : z← wi {Comment. Cf. Exercise 0.1.1.12}
...
n : wn ← 0
n+ 1 : stop

λ~xn.xi = M ~wn
z . To ensure thatM indeed has the wi as variables we reference

them in instructions at least once, in any manner whatsoever. �

Bibliography

[Chu36a] Alonzo Church, A note on the Entscheidungsproblem, J. Symbolic
Logic 1 (1936), 40–41, 101–102.

[Chu36b] , An unsolvable problem of elementary number theory, Amer.
Journal of Math. 58 (1936), 345–363, [Also in [Dav65], 89–107].

[Dav58] M. Davis, Computability and Unsolvability, McGraw-Hill, New York,
1958.

[Dav65] M. Davis, The undecidable, Raven Press, Hewlett, NY, 1965.

[Ded88] R. Dedekind, Was sind und was sollen die Zahlen?, Vieweg, Braun-
schweig, 1888, [In English translation by W.W. Beman; cf. [Ded63]].

[Ded63] , Essays on the Theory of Numbers, Dover Publications, New
York, 1963, [First English edition translated by W.W. Beman and
published by Open Court Publishing, 1901].

[HMU07] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, Intro-
duction to Automata Theory, Languages and Computation, 3rd ed.,
Addison-Wesley, Boston, 2007.

[Kal57] L. Kalmár, An argument against the plausibility of Church’s thesis,
Constructivity in Mathematics, Proc. of the Colloquium, Amsterdam,
1957, pp. 72–80.

[Kle36] S.C. Kleene, General recursive functions of natural numbers, Math.
Annalen 112 (1936), 727–742.

[Kle43] , Recursive predicates and quantifiers, Transactions of the
Amer. Math. Soc. 53 (1943), 41–73, [Also in [Dav65], 255–287].

[LP98] Harry R. Lewis and Christos H. Papadimitriou, Elements of the The-
ory of Computation, Prentice Hall, Englewood Cliffs, NJ, 1998.

[Mar60] A. A. Markov, Theory of algorithms, Transl. Amer. Math. Soc. 2
(1960), no. 15.

[P6́7] Rózsa Péter, Recursive Functions, Academic Press, New York, 1967.

33

34 BIBLIOGRAPHY

[Pos36] Emil L. Post, Finite combinatory processes, J. Symbolic Logic 1
(1936), 103–105.

[Pos44] , Recursively enumerable sets of positive integers and their de-
cision problems, Bull. Amer. Math. Soc. 50 (1944), 284–316.

[Sip97] M. Sipser, Introduction to the Theory of Computation, PWS Publish-
ing, Boston, 1997.

[SS63] J. C. Shepherdson and H. E. Sturgis, Computability of recursive func-
tions, Journal of the ACM 10 (1963), 217–255.

[Tou84] G. Tourlakis, Computability, Reston Publishing, Reston, VA, 1984.

[Tur37] Alan M. Turing, On computable numbers, with an application to
the Entscheidungsproblem, Proc. London Math Soc. 2 (1936, 1937),
no. 42, 43, 230–265, 544–546, [Also in [Dav65], 115–154].

	A Theory of Computability
	A Programming Framework for Computable Functions

