LECTURE \#5 (Sept. 23; Continued)

Before we get more immersed into partial functions let us redefine equality for function calls.
0.0.1 Definition. Let $\lambda \vec{x} . f\left(\vec{x}_{n}\right)$ and $\lambda \vec{y} . g\left(\vec{y}_{m}\right)$.

We extend the notion of equality $f\left(\vec{a}_{n}\right)=g\left(\vec{b}_{m}\right)$ to include the case of undefined calls:

For any \vec{a}_{n} and $\vec{b}_{m}, f\left(\vec{a}_{n}\right)=g\left(\vec{b}_{m}\right)$ means precisely one of

- For some $k \in \mathbb{N}, f\left(\vec{a}_{n}\right)=k$ and $g\left(\vec{b}_{m}\right)=k$
- $f\left(\vec{a}_{n}\right) \uparrow$ and $g\left(\vec{b}_{m}\right) \uparrow$

For short,

$$
f\left(\vec{a}_{n}\right)=g\left(\vec{b}_{m}\right) \equiv(\exists z)\left(f\left(\vec{a}_{n}\right)=z \wedge g\left(\vec{b}_{m}\right)=z \vee f\left(\vec{a}_{n}\right) \uparrow \wedge g\left(\vec{b}_{m}\right) \uparrow\right)
$$

The definition is due to Kleene and he preferred, as I do in the text, to use a new symbol for the extended equality, namely \simeq.

Regardless, by way of this note we agree to use the same symbol for equality for both total and nontotal calls, namely, "=" (this convention is common in the literature, e.g., Rog67).
0.0.2 Lemma. If $f=\operatorname{prim}(h, g)$ and h and g are total, then so is f.

Proof. Let f be given by:

$$
\begin{aligned}
f(0, \vec{y}) & =h(\vec{y}) \\
f(x+1, \vec{y}) & =g(x, \vec{y}, f(x, \vec{y}))
\end{aligned}
$$

We do induction on x to prove

$$
\begin{equation*}
\text { "For all } x, \vec{y}, f(x, \vec{y}) \downarrow " \tag{*}
\end{equation*}
$$

Basis. $x=0$: Well, $f(0, \vec{y})=h(\vec{y})$, but $h(\vec{y}) \downarrow$ for all \vec{y}, so

$$
\begin{equation*}
f(0, \vec{y}) \downarrow \text { for all } \vec{y} \tag{**}
\end{equation*}
$$

As I.H. (Induction Hypothesis) take that

$$
f(x, \vec{y}) \downarrow \text { for all } \vec{y} \text { and fixed } x
$$

Do the Induction Step (I.S.) to show

$$
f(x+1, \vec{y}) \downarrow \text { for all } \vec{y} \text { and the fixed } x \text { of }(\dagger)
$$

Well, by (\dagger) and the assumption on g,

$$
g(x, \vec{y}, f(x, \vec{y})) \downarrow \text {, for all } \vec{y} \text { and the fixed } x \text { of }(\dagger)
$$

which says the same thing as (\ddagger).
0.0.3 Corollary. \mathcal{R} is closed under primitive recursion.

Proof. Let h and g be in \mathcal{R}. Then they are in \mathcal{P}. But then $\operatorname{prim}(h, g) \in \mathcal{P}$ as we showed in class/text and Notes $\# 2$.

By 0.0.2 $\operatorname{prim}(h, g)$ is total.
By definition of \mathcal{R}, as the subset of \mathcal{P} that contains all total functions of \mathcal{P}, we have $\operatorname{prim}(h, g) \in \mathcal{R}$.
2 Why all this dance in colour above? Because to prove $f \in \mathcal{R}$ you need TWO things: That

1. $f \in \mathcal{P}$

AND
2. f is total

But aren't all the total functions in \mathcal{R} anyway?
NO! They need to be computable too!

We will see in this course soon that NOT all total functions are computable!

0.0.1 Primitive Recursive Functions

We saw that

1. The successor $-S$
2. zero $-Z$
3. and the generalised identity functions $-U_{i}^{n}=\lambda \vec{x}_{n} \cdot x_{i}$
are all in \mathcal{P}

Thus, not only are they "intuitively computable", but they are so in a precise mathematical sense:
each is computable by a URM.

We have also shown that "computability" of functions is preserved by the operations of composition, primitive recursion, and unbounded search.

In this subsection we will explore the properties of the important set of functions known as primitive recursive.

Most people introduce them via derivations just as one introduces the theorems of logic via proofs, as in the definition below.
0.0.4 Definition. ($\mathcal{P} \mathcal{R}$-derivations; $\mathcal{P} \mathcal{R}$-functions) The set

$$
\mathcal{I}=\left\{S, Z,\left(U_{i}^{n}\right)_{n \geq i>0}\right\}
$$

is the set of Initial $\mathcal{P} \mathcal{R}$ functions.
A $\mathcal{P} \mathcal{R}$-derivation is a finite (ordered!) sequence of numbertheoretic function $\boldsymbol{\xi}^{*}$

$$
\begin{equation*}
f_{1}, f_{2}, f_{3}, \ldots, f_{i}, \ldots, f_{n} \tag{1}
\end{equation*}
$$

such that, for each i, one of the following holds

1. $f_{i} \in \mathcal{I}$.
2. $f_{i}=\operatorname{prim}\left(f_{j}, f_{k}\right)$ and $j<i$ and $k<i$-that is, f_{j}, f_{k} appear to the left of f_{i}.
3. $f_{i}=\lambda \vec{y} \cdot g\left(r_{1}(\vec{y}), r_{2}(\vec{y}), \ldots, r_{m}(\vec{y})\right)$, and all of the $\lambda \vec{y} \cdot r_{q}(\vec{y})$ and $\lambda \vec{x}_{m} \cdot g\left(\vec{x}_{m}\right)$ appear to the left of f_{i} in the sequence.
Any f_{i} in a derivation is called a derived function f
The set of primitive recursive functions, $\mathcal{P} \mathcal{R}$, is all those that are derived.

That is,

$$
\mathcal{P} \mathcal{R} \stackrel{\text { Def }}{=}\{f: f \text { is derived }\}
$$

The above definition defines essentially what Dedekind (Ded88) called "recursive" functions.

Subsequently they were renamed to primitive recursive allowing the unqualified term recursive to be synonymous with (total) computable and apply to the functions of \mathcal{R}.

[^0]EECS 2001Z. George Tourlakis. Winter 2019
0.0.5 Lemma. The concatenation of two derivations is a derivation.

Proof. Let

$$
\begin{equation*}
f_{1}, f_{2}, f_{3}, \ldots, f_{i}, \ldots, f_{n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}, g_{2}, g_{3}, \ldots, g_{j}, \ldots, g_{m} \tag{2}
\end{equation*}
$$

be two derivations. Then so is

$$
f_{1}, f_{2}, f_{3}, \ldots, f_{i}, \ldots, f_{n}, g_{1}, g_{2}, g_{3}, \ldots, g_{j}, \ldots, g_{m}
$$

because of the fact that each of the f_{i} and g_{j} satisfies the three cases of Definition 0.0 .4 in the standalone derivations (1) and (2). But this property of the f_{i} and g_{j} is preserved after concatenation.

Lecture \#6 (Sept. 28)

0.0.6 Corollary. The concatenation of any finite number of derivations is a derivation.
0.0.7 Lemma. If

$$
f_{1}, f_{2}, f_{3}, \ldots, f_{k}, f_{k+1}, \ldots, f_{n}
$$

is a derivation, then so is $f_{1}, f_{2}, f_{3}, \ldots, f_{k}$.
Proof. In $f_{1}, f_{2}, f_{3}, \ldots, f_{k}$ every f_{m}, for $1 \leq m \leq k$, satisfies 1.-3. of Definition 0.0.4 since all conditions are in terms of what f_{m} is, or what lies to the left of f_{m}. Chopping the "tail" f_{k+1}, \ldots, f_{n} in no way affects what lies to the left of f_{m}, for $1 \leq m \leq k$.

EECS 2001Z. George Tourlakis. Winter 2019
0.0.8 Corollary. $f \in \mathcal{P} \mathcal{R}$ iff f appears at the end of some derivation.

Proof.

(a) The If. Say g_{1}, \ldots, g_{n}, f is a derivation. Since f occurs in it, $f \in \mathcal{P} \mathcal{R}$ by 0.0 .4
(b) The Only If. Say $f \in \mathcal{P} \mathcal{R}$. Then, by 0.0 .4 ,

$$
\begin{equation*}
g_{1}, \ldots, g_{m}, \boxed{f}, g_{m+2}, \ldots, g_{r} \tag{1}
\end{equation*}
$$

for some derivation like the (1) above.
By $0.0 .7 g_{1}, \ldots, g_{m}, f$ is also a derivation.
0.0.9 Theorem. $\mathcal{P R}$ is closed under composition and primitive recursion.

Proof.

- Closure under primitive recursion. So let $\lambda \vec{y} . h(\vec{y})$ and $\lambda x \vec{y} z \cdot g(x, \vec{y}, z)$ be in $\mathcal{P} \mathcal{R}$. Thus we have derivations

$$
\begin{equation*}
h_{1}, h_{2}, h_{3}, \ldots, h_{n}, h \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}, g_{2}, g_{3}, \ldots, g_{m}, g \tag{2}
\end{equation*}
$$

Then the following is a derivation by 0.0.5.

$$
h_{1}, h_{2}, h_{3}, \ldots, h_{n}, h, g_{1}, g_{2}, g_{3}, \ldots, g_{m}, g
$$

Therefore so is

$$
h_{1}, h_{2}, h_{3}, \ldots, h_{n}, h, g_{1}, g_{2}, g_{3}, \ldots, g_{m}, g, \operatorname{prim}(h, g)
$$

by applying step 2 of Definition 0.0.4.
This implies prim $(h, g) \in \mathcal{P} \mathcal{R}$ by 0.0.4

- Closure under composition. So let $\lambda \vec{y} \cdot h\left(\vec{x}_{n}\right)$ and $\lambda \vec{y} \cdot g_{i}(\vec{y})$, for $1 \leq i \leq n$, be in $\mathcal{P} \mathcal{R}$. By 0.0 .4 we have derivations

$$
\begin{equation*}
\ldots, h \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\ldots, g_{i}, \text { for } 1 \leq i \leq n \tag{4}
\end{equation*}
$$

By 0.0.5.

is a derivation, and by 0.0 .4 , case 3 , so is

$$
\ldots, h, \ldots, g_{1}, \ldots, \ldots, g_{n}, \lambda \vec{y} . h\left(g_{1}(\vec{y}), \ldots, g_{n}(\vec{y})\right)
$$

This implies $\lambda \vec{y} . h\left(g_{1}(\vec{y}), \ldots, g_{n}(\vec{y})\right) \in \mathcal{P} \mathcal{R}$ by 0.0.4
0.0.10 Remark. How do you prove that some $f \in \mathcal{P} \mathcal{R}$?

Answer. By building a derivation

$$
g_{1}, \ldots, g_{m}, f
$$

After a while this becomes easier because

- you might know an h and g in $\mathcal{P} \mathcal{R}$ such that $f=\operatorname{prim}(h, g)$,
- or you might know some g, h_{1}, \ldots, h_{m} in $\mathcal{P} \mathcal{R}$, such that $f=\lambda \vec{y} \cdot g\left(h_{1}(\vec{y}), \ldots, h_{m}(\vec{y})\right)$.

If so, just apply 0.0 .9

How do you prove that $A L L f \in \mathcal{P} \mathcal{R}$ have a property Q-that is, for all f, $Q(f)$ is true?

Answer. By doing induction on the derivation length of f.(3)

Here are two examples demonstarting the above questions and their answers.
0.0.11 Example. (1) To demonstrate the first Answer above 0.0.10, show (prove) that $\lambda x y . x+y \in \mathcal{P} \mathcal{R}$. Well, observe that

$$
\begin{aligned}
0+y & =y \\
(x+1)+y & =(x+y)+1
\end{aligned}
$$

Does the above look like a primitive recursion?

Well, almost.

However, the first equation should have a function call "H(y)" on the rhs but instead has just a variable y-the input!

Also the second equation should have a rhs like " $G(x, y, x+y)$ ".

We can do that!
Take $H=U_{1}^{1}$ and $G=S U_{3}^{3}$ - NOTE the " $S U_{3}^{3 "}$ " with no brackets around U_{3}^{3}; this is normal practise!

Be sure to agree that we now have
-

$$
\begin{aligned}
0+y & =H(y) \\
(x+1)+y & =G(x, y, x+y)
\end{aligned}
$$

- The functions $H=U_{1}^{1}$ (initial) and $G=S U_{3}^{3}$ (composition) are in $\mathcal{P R}$. By 0.0 .9 so is $\lambda x y . x+y$.

In terms of derivations, we have produced the derivation:

$$
U_{1}^{1}, S, U_{3}^{3}, S U_{3}^{3}, \underbrace{\operatorname{prim}\left(U_{1}^{1}, S U_{3}^{3}\right)}_{\lambda x y \cdot x+y}
$$

EECS 2001Z. George Tourlakis. Winter 2019
(2) To demonstrate the second Answer above 0.0.10), show (prove) that every $f \in \mathcal{P} \mathcal{R}$ is total. Induction on derivation length, n, where f occurs.

Basis. $n=1$. Then f is the only function in the derivation. Thus it must be one of S, Z, or U_{i}^{m}. But all these are total.
I.H. (Induction Hypothesis) Fix an l. Assume that the claim is true for all f that occur at the end of derivations of lengths $n \leq l$. That is, we assume that all such f are total.
I.S. (Induction Step) Prove that the claim is true for all f that occur at the end of a derivation -see 0.0 .8 of length $n=l+1$.

$$
\begin{equation*}
g_{1}, \ldots, g_{l}, f \tag{1}
\end{equation*}
$$

We have three subcases:

- $f \in \mathcal{I}$. But we argued this under Basis.
- $f=\operatorname{prim}(h, g)$, where h and g are among the g_{1}, \ldots, g_{l}. By the I.H. h and g are total. Elaboration: Any such g_{i} is at the end of a derivation of length $\leq l$. So I.H. kicks in.

But then so is f by Lemma 0.0.2.

- $f=\lambda \vec{y} . h\left(q_{1}(\vec{y}), \ldots, q_{t}(\vec{y})\right)$, where the functions h and q_{1}, \ldots, q_{t} are among the g_{1}, \ldots, g_{l}. By the I.H. h and q_{1}, \ldots, q_{t} are total. But then so is f by a Lemma in the Notes $\# 2$, when we proved that \mathcal{R} is closed under composition.
0.0.12 Example. If $\lambda x y w \cdot f(x, y, w)$ and $\lambda z \cdot g(z)$ are in $\mathcal{P} \mathcal{R}$, how about $\lambda x z w \cdot f(x, g(z), w)$?

It is in $\mathcal{P} \mathcal{R}$ since, by COMPOSITION,
$f(x, g(z), w)=f\left(U_{1}^{3}(x, z, w), \underline{g\left(U_{2}^{3}(x, z, w)\right)}, U_{3}^{3}(x, z, w)\right)$
and the U_{i}^{n} are all primitive recursive.

The reader will see at once that to the right of "=" we have correctly formed compositions as expected by the "rigid" definition of composition given in class.

Similarly, for the same functions above,
(1) $\lambda y w \cdot f(2, y, w)$ is in $\mathcal{P} \mathcal{R}$. Indeed, this function can be obtained by composition, since

$$
f(2, y, w)=f\left(S S Z\left(U_{1}^{2}(y, w)\right), y, w\right)
$$

where I wrote " $S S Z(\ldots)$ " as short for $S(S(Z(\ldots)))$ for visual clarity.

Clearly, using $\operatorname{SSZ}\left(U_{2}^{2}(y, w)\right)$ above works as well.
(2) $\lambda x y w \cdot f(y, x, w)$ is in $\mathcal{P} \mathcal{R}$. Indeed, this function can be obtained by composition, since

$$
f(y, x, w)=f\left(U_{2}^{3}(x, y, w), U_{1}^{3}(x, y, w), U_{3}^{3}(x, y, w)\right)
$$

< In this connection, note that while $\lambda x y \cdot g(x, y)=\lambda y x \cdot g(y, x)$, yet $\lambda x y \cdot g(x, y) \neq \lambda x y \cdot g(y, x)$ in general.

For example, $\lambda x y . x-y$ asks that we subtract the second input (y) from the first (x), but $\lambda x y . y \doteq x$ asks that we subtract the first input (x) from the second (y).
(3) $\lambda x y . f(x, y, x)$ is in $\mathcal{P} \mathcal{R}$. Indeed, this function can be obtained by composition, since

$$
f(x, y, x)=f\left(U_{1}^{2}(x, y), U_{2}^{2}(x, y), U_{1}^{2}(x, y)\right)
$$

EECS 2001Z. George Tourlakis. Winter 2019
(4) $\lambda x y z w u$. $f(x, y, w)$ is in $\mathcal{P} \mathcal{R}$. Indeed, this function can be obtained by composition, since

$$
\begin{aligned}
& \lambda x y z w u \cdot f(x, y, w)= \\
& \quad \lambda x y z w u \cdot f\left(U_{1}^{5}(x, y, z, w, u), U_{2}^{5}(x, y, z, w, u), U_{4}^{5}(x, y, z, w, u)\right)
\end{aligned}
$$

The above four examples are summarised, named, and generalised in the following straightforward exercise:
0.0.13 Exercise. (The Grz53] Substitution Operations) $\mathcal{P} \mathcal{R}$ is closed under the following operations:
(i) Substitution of a function invocation for a variable:

From $\lambda \vec{x} y \vec{z} \cdot f(\vec{x}, y, \vec{z})$ and $\lambda \vec{w} \cdot g(\vec{w})$ obtain $\lambda \vec{x} \vec{w} \vec{z} \cdot f(\vec{x}, g(\vec{w}), \vec{z})$.
(ii) Substitution of a constant for a variable:

From $\lambda \vec{x} y \vec{z} \cdot f(\vec{x}, y, \vec{z})$ obtain $\lambda \vec{x} \vec{z} \cdot f(\vec{x}, k, \vec{z})$.
(iii) Interchange of two variables:

From $\lambda \vec{x} y \vec{z} w \vec{u} . f(\vec{x}, y, \vec{z}, w, \vec{u})$ obtain $\lambda \vec{x} y \vec{z} w \vec{u} . f(\vec{x}, w, \vec{z}, y, \vec{u})$.
(iv) Identification of two variables:

From $\lambda \vec{x} y \vec{z} w \vec{u} . f(\vec{x}, y, \vec{z}, w, \vec{u})$ obtain $\lambda \vec{x} y \vec{z} \vec{u} . f(\vec{x}, y, \vec{z}, y, \vec{u})$.
(v) Introduction of "don't care" variables:

From $\lambda \vec{x} \cdot f(\vec{x})$ obtain $\lambda \vec{x} \vec{z} \cdot f(\vec{x})$.

By 0.0.13 composition can simulate the Grzegorczyk operations if the initial functions \mathcal{I} are present.

Of course, (i) alone can in turn simulate composition. With these comments out of the way, we see that the "rigidity" of the definition of composition is gone.

EECS 2001Z. George Tourlakis. Winter 2019
0.0.14 Example. The definition of primitive recursion is also rigid. However this is also an illusion.

Take $p(0)=0$ and $p(x+1)=x-$ this one defining $p=\lambda x . x-1-$ does not fit the schema.

The schema requires the defined function to have one more variable than the basis, so no one-variable function can be directly defined!

We can get around this.
Define first $\widetilde{p}=\lambda x y . x \perp 1$ as follows: $\widetilde{p}(0, y)=0$ and $\widetilde{p}(x+1, y)=x$.

Now this can be dressed up according to the syntax of the schema,

$$
\begin{aligned}
& \widetilde{p}(0, y)=Z(y) \\
& \widetilde{p}(x+1, y)=U_{1}^{3}(x, y, \widetilde{p}(x, y))
\end{aligned}
$$

$$
\text { that is, } \widetilde{p}=\operatorname{prim}\left(Z, U_{1}^{3}\right)
$$

Then we can get p by (Grzegorczyk) substitution: $p=$ $\lambda x . \widetilde{p}(x, 0)$.

Incidentally, this shows that both p and \widetilde{p} are in $\mathcal{P} \mathcal{R}$:

- $\widetilde{p}=\operatorname{prim}\left(Z, U_{1}^{3}\right)$ is in $\mathcal{P} \mathcal{R}$ since Z and U_{1}^{3} are, then invoking 0.0.9.
- $p=\lambda x \cdot \widetilde{p}(x, 0)$ is in $\mathcal{P} \mathcal{R}$ since \widetilde{p} is, then invoking 0.0.13.

Lecture \# 7 (Sept. 30)

Another rigidity in the definition of primitive recursion is that, apparently, one can use only the first variable as the iterating variable.

Not so. This is also an illusion.

Consider, for example, sub $=\lambda x y . x \doteq y$, hence $x \doteq 0=x$ and $x \doteq(y+1)=p(x \doteq y)$

Clearly, $\operatorname{sub}(x, 0)=x$ and $\operatorname{sub}(x, y+1)=p(\operatorname{sub}(x, y))$ is correct semantically, but the format is wrong:

We are not supposed to iterate along the second variable!

Well, define instead $\widetilde{s u b}=\lambda x y \cdot y \dot{ }$:
So

$$
\begin{aligned}
& y \dot{\succ}=y \\
& y \dot{\succ}(x+1)=p(y \dot{-})
\end{aligned}
$$

That is,

$$
\begin{aligned}
& \widetilde{\operatorname{sub}}(0, y) \quad=U_{1}^{1}(y) \\
& \widetilde{\operatorname{sub}(x+1, y)}=p\left(U_{3}^{3}(x, y, \widetilde{\operatorname{sub}}(x, y))\right)
\end{aligned}
$$

Then, using variable swapping [Grzegorczyk operation (iii)], we can get sub:

$$
s u b=\lambda x y \cdot \widetilde{s u b}(y, x)
$$

Clearly, both $\widetilde{s u b}$ and sub are in $\mathcal{P} \mathcal{R}$.
0.0.15 Exercise. Prove that $\lambda x y . x \times y$ is primitive recursive. Of course, we will usually write multiplication $x \times y$ in "implied notation", $x y$.

EECS 2001Z. George Tourlakis. Winter 2019
0.0.16 Example. The very important"switch" (or "if-thenelse") function
$s w=\lambda x y z$ if $x=0$ then y else z
is primitive recursive.

It is directly obtained by primitive recursion on initial functions: $s w(0, y, z)=y$ and $s w(x+1, y, z)=z$.
0.0.17 Exercise. $\mathcal{P} \mathcal{R} \subseteq \mathcal{R}$.

2 Indeed, the above inclusion is proper, as we will see later.
2

EECS 2001Z. George Tourlakis. Winter 2019

2 0.0.18 Example. Consider the exponential function x^{y} given by

$$
\begin{aligned}
& x^{0}=1 \\
& x^{y+1}=x^{y} x
\end{aligned}
$$

Thus,

$$
\text { if } x=0, \text { then } x^{y}=1, \text { but } x^{y}=0 \text { for all } y>0
$$

¿ $B U T$ that x^{y} is "mathematically" undefined when $x=$
$y=0.7$

Thus, by Example 0.0 .11 the exponential cannot be a primitive recursive function!

This is rather silly, since the computational process for the exponential is so straightforward; thus it is ridiculous to declare the function non- $\mathcal{P} \mathcal{R}$.

After all, we know exactly where and how it is undefined and we can remove this undefinability by redefining " x " so that "00 $=1$ " "

In computability we do this kind of redefinition a lot in order to remove easily recognisable points of "non definition" of calculable functions.

We will see further examples, such as the remainder, quotient, and logarithm functions.

BUT also examples where we CANNOT do this; and WHY.

[^1]0.0.19 Definition. A relation $R(\vec{x})$ is (primitive) recursive iff its characteristic function,
\[

c_{R}=\lambda \vec{x} . $$
\begin{cases}0 & \text { if } R(\vec{x}) \\ 1 & \text { if } \neg R(\vec{x})\end{cases}
$$
\]

is (primitive) recursive. The set of all primitive recursive (respectively, recursive) relations is denoted by $\mathcal{\mathcal { R }} \mathcal{R}_{*}$ (respectively, \mathcal{R}_{*}).
(2) Computability theory practitioners often call relations predicates.

EECS 2001Z. George Tourlakis. Winter 2019

It is clear that one can go from relation to characteristic function and back in a unique way,

Thus, we may think of relations as "0-1 valued" functions.

The concept of relation simplifies the further development of the theory of primitive recursive functions.

The following is useful:
0.0.20 Proposition. $R(\vec{x}) \in \mathcal{P} \mathcal{R}_{*}$ iff some $f \in \mathcal{P} \mathcal{R}$ exists such that, for all $\vec{x}, R(\vec{x}) \equiv f(\vec{x})=0$.
Proof. For the if-part, I want $c_{R} \in \mathcal{P} \mathcal{R}$.
This is so since $c_{R}=\lambda \vec{x} .1 \doteq(1 \doteq f(\vec{x}))$ (using Grzegorczyk substitution and $\lambda x y . x \dot{\perp} \in \mathcal{P R}$; cf. 0.0.14).

For the only if-part, $f=c_{R}$ will do.
0.0.21 Corollary. $R(\vec{x}) \in \mathcal{R}_{*}$ iff some $f \in \mathcal{R}$ exists such that, for all $\vec{x}, R(\vec{x}) \equiv$ $f(\vec{x})=0$.

Proof. By the above proof, and 0.0.17.
0.0.22 Corollary. $\mathcal{P} \mathcal{R}_{*} \subseteq \mathcal{R}_{*}$.

Proof. By the above corollary and 0.0.17.

EECS 2001Z. George Tourlakis. Winter 2019
0.0.23 Theorem. $\mathcal{P R}_{*}$ is closed under the Boolean operations.

Proof. It suffices to look at the cases of \neg and \vee, since $R \rightarrow Q \equiv \neg R \vee Q, R \wedge Q \equiv \neg(\neg R \vee \neg Q)$ and $R \equiv Q$ is short for $(R \rightarrow Q) \wedge(Q \rightarrow P)$.
($\neg)$ Say, $R(\vec{x}) \in \mathcal{P} \mathcal{R}_{*}$. Thus (0.0.19), $c_{R} \in \mathcal{P} \mathcal{R}$. But then $c_{\neg R} \in \mathcal{P} \mathcal{R}$, since $c_{\neg R}=\lambda \vec{x} .1-c_{R}(\vec{x})$, by Grzegorczyk substitution and $\lambda x y . x \doteq y \in \mathcal{P} \mathcal{R}$.
(V) Let $R(\vec{x}) \in \mathcal{P} \mathcal{R}_{*}$ and $Q(\vec{y}) \in \mathcal{P} \mathcal{R}_{*}$. Then $\lambda \vec{x} \vec{y} \cdot c_{R \vee Q}(\vec{x}, \vec{y})$ is given by $c_{R \vee Q}(\vec{x}, \vec{y})=$ if $R(\vec{x})$ then 0 else $c_{Q}(\vec{y})$
and therefore is in $\mathcal{P} \mathcal{R}$.
"if $R(\vec{x})$ " above means"if $c_{R}(\vec{x})=0$ "
0.0.24 Remark. Alternatively, for the \vee case above, note that $c_{R \vee Q}(\vec{x}, \vec{y})=c_{R}(\vec{x}) \times c_{Q}(\vec{y})$ and invoke 0.0.15.
0.0.25 Corollary. \mathcal{R}_{*} is closed under the Boolean operations.

Proof. As above, mindful of 0.0.17.
0.0.26 Example. The relations $x \leq y, x<y, x=y$ are in $\mathcal{P} \mathcal{R}_{*}$.

An addendum to λ notation: Absence of λ is allowed ONLY for relations! Then it means (the absence, that is) that ALL variables are active input!

Note that $x \leq y \equiv x \doteq y=0$ and invoke 0.0.20. Finally invoke Boolean closure and note that $x<y \equiv \neg y \leq x$ while $x=y$ is equivalent to $x \leq y \wedge y \leq x$.

EECS 2001Z. George Tourlakis. Winter 2019

Bibliography

[Ded88] R. Dedekind, Was sind und was sollen die Zahlen?, Vieweg, Braunschweig, 1888, [In English translation by W.W. Beman; cf. [?]].
[Grz53] A. Grzegorczyk, Some classes of recursive functions, Rozprawy Matematyczne 4 (1953), 1-45.
[Rog67] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.

[^0]: ${ }^{*}$ Recall: That is, left field is \mathbb{N}^{n} for some $n>0$, and right field is \mathbb{N}.
 \dagger Strictly speaking, primitive recursively derived, but we will not considered other sets of derived functions, so we omit the qualification.

[^1]: ${ }^{\ddagger}$ In first-year university calculus we learn that " 0 " " is an "indeterminate form".

 EECS 2001Z. George Tourlakis. Winter 2019

