Lecture \#7-Continued

0.0.0.1 Proposition. If $R(\vec{x}, y, \vec{z}) \in \mathcal{P} \mathcal{R}_{*}$ and $\lambda \vec{w} . f(\vec{w}) \in \mathcal{P} \mathcal{R}$, then $R(\vec{x}, f(\vec{w}), \vec{z})$ is in $\mathcal{P} \mathcal{R}_{*}$.

Proof. By lemma, let $g \in \mathcal{P} \mathcal{R}$ such that

$$
R(\vec{x}, y, \vec{z}) \equiv g(\vec{x}, y, \vec{z})=0, \text { for all } \vec{x}, y, \vec{z}
$$

Then

$$
R(\vec{x}, f(\vec{w}), \vec{z}) \equiv g(\vec{x}, f(\vec{w}), \vec{z})=0, \text { for all } \vec{x}, \vec{w}, \vec{z}
$$

By the lemma, and since $\lambda \vec{x} \vec{w} \vec{z} \cdot g(\vec{x} \cdot f(\vec{w}), \vec{z}) \in \mathcal{P} \mathcal{R}$ by Grzegorczyk Ops, we have that $R(\vec{x}, f(\vec{w}), \vec{z}) \in \mathcal{P} \mathcal{R}_{*}$.
0.0.0.2 Proposition. If $R(\vec{x}, y, \vec{z}) \in \mathcal{R}_{*}$ and $\lambda \vec{w} . f(\vec{w}) \in \mathcal{R}$, then $R(\vec{x}, f(\vec{w}), \vec{z})$ is in \mathcal{R}_{*}.

Proof. Similar to that of 0.0.0.1.
0.0.0.3 Corollary. If $f \in \mathcal{P} \mathcal{R}$ (respectively, in \mathcal{R}), then its graph, $z=f(\vec{x})$ is in $\mathcal{P} \mathcal{R}_{*}$ (respectively, in \mathcal{R}_{*}).

Proof. Using the relation $z=y$ and 0.0.0.1.
0.0.0.4 Exercise. Using unbounded search, prove that if $z=f(\vec{x})$ is in \mathcal{R}_{*} and f is total, then $f \in \mathcal{R}$.
0.0.0.5 Definition. (Bounded Quantifiers) The abbreviations

$$
\begin{aligned}
& (\forall y)_{<z} R(z, \vec{x}) \\
& (\forall y)_{y<z} R(z, \vec{x}) \\
& (\forall y<z) R(z, \vec{x}) \\
& \text { all stand for } \\
& (\forall y)(y<z \rightarrow R(z, \vec{x})) \\
& \text { while correspondingly, } \\
& (\exists y)_{<z} R(z, \vec{x}) \\
& (\exists y)_{y<z} R(z, \vec{x}) \\
& (\exists y<z) R(z, \vec{x}) \\
& \text { all stand for } \\
& (\exists y)(y<z \wedge R(z, \vec{x}))
\end{aligned}
$$

Similarly for the non strict inequality " \leq ".
0.0.0.6 Theorem. $\mathcal{P}^{*} \mathcal{R}_{*}$ is closed under bounded quantification.

Proof. By logic it suffices to look at the case of $(\exists y)_{<z}$ since $(\forall y)_{<z} R(y, \vec{x}) \equiv$ $\neg(\exists y)_{<z} \neg R(y, \vec{x})$.

Let then $R(y, \vec{x}) \in \mathcal{P} \mathcal{R}_{*}$ and let us give the name $Q(z, \vec{x})$ to $(\exists y)_{<z} R(y, \vec{x})$ for convenience.

We note that $Q(0, \vec{x})$ is false (why?) and logic says:

$$
Q(z+1, \vec{x}) \equiv Q(z, \vec{x}) \vee R(z, \vec{x}) .
$$

Thus, as the following prim. rec. shows, $c_{Q} \in \mathcal{P} \mathcal{R}$.

$$
\begin{aligned}
c_{Q}(0, \vec{x}) & =1 \\
c_{Q}(z+1, \vec{x}) & =c_{Q}(z, \vec{x}) c_{R}(z, \vec{x})
\end{aligned}
$$

0.0.0.7 Corollary. \mathcal{R}_{*} is closed under bounded quantification.

Lecture \#8 - Oct. 5
0.0.0.8 Definition. (Bounded Search) Let f be a total numbertheoretic function of $n+1$ variables.

The symbol $(\mu y)_{<z} f(y, \vec{x})$, for all z, \vec{x}, stands for

$$
\begin{cases}\min \{y: y<z \wedge f(y, \vec{x})=0\} & \text { if }(\exists y)_{<z} f(y, \vec{x})=0 \\ z & \text { otherwise }\end{cases}
$$

So, unsuccessful search returns the first number to the right of the search-range.

$$
\text { We define " }(\mu y)_{\leq z} \text { " to mean " }(\mu y)_{<z+1} \text { ". }
$$

0.0.0.9 Theorem. $\mathcal{P R}$ is closed under the bounded search operation $(\mu y)_{<z}$. That is, if $\lambda y \vec{x} . f(y, \vec{x}) \in \mathcal{P} \mathcal{R}$, then $\lambda z \vec{x} .(\mu y)_{<z} f(y, \vec{x}) \in \mathcal{P} \mathcal{R}$.

Proof. Set $g=\lambda z \vec{x} .(\mu y)_{<z} f(y, \vec{x})$ for convenience.

Then the following primitive recursion settles it:

Recall that "if $R(\vec{z})$ then y else w " means "if $c_{R}(\vec{z})=$ 0 then y else w ".

$$
0,1,2, \ldots, z-1, z=\overbrace{0,1,2, \ldots, z-1}, z
$$

So

$$
g(0, \vec{x})=0
$$

Why 0 above?

$$
g(z+1, \vec{x})=\text { if }(\exists y)_{<z}(f(y, \vec{x})=0) \text { then } g(z, \vec{x})
$$

$$
\text { else if } f(z, \vec{x})=0 \text { then } z
$$

$$
\text { else } z+1
$$

0.0.0.10 Corollary. $\mathcal{P} \mathcal{R}$ is closed under the bounded search operation $(\mu y)_{\leq z}$.
0.0.0.11 Exercise. Prove the corollary.
0.0.0.12 Corollary. \mathcal{R} is closed under the bounded search operations $(\mu y)_{<z}$ and $(\mu y)_{\leq z}$.

Consider now a set of mutually exclusive relations $R_{i}(\vec{x}), i=1, \ldots, n$, that is, $R_{i}(\vec{x}) \wedge R_{j}(\vec{x})$ is false, for each \vec{x} as long as $i \neq j$.

Then we can define a function f by cases R_{i} from given functions f_{j} by the requirement (for all \vec{x}) given below:

$$
f(\vec{x})= \begin{cases}f_{1}(\vec{x}) & \text { if } R_{1}(\vec{x}) \\ f_{2}(\vec{x}) & \text { if } R_{2}(\vec{x}) \\ \ldots & \ldots \\ f_{n}(\vec{x}) & \text { if } R_{n}(\vec{x}) \\ f_{n+1}(\vec{x}) & \text { otherwise }\end{cases}
$$

where, as is usual in mathematics, "if $R_{j}(\vec{x})$ " is short for "if $R_{j}(\vec{x})$ is true"
and the "otherwise" is the condition $\neg\left(R_{1}(\vec{x}) \vee \cdots \vee\right.$ $R_{n}(\vec{x})$.

We have the following result:
0.0.0.13 Theorem. (Definition by Cases) If the functions $f_{i}, i=1, \ldots, n+1$ and the relations $R_{i}(\vec{x}), i=$ $1, \ldots, n$ are in $\mathcal{P} \mathcal{R}$ and $\mathcal{P} \mathcal{R}_{*}$, respectively, then so is f above.

Proof. By repeated use (Grz Ops) of if-then-else. So,

$$
\begin{aligned}
& f(\vec{x})=\text { if } R_{1}(\vec{x}) \text { then } f_{1}(\vec{x}) \\
& \text { else if } R_{2}(\vec{x}) \text { then } f_{2}(\vec{x}) \\
& \vdots \\
& \text { else if } R_{n}(\vec{x}) \text { then } f_{n}(\vec{x}) \\
& \text { else } \quad f_{n+1}(\vec{x})
\end{aligned}
$$

0.0.0.14 Corollary. Same statement as above, replacing $\mathcal{P R}$ and $\mathcal{P} \mathcal{R}_{*}$ by \mathcal{R} and \mathcal{R}_{*}, respectively.

The tools we now have at our disposal allow easy certification of the primitive recursiveness of some very useful functions and relations. But first a definition:
0.0.0.15 Definition. $(\mu y)_{<z} R(y, \vec{x})$ means $(\mu y)_{<z} c_{R}(y, \vec{x})$.

$$
\begin{aligned}
& \text { Thus, if } R(y, \vec{x}) \in \mathcal{P} \mathcal{R}_{*} \text { (resp. } \\
& \text { then } \left.\lambda z \vec{x} .(\mu y)_{{ }_{z}} R(y, \vec{x}) \in \mathcal{P} \mathcal{R} \text { (resp. } \in \mathcal{R} \mathcal{R}_{*}\right) \text {, } \\
& \text { since } \left.c_{R} \in \mathcal{P} \mathcal{R} \text { (resp. } \in \mathcal{R}\right)
\end{aligned}
$$

0.0.0.16 Example. The following are in $\mathcal{P} \mathcal{R}$ or $\mathcal{P} \mathcal{R}_{*}$ as appropriate:
(1) $\lambda x y .\lfloor x / y\rfloor^{1}$ (the quotient of the division x / y).

This is another example of a nontotal function with an "obvious" way to remove the points where it is undefined (recall $\lambda x y \cdot x^{y}$).

Thus the symbol " $\lfloor x / y\rfloor$ "
is extended to mean

$$
\begin{equation*}
(\mu z)_{\leq x}((z+1) y>x) \tag{*}
\end{equation*}
$$

for all x, y.

- Pause. Why is the above expression correct?

Because setting $z=\lfloor x / y\rfloor$ we have

[^0]$$
z \leq \frac{x}{y}<z+1
$$
by the definition of " $\lfloor\ldots\rfloor$ ".

Thus, z is smallest such that $x / y<z+1$, or such that $x<y(z+1)$.

It follows that, for $y>0$, the search in $(*)$ yields the "normal math" value for $\lfloor x / y\rfloor$, while it re-defines $\lfloor x / 0\rfloor$ as $=x+1$.
(2) $\lambda x y \cdot \operatorname{rem}(x, y)$ (the remainder of the division $x / y)$.

$$
\operatorname{rem}(x, y)=x \doteq y\lfloor x / y\rfloor
$$

(3) $\lambda x y \cdot x \mid y$ (x divides y).
$x \mid y \equiv \operatorname{rem}(y, x)=0$.

Note that if $y>0$, we cannot have $0 \mid y-a$ good thing!- since $\operatorname{rem}(y, 0)=y>0$.

Our redefinition of $\lfloor x / y\rfloor$ yields, however, $0 \mid 0$, but we can live with this in practice.
(4) $\operatorname{Pr}(x)(x$ is a prime $)$.

$$
\operatorname{Pr}(x) \equiv x>1 \wedge(\forall y)_{\leq x}(y \mid x \rightarrow y=1 \vee y=x)
$$

(5) $\pi(x)$ (the number of primes $\leq x) .{ }^{2}$

The following primitive recursion certifies the claim:

$$
\pi(0)=0,
$$

and

$$
\pi(x+1)=\text { if } \operatorname{Pr}(x+1) \text { then } \pi(x)+1 \text { else } \pi(x)
$$

[^1](6) $\lambda n \cdot p_{n}$ (the nth prime).

First note that the graph $y=p_{n}$ is primitive recursive:

$$
y=p_{n} \equiv \operatorname{Pr}(y) \wedge \pi(y)=n+1
$$

Next note that, for all n, $p_{n} \leq 2^{2^{n}}$ (see Exercise 0.0.0.18 below), thus $p_{n}=(\mu y)_{\leq 2^{2^{n}}}\left(y=p_{n}\right)$,
which settles the claim.
(7) $\lambda n x \cdot \exp (n, x)$ (the exponent of p_{n} in the prime factorization of $x)$.

$$
\exp (n, x)=(\mu y)_{\leq x} \neg\left(p_{n}^{y+1} \mid x\right)
$$

- Is x a good bound? Yes! $x=\ldots p_{n}^{y} \ldots \geq p_{n}^{y} \geq$ $2^{y}>y$.
(8) $\operatorname{Seq}(x)$ (x's prime number factorization contains at least one prime, but no gaps).

$$
\begin{array}{lr}
\operatorname{Seq}(x) \equiv x>1 \wedge(\forall y)_{\leq x}(\forall z)_{\leq x}(\operatorname{Pr}(y) \wedge \operatorname{Pr}(z) \wedge y< \\
z \wedge z|x \rightarrow y| x) . & \square
\end{array}
$$

0.0.0.17 Remark. What makes $\exp (n, x)$ "the exponent of p_{n} in the prime factorization of x ", rather than an exponent, is Euclid's prime number factorization theorem: Every number $x>1$ has a unique factorization -within permutation of factors - as a product of primes.
0.0.0.18 Exercise. Prove by induction on n, that for all n we have $p_{n} \leq 2^{2^{n}}$.

Hint. Consider, as Euclid did, ${ }^{3} p_{0} p_{1} \cdots p_{n}+1$. If this number is prime, then it is greater than or equal to p_{n+1} (why?). If it is composite, then none of the primes up to p_{n} divide it. So any prime factor of it is greater than or equal to p_{n+1} (why?).

[^2]Lecture \#9, Oct. 7

0.1 CODING Sequences

0.1.0.1 Definition. (Coding Sequences) Any sequence of numbers, $a_{0}, \ldots, a_{n}, n \geq 0$, is coded by the number denoted by the symbol

$$
\left\langle a_{0}, \ldots, a_{n}\right\rangle
$$

and defined as $\prod_{i \leq n} p_{i}^{a_{i}+1}$

Example. Code 1, 0, 3. I get $2^{1+1} 3^{0+1} 5^{3+1}$

For coding to be useful, we need a simple decoding scheme.

By Remark 0.0.0.17 there is no way to have $z=\left\langle a_{0}, \ldots, a_{n}\right\rangle=$ $\left\langle b_{0}, \ldots, b_{m}\right\rangle$, unless
(i) $n=m$ and
(ii) For $i=0, \ldots, n, a_{i}=b_{i}$.

Thus, it makes sense to correspondingly define the decoding expressions:
(i) $\operatorname{lh}(z)$ (pronounced "length of $z "$) as shorthand for $(\mu y)_{\leq z} \neg\left(p_{y} \mid z\right)$

- A comment and a question:
- The comment: If p_{y} is the first prime NOT in the decomposition of z, and $\operatorname{Seq}(z)$ holds, then since numbering of primes starts at 0 , the length of the coded sequence z is indeed y.
- Question: Is the bound z sufficient? Yes!

$$
z=2^{a+1} 3^{b+1} \ldots p_{y-1}^{\exp (y-1, z)} \geq \underbrace{2 \cdot 2 \cdots 2}_{y \text { times }}=2^{y}>y
$$

(ii) $(z)_{i}$ is shorthand for $\exp (i, z) \doteq 1$

Note that
(a) $\lambda i z .(z)_{i}$ and $\lambda z \cdot l h(z)$ are in $\mathcal{P} \mathcal{R}$.
(b) If $\operatorname{Seq}(z)$, then $z=\left\langle a_{0}, \ldots, a_{n}\right\rangle$ for some a_{0}, \ldots, a_{n}. In this case, $\operatorname{lh}(z)$ equals the number of distinct primes in the decomposition of z, that is, the length $n+1$ of the coded sequence. Then $(z)_{i}$, for $i<l h(z)$, equals a_{i}. For larger $i,(z)_{i}=0$. Note that if $\neg S e q(z)$ then $\operatorname{lh}(z)$ need not equal the number of distinct primes in the decomposition of z. For example, 10 has 2 primes, but $\operatorname{lh}(10)=1$.

The tools $l h, \operatorname{Seq}(z)$, and $\lambda i z .(z)_{i}$ are sufficient to perform decoding, primitive recursively, once the truth of $\operatorname{Seq}(z)$ is established. This coding/decoding scheme is essentially that of [Göd31], and will be the one we use throughout these notes.

0.1.1 Simultaneous Primitive Recursion

Start with total h_{i}, g_{i} for $i=0,1, \ldots, k$. Consider the new functions f_{i} defined by the following "simultaneous primitive recursion schema" for all x, \vec{y}.

$$
\begin{cases}f_{0}(0, \vec{y}) & =h_{1}(\vec{y}) \tag{2}\\ \vdots & \\ f_{k}(0, \vec{y}) & =h_{k}(\vec{y}) \\ f_{0}(x+1, \vec{y}) & =g_{0}\left(x, \vec{y}, f_{0}(x, \vec{y}), \ldots, f_{k}(x, \vec{y})\right) \\ \vdots \\ f_{k}(x+1, \vec{y}) & =g_{k}\left(x, \vec{y}, f_{0}(x, \vec{y}), \ldots, f_{k}(x, \vec{y})\right)\end{cases}
$$

Hilbert and Bernays proved the following:
0.1.1.1 Theorem. If all the h_{i} and g_{i} are in $\mathcal{P} \mathcal{R}$ (resp. \mathcal{R}), then so are all the f_{i} obtained by the schema (2) of simultaneous recursion.

Proof. Define, for all x, \vec{y},

$$
\begin{gathered}
F(x, \vec{y}) \stackrel{\text { Def }}{=}\left\langle f_{0}(x, \vec{y}), \ldots, f_{k}(x, \vec{y})\right\rangle \\
H(\vec{y}) \stackrel{\text { Def }}{=}\left\langle h_{0}(\vec{y}), \ldots, h_{k}(\vec{y})\right\rangle \\
G(x, \vec{y}, z) \stackrel{\text { Def }}{=}\left\langle g_{0}\left(x, \vec{y},(z)_{0}, \ldots,(z)_{k}\right), \ldots, g_{k}\left(x, \vec{y},(z)_{0}, \ldots,(z)_{k}\right)\right\rangle
\end{gathered}
$$

We readily have that $H \in \mathcal{P} \mathcal{R}$ (resp. $\in \mathcal{R}$) and $G \in \mathcal{P} \mathcal{R}$ (resp. $\in \mathcal{R}$) depending on where we assumed the h_{i} and g_{i} to be. We can now rewrite schema (2) (p.28) as

$$
\begin{cases}F(0, \vec{y}) & =H(\vec{y}) \tag{3}\\ F(x+1, \vec{y}) & =G(x, \vec{y}, F(x, \vec{y}))\end{cases}
$$

- The 2nd line of (3) is obtained from

$$
\begin{aligned}
F(x+1, \vec{y}) & =\left\langle f_{0}(x+1, \vec{y}), \ldots, f_{k}(x+1, \vec{y})\right\rangle \\
= & \left\langle g_{0}\left(x, \vec{y}, f_{0}(x, \vec{y}), \ldots, f_{k}(x, \vec{y})\right), \ldots, g_{k}\left(\text { same as } g_{0}\right)\right\rangle \\
= & \left\langle g_{0}\left(x, \vec{y},(F(x, \vec{y}))_{0}, \ldots,(F(x, \vec{y}))_{k}\right), \ldots, g_{k}\left(\text { same as } g_{0}\right)\right\rangle
\end{aligned}
$$

By the above remarks, $F \in \mathcal{P} \mathcal{R}$ (resp. $\in \mathcal{R}$) depending on where we assumed the h_{i} and g_{i} to be. In particular, this holds for each f_{i} since, for all $x, \vec{y}, f_{i}(x, \vec{y})=$ $(F(x, \vec{y}))_{i}$.
0.1.1.2 Example. We saw one way to justify that $\lambda x \operatorname{rem}(x, 2) \in$ $\mathcal{P} \mathcal{R}$ in 0.0 .0 .16 . A direct way is the following. Setting $f(x)=\operatorname{rem}(x, 2)$, for all x, we notice that the sequence of outputs (for $x=0,1,2, \ldots$) of f is

$$
0,1,0,1,0,1 \ldots
$$

Thus, the following primitive recursion shows that $f \in$ $\mathcal{P R}$:

$$
\begin{cases}f(0) & =0 \\ f(x+1) & =1 \doteq f(x)\end{cases}
$$

Here is a way, via simultaneous recursion, to obtain a proof that $f \in \mathcal{P} \mathcal{R}$, without using any arithmetic! Notice the infinite "matrix"

$$
\begin{array}{lllllll}
0 & 1 & 0 & 1 & 0 & 1 & \ldots \\
1 & 0 & 1 & 0 & 1 & 0 & \ldots
\end{array}
$$

Let us call g the function that has as its sequence outputs the entries of the second row-obtained by shifting the first row by one position to the left. The first rowstill represents our f. Now

$$
\begin{cases}f(0) & =0 \tag{1}\\ g(0) & =1 \\ f(x+1) & =g(x) \\ g(x+1) & =f(x)\end{cases}
$$

0.1.1.3 Example. We saw one way to justify that $\lambda x .\lfloor x / 2\rfloor \in$ $\mathcal{P} \mathcal{R}$ in 0.0.0.16. A direct way is the following.

$$
\begin{cases}\left\lfloor\frac{0}{2}\right\rfloor & =0 \\ \left\lfloor\frac{x+1}{2}\right\rfloor & =\left\lfloor\frac{x}{2}\right\rfloor+\operatorname{rem}(x, 2)\end{cases}
$$

where rem is in $\mathcal{P} \mathcal{R}$ by 0.1.1.2.
Alternatively, here is a way that can do it -via simultaneous recursion - and with only the knowledge of how to add 1. Consider the matrix

$$
\begin{array}{lllllllll}
0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 & \ldots \\
0 & 1 & 1 & 2 & 2 & 3 & 3 & 4 & \ldots
\end{array}
$$

The top row represents $\lambda x .\lfloor x / 2\rfloor$, let us call it " f ". The bottom row we call g and is, again, the result of shifting row one to the left by one position. Thus, we have a simultaneous recursion

$$
\begin{cases}f(0) & =0 \tag{2}\\ g(0) & =0 \\ f(x+1) & =g(x) \\ g(x+1) & =f(x)+1\end{cases}
$$

Bibliography

[Dav65] M. Davis, The undecidable, Raven Press, Hewlett, N. Y., 1965.
[Göd31] K. Gödel, Über formal unentsceidbare sätze der pricipia mathematica und verwandter systeme i, Monatshefte für Math. und Physic 38 (1931), 173-198, (Also in English in Davis [Dav65, 538]).
[LeV56] William J. LeVeque, Topics in number theory, vol. I, Addison-Wesley, Reading, Massachusetts, 1956.

[^0]: ${ }^{1}$ For any real number x, the symbol " $\lfloor x\rfloor$ " is called the floor of x. It succeeds in the literature (with the same definition) the so-called "greatest integer function, $[x]$ ", i.e., the integer part of the real number x. Thus, by definition, $\lfloor x\rfloor \leq x<\lfloor x\rfloor+1$.

[^1]: ${ }^{2}$ The π-function plays a central role in number theory, figuring in the so-called prime number theorem. See, for example, [LeV56].

[^2]: ${ }^{3}$ In his proof that there are infinitely many primes.

