
A user-friendly
Introduction to
(un)Computability
and Unprovability
via “Church’s Thesis”

Computability is the part of logic that gives a mathematically precise formula-
tion to the concepts algorithm, mechanical procedure, and calculable function (or
relation). Its advent was strongly motivated, in the 1930s, by Hilbert’s program,
in particular by his belief that the Entscheidungsproblem, or decision problem,
for axiomatic theories, that is, the problem “Is this formula a theorem of that
theory?” was solvable by a mechanical procedure that was yet to be discovered.

Now, since antiquity, mathematicians have invented “mechanical procedures”,
e.g., Euclid’s algorithm for the “greatest common divisor”,† and had no prob-
lem recognising such procedures when they encountered them. But how do you
mathematically prove the nonexistence of such a mechanical procedure for a par-
ticular problem? You need a mathematical formulation of what is a “mechanical
procedure” in order to do that!

Intensive activity by many (Post [Pos36, Pos44], Kleene [Kle43], Church
[Chu36b], Turing [Tur37], Markov [Mar60]) led in the 1930s to several alterna-
tive formulations, each purporting to mathematically characterise the concepts
algorithm, mechanical procedure, and calculable function. All these formulations
were quickly proved to be equivalent; that is, the calculable functions admit-
ted by any one of them were the same as those that were admitted by any
other. This led Alonzo Church to formulate his conjecture, famously known
as “Church’s Thesis”, that any intuitively calculable function is also calculable
within any of these mathematical frameworks of calculability or computability.‡

†That is, the largest positive integer that is a common divisor of two given integers.
‡I stress that even if this sounds like a “completeness theorem” in the realm of computabil-

ity, it is not. It is just an empirical belief, rather than a provable result. For example, Péter
[P6́7] and Kalmár [Kal57], have argued that it is conceivable that the intuitive concept of

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



2

By the way, Church proved ([Chu36a, Chu36b]) that Hilbert’s Entschei-
dungsproblem admits no solution by functions that are calculable within any of
the known mathematical frameworks of computability. Thus, if we accept his
“thesis”, the Entscheidungsproblem admits no algorithmic solution, period!

The eventual introduction of computers further fueled the study of and re-
search on the various mathematical frameworks of computation, “models of
computation” as we often say, and “computability” is nowadays a vibrant and
very extensive field.

1.1. A leap of faith: Church’s Thesis

The aim of Computability is to mathematically capture (for example, via URMs)
the informal notions of “algorithm” and “computable function” (or “computable
relation”).

As announced in class on Jan. 23, we will not do any more programming
with URMs in class (one or two simple cases may appear in the midterm and
final).

A lot of models of computation, that were very different in their syntactic
details and semantics, have been proposed in the 1930s by many people (Post,
Church, Kleene, Turing) and more recently by Shepherdson and Sturgis ([SS63]).
They were all proved to compute exactly the same number theoretic functions—
those in the set P. The various models, and the gory details of why they all do
the same job precisely, can be found in [Tou84].

This prompted Church to state his belief, famously known as “Church’s
Thesis”, that

Every informal algorithm (pseudo-program) that we propose for the
computation of a function can be implemented (made mathemati-
cally precise, in other words) in each of the known models of com-
putation. In particular, it can be “programmed” as a URM.

� We note that at the present state of our understanding the concept of “al-
gorithm” or “algorithmic process”, there is no known way to define an
“intuitively computable” function—via a pseudo-program of sorts—which is
outside of P.†

Thus, as far as we know, P appears to formalise be the largest—i.e., most
inclusive—set of “intuitively computable” functions known.

This “empirical” evidence supports Church’s Thesis. �

Church’s Thesis is not a theorem. It can never be, as it “connects” precise
mathematical objects (URM, P) with imprecise informal ones (“algorithm”,
“computable function”).

calculability may in the future be extended so much as to transcend the power of the various
mathematical models of computation that we currently know.

†In the so-called relativised computability (with partial oracles) Church’s Thesis fails
[Tou86].

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



1.2. The Universal and S-m-n Theorems 3

It is simply a belief that has overwhelming empirical backing, and should
be only read as an encouragement to present algorithms in “pseudo-
code”—that is, informally. Thus, Church’s Thesis (indirectly) suggests
that we concentrate in the essence of things, that is, perform only the high-
level design of algorithms, and leave the actual “coding” details to URM-
programmers.†

Since we are interested in the essence of things in this note, and also promised
to make it user-friendly, we will heavily rely on Church’s Thesis here —to which
will refer , for short, as “CT”—to “validate” our “high-level programs”.

In the literature, Rogers ([Rog67], a very advanced book) heavily relies on
CT. On the other hand, [Dav58, Tou84, Tou12] never use CT, and give all the
necessary constructions (implementations) in their full gory details —that is the
price to pay, if you avoid CT.

� Here is the template of how to use CT:

• We completely present —that is, no essential detail is missing— an al-
gorithm in pseudo-code.

IBTW, “pseudo-code” does not mean “sloppy-code”!J

• We then say: By CT, there is a URM that implements our algorithm.
Hence the function that our pseudo code computes is in P.

�

1.2. The Universal and S-m-n Theorems

The following is a useful tool in the development of computability theory. It is
Kleene’s “universal function theorem”.

1.2.1 Theorem. (Universal function theorem) There is a partial comput-
able two-variable function h with this property: For any one-variable function
f ∈ P, there is a number i ∈ N such that h(i, x) = f(x) for all x. Equivalently,
λx.h(i, x) = f .

� Recall (Notes on diagonalisation) that “=” for partial function calls, f(~x) and
g(~y), means the usual —equality of numbers— if both side are defined. f(~x) =
g(~y) is also true if both sides are undefined. In symbols,

f(~x) = g(~y) iff f(~x) ↑ ∧g(~y) ↑ ∨(∃z)
(
f(~x) = z ∧ g(~y) = z

)
The “universality” of h lies in the fact that it (or the URM that computes

it) acts like a “stored program” (i.e., general purpose or universal) “computer”:
To compute a function f we present both a “program” for f —coded as the
number i— and the input data (the x) to h and then we let it crank along. �

†If ever in doubt about the legitimacy of a piece of “high-level pseudo-code”, then you
ought to try to implement it in detail, as a URM, or, at least, as a “real” C-program or
equivalent!

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



4

Proof. Each λx.f(x) ∈ P is a Mx
y , by definition.

In the Notes (#3) about diagonalisation we proved that we can algorithmi-
cally enumerate all λx.f(x) ∈ P by algorithmically enumerating all strings of
the form Mx

y , where M runs over all URMs.

Thus every computable function f is some Mx
y and thus occupies at least

one position i in the listing.†

� Therefore, for every i ∈ N, the list —in location i— holds some function f = Mx
y .

Conversely, for any Mx
y we can find it in the list in a finite number of com-

putational steps like: “keep generating the list, comparing every item generated
with Mx

y until they match —and math they will, since NO Mx
y is omitted from

the list”. �

Here is how the universal h is computed

• Given input i and x.

• So, generate the listing of the Mx
y long enough and stop as soon as the

i-th entry was generated. Say, this entry is Mx
y .

• Now run program M with x inputed into the input program-variable x. If
and when M stops, then we return the value held in the program-variable
y of M .

By CT, the three-bullet algorithm (pseudo-program) above can be implemented
as a URM. So h is partial computable.

But is it universal? Well, let f , of one variable, be computable via URM N ,
as Nu

v . Locate Nu
v in the algorithmic list of unary P-functions. Say the location

is i. Then h(i, x) = f(x), for all x. �
We will next introduce a universally used notation due to Rogers ([Rog67]):

1.2.2 Definition. In all that follows in this, and all the following Notes that
will be posted, φi will denote the i-ith unary function in the algorithmic list of
all Mx

y . �

� Equipped with the above definition we can rephrase the Universal Function
Theorem 1.2.1 as

h(i, x) = φi(x), for all i and x

or even (better)

λx.f(x) ∈ P iff, for some i ∈ N, we have f = φi

It is worth “parsing” this “iff” above:

†Why not exactly one? Because for every M we can add to the end, but before the stop
instruction, one or more instructions z ← 1 where z is fresh (new variable). Any one of the
modified M , call it M ′, satisfies Mx

y = M ′x
y . Thus every function f ∈ P has infinitely many

programs that compute it.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



1.2. The Universal and S-m-n Theorems 5

→ direction: The hypothesis means f = Nu
v for some N . If Nu

v occupies
location i in the list, then, by 1.2.2, f = φi.

← direction: The hypothesis f = φi means that f = Nu
v , where Nu

v occupies
location i in the list. But, f = Nu

v says that f is indeed computable; in P. �

� Calling x the “program” for λy.φx(y) is not exact, but is eminently apt: x is
just a number, not a set of URM instructions; but this number is the address
(location) of a URM program for λy.φx(y). Given the address, we can retrieve
the program from a list via a computational procedure, in a finite number of
steps!

In the literature the address x in φx is called a φ-index. So, if f = φi then i
is one of the infinitely many addresses where we can find how to program f . �

Another fundamental theorem in computability is the Parametrisation or
Iteration or also “S-m-n” theorem of Kleene. In fact, it and the universal
function theorem along with a handful of initial computable functions are known
to be sufficient to found computability axiomatically —but we will not get into
this topic in this course.

1.2.3 Theorem. (Parametrisation theorem) For every λxy.g(x, y) ∈ P there
is a function λx.f(x) ∈ R such that

g(x, y) = φf(x)(y), for all x, y (1)

� This says that given a program M that computes the function g as Muv
z with

u receiving the input value x and v receiving the input value y —each via an
“implicit” read statement— we can, for any fixed value x, construct a new pro-
gram located in position f(x) of the algorithmic enumeration of all Nw

w′ —the
construction (of this address) effected by the total computable function f . The
program at address f(x) “knows” the value x, it is “hardwired” in its instruc-
tions, thus it does not receive the value x as a “read” input. This hardwiring is
effected by adding to program M a new first instruction, namely, 1 : u ← x.
The original first instruction of M is now the 2nd of the modified program.
Indeed all instructions of M are pushed down (their addresses increase by 1).

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



6

M

M

0

1

2

M'

The result is that the new program, at location f(x) of the listing, and the
original program for g —namely, Muv

z — yield the same answer for the arbitrary
fixed x, and all input values y “read” into the variable v, as long as the the
variable u —whether via a read statement (program M) or an “assignment”
statement (program M ′) receives the same value x. �

Proof. Of the S-m-n theorem. The proof is encapsulated by the preceding figure.

So, fix an input x for the variable u of program M . Then for any input y
into v of M and the given x, M will output g(x, y) (if g(x, y) ↓).

Now, the program M ′ depicted above is a trivial algorithmic modification
of M —we can do this!— namely, we just added a new first instruction to M
in order to “hardwire” the input value x in the resulting program M ′. The
new instruction is 1 : u ← x, and we have changed nothing else in M (except
renumbering all its instructions L : . . . as L+ 1 : . . .†).

Thus, for the fixed x and the given I/O variables, trivially, both M and M ′

compute g(x, y) for all y.

Since the program M ′ depends on the value x used in its first instruction,
we call “f(x)” this program’s address (location) in the algorithmic list of all Nw

w′ .

All that remains to argue is that this address, λx.f(x) is total computable.
Well,

†Of course, every L : if x = 0 goto P else goto R must change to L + 1 : if x =
0 goto P + 1 else goto R+ 1.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



1.3. Unsolvable “Problems” The Halting Problem 7

• Given Muv
z .

• Given x.

• build M ′ from M as outlined and indicated in the figure above.

• Go down the list of all Nw
w′ and keep comparing, until you find M ′vz .

• Output the location, f(x), of M ′vz . You WILL find said location due to
the underlined “all” above. So f is total.

By Church’s thesis all informal computations here (building M ′ from M and
the process for finding f(x) for the given x) can be done by URMs. Thus,
f ∈ R. �

1.3. Unsolvable “Problems”
The Halting Problem

Some of the comments below (and Definition 1.3.1) occurred already in earlier
posted Notes. We revisit and introduce some additional terminology (e.g., “de-
cidable”).

A number-theoretic relation is some set of n-tuples from N. A relation’s
outputs are t or f (or “yes” and “no”). However, a number-theoretic relation
must have values (“outputs”) also in N.

� Thus we re-code t and f as 0 and 1 respectively. This convention is preferred
by Recursion Theorists (as people who do research in Computability like to
call themselves) and is the opposite of the re-coding that, say, the C language
employs (0 for f and non-zero for t). �

1.3.1 Definition. (Computable or Decidable relations) “A relation Q(~xn)
is computable, or decidable” means that the function

cQ = λ~xn.

{
0 if Q(~xn)

1 otherwise

is in R.
The collection (set) of all computable relations we denote by R∗. Com-

putable relations are also called recursive.
By the way, we call the function λ~xn.cQ(~xn) —which does the re-coding of

the outputs— the characteristic function of the relation Q (“c” for “character-
istic”). �

� Thus, “a relation Q(~xn) is computable or decidable” means that some URM
computes cQ. But that means that some URM behaves as follows:

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



8

On input ~xn, it halts and outputs 0 iff ~xn satisfies Q (i.e., iff Q(~xn)), it halts
and outputs 1 iff ~xn does not satisfy Q (i.e., iff ¬Q(~xn)).

We say that the relation has a decider, i.e., the URM that decides member-
ship of any tuple ~xn in the relation. �

1.3.2 Definition. (Problems) A “Problem” is a formula of the type “~xn ∈
Q” or, equivalently, “Q(~xn)”.

Thus, by definition, a “problem” is a membership question. �

1.3.3 Definition. (Unsolvable Problems) A problem “~xn ∈ Q” is called
any of the following:

Undecidable
Recursively unsolvable
or just
Unsolvable
iff Q /∈ R∗—in words, iff Q is not a computable relation. �

Here is the most famous undecidable problem:

φx(x) ↓ (1)

A different formulation uses the set

K = {x : φx(x) ↓}† (2)

that is, the set of all numbers x, such that machine Mx on input x has a (halt-
ing!) computation.

K we shall call the “halting set”, and (1) we shall the “halting problem”.
Clearly, (1) is equivalent to

x ∈ K

1.3.4 Theorem. The halting problem is unsolvable.

Proof. We show, by contradiction, that K /∈ R∗.

Thus we start by assuming the opposite.

Let K ∈ R∗ (3)

that is, we can decide membership in K via a URM, or, what is the same, we
can decide truth or falsehood of φx(x) ↓ for any x:

Consider then the infinite matrix below, each row of which denotes a func-
tion in P as an array of outputs, the outputs being numerical, or the special
symbol “↑” for any undefined entry φx(y).

†All three [Rog67, Tou84, Tou12] use K for this set, but this notation is by no means
standard. It is unfortunate that this notation clashes with that for the first projection K of
a pairing function J . However the context will manage to fend for itself!

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



1.3. Unsolvable “Problems” The Halting Problem 9

� By 1.2.1 and the comments following it, each one argument function of P are
in some row (as an array of outputs). �

φ0(0) φ0(1) φ0(2) . . . φ0(i) . . .
φ1(0) φ1(1) φ1(2) . . . φ1(i) . . .
φ2(0) φ2(1) φ2(2) . . . φ2(i) . . .

...
φi(0) φi(1) φi(2) . . . φi(i) . . .

...

We will show that under the assumption (3) that we hope to contradict the
flipped diagonal —flipping all ↑ red entries to ↓ and vice versa; (3) says we can
tell via a URM decider whether φx(x) ↓ or not— represents a partial recursive
function and hence must fit the matrix along some row i since we have all φi
captured in the matrix.

On the other hand, flipping the diagonal is diagonalising, and thus the diag-
onal function constructed cannot fit. Contradiction! So, we blame (3) and thus
have its negation proved: K/∈R∗

In more detail, or as most texts present this, we have defined the flipped
diagonal for all x as

d(x) =

{
↓ if φx(x) ↑
↑ if φx(x) ↓

Strictly speaking, the above does not define d since the “↓” in the top case is
not a value; it is ambiguous. Easy to fix:

Say,

d(x) =

{
42 if φx(x) ↑
↑ if φx(x) ↓

(4)

Here is why the function in (4) is partial computable:

Given x, do:

• Use the decider for K (for φx(x) ↓, that is) —assumed to exist by (3)—
to test which condition obtains in (4); top or bottom.

• If the top condition is true, then we return 42 and stop.

• If the bottom condition holds, then transfer to an infinite loop:

while 1 = 1 do

end

By CT, the 2-bullet program has a URM realisation, so d is computable.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



10

Say now
d = φi (5)

What can we say about d(i) = φi(i)? Well, we have two cases:

Case 1. φi(i) ↓. Then we are in the bottom case of (4). Thus d(i) ↑. But
we also have d(i) = φi(i) by (5), and our case assumes φi(i) ↓, that is,
d(i) ↓; a contradiction.

Case 2. φi(i) ↑. This leads to a contradiction too, since d(i) = 42 in this
case, thus, d(i) ↓. But by (5) d(i) = φi(i), so we must also have d(i) ↑;
contradiction once more.

So we reject (3). �

In terms of theoretical significance, the above is the most significant unsolv-
able problem that enables the process of finding more! How?

As an Example we illustrate the “program correctness problem” (see below).
But how does “x ∈ K” help? Through the following technique of reduction:

� Let P be a new problem (relation!) for which we want to see whether ~y ∈ P can
be solved by a URM. We build a reduction that goes like this:

(1) Suppose that we have a URM M that decides ~y ∈ P , for any ~y.
(2) Then we show how to use M as a subroutine to also solve x ∈ K, for

any x.
(3) Since the latter is unsolvable, no such URM M exists! �

The equivalence problem is

Given two programs M and N can we test to see whether they
compute the same function?

� Of course, “testing” for such a question cannot be done by experiment : We
cannot just run M and N for all inputs to see if they get the same output,
because, for one thing, “all inputs” are infinitely many, and, for another, there
may be inputs that cause one or the other program to run forever (infinite loop). �

By the way, the equivalence problem is the general case of the “program
correctness” problem which asks

Given a program P and a program specification S, does the program
fit the specification for all inputs?

since we can view a specification as just another formalism to express a function
computation. By CT, all such formalisms, programs or specifications, boil down
to URMs, and hence the above asks whether two given URMs compute the same
function —program equivalence.

Let us show now that the program equivalence problem cannot be solved by
any URM.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



1.4. Godel’s Incompleteness Theorem 11

1.3.5 Theorem. (Equivalence problem) The equivalence problem of URMs
is the problem “given i and j; is φi = φj?”‡

This problem is undecidable.

Proof. The proof is by a reduction (see above), hence by contradiction. We will
show that if we have a URM that solves it, “yes”/“no”, then we have a URM
that solves the halting problem too!

So assume we have an algorithm (URM) E for the equivalence problem.

Let us use it to answer the question “a ∈ K”—that is, “φa(a) ↓”, for any a.

So, fix an a (2)

Consider these two computable functions given by:
For all x:

Z(x) = 0

and

Z̃(x) =

{
0 if x = 0 ∧ φa(a) ↓
0 if x 6= 0

Both functions are intuitively computable: For Z we already have shown a URM
M that computes it (in class). For Z̃ and input x compute as follows:

• Print 0 and stop if x 6= 0.

• On the other hand, if x = 0 then, using the universal function h start
computing h(a, a), which is the same as φa(a) (cf. 1.2.1). If this ever halts
just print 0 and halt; otherwise let it loop forever.

By CT, Z̃ is in P, that is, it has a URM program, say M̃ .
We can compute the locations i and j of M and M̃ respectively by going

down the list of all Nw
w′ . Thus Z = φi and Z̃ = φj .

By the “blue” assumption, we proceed to feed i and j to E. This machine
will halt and answer “yes” (0) precisely when φi = φj ; will halt and answer
“no” (1) otherwise. But note that φi = φj iff φa(a) ↓. We have thus solved the
halting problem! A contradiction to the existence of URM E. �

1.4. Gödel’s Incompleteness Theorem

It is rather surprising that Unprovability and Uncomputability are intimately
connected. Gödel’s original proof of his Incompleteness theorem did not use

‡If we set P = {(i, j) : φi = φj}, then this problem is the question “(i, j) ∈ P?” or
“P (i, j)?”.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



12

methods of Computability—indeed Computability theory was not yet devel-
oped. He used instead a variant of the liar’s paradox,† namely, he devised
within Peano arithmetic a formula D with no free variables, which said: “I am
not a theorem.” He then proceeded to prove (essentially) that this formula is
true, but has no syntactic proof within Peano arithmetic—it is not a theorem!

Gödel’s Incompleteness theorem speaks to the inability of formal mathe-
matical theories, such as Peano arithmetic and set theory, to totally capture the
concept of truth. This does not contradict Gödel’s own Completeness theorem
that says “if |= A, then ` A”.

You see, Completeness talks about absolute truth,

that is, |=D A, for all interpretations D

while Incompleteness speaks about truth relative to the “standard” model only.
For Peano arithmetic, the standard model, N = (N,M) is the one that assigns
to the nonlogical symbols—via M—the expected, or “standard”, interpretations
as in the table below

Abstract (language) symbol Concrete interpretation

0 0 (zero)
S λx.x+ 1
+ λxy.x+ y
× λxy.x× y
< λxy.x < y

Before we turn to a Computability-based proof of Gödel’s Incompleteness,
here, in outline, is how he did it: Suppose D at the top of this section is
provable (a theorem) in Peano arithmetic. Then, since the rules of inference
preserve truth and the axioms are true in N, we have that D is true in this
interpretation. But note what it says! “I am not a theorem”. This makes it
also false (since we assumed it is a theorem!)

So, it is not a theorem after all. This automatically makes it true, for this
is precisely what it says!

His proof was quite complicated, in particular in exhibiting a formula D
that says what it says.

Here is a “modern” proof of Incompleteness, via a simple reduction proof
within Computability:

1.4.1 Theorem. (Gödel’s First Incompleteness Theorem) ‡ There is a
true but not (syntactically) provable formula of Peano arithmetic.

†“I am lying”. Is this true? Is it false?
‡The Second Incompleteness Theorem of Gödel shows that another true but unprovable

formula of arithmetic is rather startling and significant: It says that “Peano arithmetic is free
from contradiction —that is, it cannot prove all formulas. In plain English: Arithmetic
cannot prove its own freedom from contradiction; such a proof must come from the “outside”.

The 2nd Incompleteness Theorem is much harder to prove, and actually Gödel never gave
a complete proof. The first complete proof was published in [HB68]; the second, different
complete proof, was published in [Tou03].

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



1.4. Godel’s Incompleteness Theorem 13

Proof. This all hinges on the fact that the set of theorems of Peano arithmetic
can be algorithmically listed —by a URM.

Indeed, the alphabet of Peano arithmetic is finite

x, ′, (, ),=,¬,∨,∀, 0, S,+,×, <

where x and ′ are used to build the infinite supply of object variables

x, x′, x′′, . . .

But then we can add a new symbol # to the alphabet to form

x, ′, (, ),=,¬,∨,∀, 0, S,+,×, <,# (1)

We use # to make a single string out of a proof

F1, . . . , Fn

namely,
#F1#F2# . . .#Fn#

Here’s our listing algorithm:

Form three lists of strings over the alphabet (1).

• The first list, List1, contains all strings over (1), generated by size, and
within each size-group generated lexicographically.

• The second, List2, is a list of all proofs —coded as above into single strings:
Add a string to List2 every time that we place a string in List1 and find
that it is a proof: We can check algorithmically for proof status, since we
can recognise the axioms, and also can recognise when MP was used.

• Every time we place a proof in List2, we place its last formula in List3.

By CT, we have a URM enumerator, E, for List3, i.e., a machine that will have
no input but will keep generating all of Peano arithmetic’s theorems (with rep-
etitions, to be sure, since every theorem appears in many proofs; how “many”?)

Let now an a be given, and let us show that I can solve “φa(a) ↓?” provided
Gödel’s theorem is false, and therefore

Every true formula of Peano arithmetic has a proof. (2)

We take on faith (cf. [Tou08, Tou03]) that φã(ã) ↓ and φã(ã) ↑ are expressible
as formulae of arithmetic —where ã is the number a written in the language of
Peano arithmetic, (1), as

a S’s︷ ︸︸ ︷
SS · · ·S 0

OK, here it goes:

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



14

• Start computing h(a, a) —i.e., φa(a)— where h is the universal function
of 1.2.1.

• Simultaneously run also the enumerator E that lists all theorems of Peano
arithmetic (List3).

• For h, keep an eye for whether it halts on input (a, a); if so, halt everything
and proclaim a ∈ K.

• For E, keep an eye for whether it ever prints the formula “φã(ã) ↑”; if so,
halt everything and proclaim a /∈ K.

We solved the halting problem!
Hold on! Let me explain. What the assumption of falsehood of Gödel’s

theorem —(2) above— gives us is a means to verify φa(a) ↑:

1. If φa(a) ↑ is true, then by (2), φã(ã) ↑ is a theorem, thus it appears in the
enumeration that E cranks out.

On the other hand,

2. If φa(a) ↓ is true, then h(a, a) will verify so for us, by halting.

So we will have computed the answer to a ∈ H either way, having solved
the halting problem, which is impossible!

Hence (2) is false!

� Wait a minute! What if both things happen? That is, h(a, a) halts, and
φã(ã) ↑ shows up in the enumeration of theorems?

This would be disastrous because, depending on what happens first, we
may end up with the wrong answer.

But it cannot happen, for if φa(a) ↓ is true, then φa(a) ↑ is false, hence
its formal version, φã(ã) ↑, cannot appear as a theorem (all theorems are
true in N). �

�

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



Bibliography

[Chu36a] Alonzo Church, A note on the Entscheidungsproblem, J. Symbolic
Logic 1 (1936), 40–41, 101–102.

[Chu36b] , An unsolvable problem of elementary number theory, Amer.
Journal of Math. 58 (1936), 345–363, (Also in Davis [Dav65, 89–107]).

[Dav58] M. Davis, Computability and Unsolvability, McGraw-Hill, New York,
1958.

[Dav65] M. Davis, The undecidable, Raven Press, Hewlett, NY, 1965.

[HB68] D. Hilbert and P. Bernays, Grundlagen der Mathematik I and II,
Springer-Verlag, New York, 1968.

[Kal57] L. Kalmár, An argument against the plausibility of Church’s thesis,
Constructivity in Mathematics, Proc. of the Colloquium, Amsterdam,
1957, pp. 72–80.

[Kle43] S.C. Kleene, Recursive predicates and quantifiers, Transactions of the
Amer. Math. Soc. 53 (1943), 41–73, (Also in Davis [Dav65, 255–287]).

[Mar60] A. A. Markov, Theory of algorithms, Transl. Amer. Math. Soc. 2
(1960), no. 15.

[P6́7] Rózsa Péter, Recursive Functions, Academic Press, New York, 1967.

[Pos36] Emil L. Post, Finite combinatory processes, J. Symbolic Logic 1
(1936), 103–105.

[Pos44] , Recursively enumerable sets of positive integers and their de-
cision problems, Bull. Amer. Math. Soc. 50 (1944), 284–316.

[Rog67] H. Rogers, Theory of Recursive Functions and Effective Computabil-
ity, McGraw-Hill, New York, 1967.

[SS63] J. C. Shepherdson and H. E. Sturgis, Computability of recursive func-
tions, Journal of the ACM 10 (1963), 217–255.

[Tou84] G. Tourlakis, Computability, Reston Publishing, Reston, VA, 1984.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019



16 BIBLIOGRAPHY

[Tou86] G. Tourlakis, Some reflections on the foundations of ordinary recur-
sion theory, and a new proposal, Zeitschrift für math. Logik 32 (1986),
no. 6, 503–515.

[Tou03] G. Tourlakis, Lectures in Logic and Set Theory, Volume 1: Mathe-
matical Logic, Cambridge University Press, Cambridge, 2003.

[Tou08] , Mathematical Logic, John Wiley & Sons, Hoboken, NJ, 2008.

[Tou12] , Theory of Computation, John Wiley & Sons, Hoboken, NJ,
2012.

[Tur37] Alan M. Turing, On computable numbers, with an application to
the Entscheidungsproblem, Proc. London Math Soc. 2 (1936, 1937),
no. 42, 43, 230–265, 544–546, (Also in Davis [Dav65, 115–154].).

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis c© by
George Tourlakis, 2011 and 2019


	A leap of faith: Church's Thesis
	The Universal and S-m-n Theorems
	Unsolvable ``Problems'' The Halting Problem
	Gödel's Incompleteness Theorem

