
Lecture #12, Oct. 26

2

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

A user-friendly
Introduction to
(un)Computability
and Unprovability
via “Church’s Thesis”

Computability is the part of logic that gives a mathematically precise formula-
tion to the concepts algorithm, mechanical procedure, and calculable function (or
relation). Its advent was strongly motivated, in the 1930s, by Hilbert’s program,
in particular by his belief that the Entscheidungsproblem, or decision problem,
for axiomatic theories, that is, the problem “Is this formula a theorem of that
theory?” was solvable by a mechanical procedure that was yet to be discovered.

Now, since antiquity, mathematicians have invented “mechanical procedures”,
e.g., Euclid’s algorithm for the “greatest common divisor”,† and had no prob-
lem recognising such procedures when they encountered them. But how do you
mathematically prove the nonexistence of such a mechanical procedure for a par-
ticular problem? You need a mathematical formulation of what is a “mechanical
procedure” in order to do that!

Intensive activity by many (Post [Pos36, Pos44], Kleene [Kle43], Church
[Chu36b], Turing [Tur37], Markov [Mar60]) led in the 1930s to several alterna-
tive formulations, each purporting to mathematically characterise the concepts
algorithm, mechanical procedure, and calculable function. All these formulations
were quickly proved to be equivalent; that is, the calculable functions admit-
ted by any one of them were the same as those that were admitted by any
other. This led Alonzo Church to formulate his conjecture, famously known
as “Church’s Thesis”, that any intuitively calculable function is also calculable
within any of these mathematical frameworks of calculability or computability.‡

†That is, the largest positive integer that is a common divisor of two given integers.
‡I stress that even if this sounds like a “completeness theorem” in the realm of computabil-

ity, it is not. It is just an empirical belief, rather than a provable result. For example, Péter
[P6́7] and Kalmár [Kal57], have argued that it is conceivable that the intuitive concept of

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

4

By the way, Church proved ([Chu36a, Chu36b]) that Hilbert’s Entschei-
dungsproblem admits no solution by functions that are calculable within any of
the known mathematical frameworks of computability. Thus, if we accept his
“thesis”, the Entscheidungsproblem admits no algorithmic solution, period!

The eventual introduction of computers further fueled the study of and re-
search on the various mathematical frameworks of computation, “models of
computation” as we often say, and “computability” is nowadays a vibrant and
very extensive field.

calculability may in the future be extended so much as to transcend the power of the various
mathematical models of computation that we currently know.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.1. A leap of faith: Church’s Thesis 5

1.1. A leap of faith: Church’s Thesis

The aim of Computability is to mathematically capture (for example, via URMs)
the informal notions of “algorithm” and “computable function” (or “computable
relation”).

As announced in class on Jan. 23, we will not do any more programming
with URMs in class (one or two simple cases may appear in the midterm and
final).

A lot of models of computation, that were very different in their syntactic
details and semantics, have been proposed in the 1930s by many people (Post,
Church, Kleene, Turing) and more recently by Shepherdson and Sturgis ([SS63]).
They were all proved to compute exactly the same number theoretic functions—
those in the set P. The various models, and the gory details of why they all do
the same job precisely, can be found in [Tou84].

This prompted Church to state his belief, famously
known as “Church’s Thesis”, that

Every informal algorithm (pseudo-program) that
we propose for the computation of a function can
be implemented (made mathematically precise,
in other words) in each of the known models of
computation.

In particular, it can be “programmed” as a
URM.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

6

� We note that at the present state of our understanding
the concept of “algorithm” or “algorithmic process”,

there is no known way to define an “intuitively
computable” function—via a pseudo-program of sorts—
which is outside of P .†

Thus, as far as we know, P appears to formalise be
the largest —i.e., most inclusive— set of “intuitively
computable” functions known.

This “empirical” evidence supports Church’s Thesis. �

†In the so-called relativised computability (with partial oracles) Church’s Thesis fails
[Tou86].

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.1. A leap of faith: Church’s Thesis 7

Church’s Thesis is not a theorem.

It can never be, as it “connects” precise mathematical
objects (URM, P) with imprecise informal ones (“algo-
rithm”, “computable function”).

It is simply a belief that has overwhelming empirical
backing, and should be only read as an encouragement
to present algorithms in “pseudo-code”—that is,
informally.

Thus, Church’s Thesis (indirectly) suggests that we
concentrate in the essence of things,

that is, perform only the high-level design of algorithms,

and leave the actual “coding” details to URM-programmers.†

†If ever in doubt about the legitimacy of a piece of “high-level pseudo-code”, then you
ought to try to implement it in detail, as a URM, or, at least, as a “real” C-program or
equivalent!

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

8

Since we are interested in the essence of things in this
note, and also promised to make it user-friendly, we will
heavily rely on Church’s Thesis here —to which we will
refer, for short, as “CT”—to “validate” our “high-level
(pseudo) programs”.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.1. A leap of faith: Church’s Thesis 9

In the literature, Rogers ([Rog67], a very advanced
book) heavily relies on CT. On the other hand, [Dav58,
Tou84, Tou12] never use CT, and give all the necessary
constructions (implementations) in their full gory details
—that is the price to pay, if you avoid CT.

� Here is the template of how to use CT:

• We completely present —that is, no essential detail
is missing— an algorithm in pseudo-code.

IBTW, “pseudo-code” does not mean “sloppy-code”!J

• We then say: By CT, there is a URM that imple-
ments our algorithm. Hence the function that our
pseudo code computes is in P .

�

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

10

1.2. An Enumeration of all one-argument func-
tions of P

Recall:

1.2.1 Definition. The alphabet we use to construct the
URMs is the following.

Consider the listing order of its members below FIXED.

Γ = {X, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,←, :,+, .−, if ,goto, else, stop, ; }

where we added “;” to the alphabet as a SEPARATOR

to use when we write URMs horizontally, as STRINGS
over the alphabet Γ. �

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.2. An Enumeration of all one-argument functions of P 11

We repeat below the construction of the effective list
(computable listing) of all loop programs (and one-argument
primitive recursive functions) —almost as is— but this
time for URMs.

(A) It is immediately believable that we can write a
program that checks if a string over the alphabet
Γ for URMs

is a syntactically correct URM program or not.

BTW, the symbols X and 1 above on p.10 generate
all the variables,

X1, X11, X111, X1111, . . .

As in the case of Loop-Programs we do not ever write
variables down as what they really are —“X 1 . . . 1︸ ︷︷ ︸

k 1s

”—

but we will continue using metasymbols like

x,y′′′, z′123, u
′′′′
5 , X, Y, Z,A,B,X

′′, Y ′′′23

etc., for variables!

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

12

(B) We can algorithmically build the list, List1, of ALL
strings over Γ:

List by length; and in each length group lexicograph-
ically (alphabetically).

(C) Simultaneously to building List1 build List2 as fol-
lows:

For every string β generated in List1, copy it into
List2 iff β checks to be a URM (which we can test
by (A)).

(D) Simultaneously to building List2 build List3:

For every URM M (program) copied in List2

copy all the finitely many strings MX
Y (for all choices

of X and Y in M) alphabetically (think of the string
MX

Y as “M ;X;Y ”) into List3.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.2. An Enumeration of all one-argument functions of P 13

Thus ALL unary P-functions are listed by their aliases,
the MX

Y programs.

Let us call this list by its standard name in the literature
(“Roger’s Notation, [Rog67]”):

EFFECTIVE List of ALL one-argument P FUNCTIONS

φ0, φ1, φ2, . . . , φi, . . . (1)

where φi = MX
Y iff MX

Y is found in location i of List3.

BTW “EFFECTIVE List” means “algorithmically built
List”.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

14

1.2.1. A Universal function for unary P functions

We now have universal or enumerating function U (P)for
all the unary functions in P .

That is the function of TWO arguments

U (P) = λix.φi(x) (2)

What do I mean by “Universal” here? The analogous
concept as for PR:

1.2.2 Definition. U (P) of (2) is universal or enumerat-
ing for all the unary functions of P meaning it has two
properties:

1. If g ∈ P is unary, then there is an i such that

g = λx.U (P)(i, x)

because g is in the list (1) on the previous page.

and

2. Conversely, for every i ∈ N, λx.U (P)(i, x) ∈ P be-
cause it is an MX

Y . �

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.2. An Enumeration of all one-argument functions of P 15

We immediately obtain the Universal or Enumeration
Theorem for all the unary functions in P .

1.2.3 Theorem. (Enumeration theorem) The Univer-
sal function of two arguments λix.U (P)(i, x) defined in
(2) above and in 1.2.2 is partial recursive.

Proof. Here is an informal algorithm to compute U (P)(i, x)
for any i, x:

1. Given i, x

2. Develop the list List3 of the preceding construction
(part (D) on p.12) until the i-th URM MX

Y has been
listed

3. Take this MX
Y and compute with input x.

IfM terminates, then Y clearly holds the value U (P)(i, x) =
φi(x) —since MX

Y = φi.

Invoking CT we now declare that λix.U (P)(i, x) is more
than informally algorithmic:

It CAN be implemented on a URM, hence is in P . �

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

16

� Hey, so we can write a compiler for the φi IN the URM
Language!

How come we cannot repeat the argument we made

for the case of PR to show that U (P) /∈ P??!!

Well, recall that “=” for partial function calls, f(~x)
and g(~y), means the usual —equality of numbers— if
both sides are defined.

However, f(~x) = g(~y) is also true if both sides are un-
defined. In symbols,

f(~x) = g(~y) iff f(~x) ↑ ∧g(~y) ↑ ∨(∃z)
(
f(~x) = z∧g(~y) = z

)
Thus, while

1 + U (PR)(i, i) = U (PR)(i, i)

was a contradiction in the case of PR because BOTH
sides were defined, on the other hand, in the case of P ,
something like

1 + U (P)(i, i) = U (P)(i, i)

simply implies that both sides are undefined! It is OK
to be equal!

It is NOT a contradiction! �

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.2. An Enumeration of all one-argument functions of P 17

� Thus the compiler for the MX
Y CAN be programmed in

the URM Programming Language. �

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

18

Another fundamental theorem in computability is the
Parametrisation or Iteration or also “S-m-n” theorem of
Kleene.

� � In fact, it and the universal function theorem along with
a handful of initial computable functions are known to
be sufficient to found computability axiomatically —but
we will not get into this topic in this course. � �

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.2. An Enumeration of all one-argument functions of P 19

I NEXT let us establish the fact that we can enumer-
ate algorithmically —or we can effectively list— also the
set of ALL partial recursive functions of TWO variables.

Just repeat the construction (A)–(D) on pp.11–12, but
modify (D):

Here you do instead:

I (D′) Simultaneously to building List2 build List′3:

For every URM M (program) copied in List2 copy all

the finitely many stringsMXY
Z (for all choices ofX, Y and

Z —keeping X, Y distinct— in M) alphabetically (think
of the string MXY

Z as “M ;X;Y ;Z”) into List′3 J.

The obtained effective list List′3 of MXY
Z is denoted by

φ
(2)
0 , φ

(2)
1 , φ

(2)
2 , φ

(2)
3 , . . . , φ

(2)
i , . . . (2)

where φ
(2)
i = MXY

Z iff MXY
Z is found in location i.

The superscript “(2)” of φ indicates that we are effec-

tively listing 2-argument P-functions, λxy.φ
(2)
i (x, y)

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

20

1.2.4 Theorem. (Parametrisation theorem) There is
a 2-argument function S1

1 in R such that

φ
(2)
i (x, y) = φS1

1(i,x)(y), for all i, x, y (1)

Proof. This says that given a program M that com-
putes a function φ

(2)
i as Muv

z with u receiving the in-
put value x and v receiving the input value y —each via
an “implicit” read statement— we can, for any fixed
value x, effectively† construct a new program located
in position S1

1(i, x) of the algorithmic enumeration of all
unary P-functions —(1) on p.13— that has the value x
“hardwired” and only “reads” the y-value; YET GIVES
THE SAME ANSWER in z.

I The “effectively construct” above is the requirement
that S1

1 is recursive: Indeed this requirement says that
we can OBTAIN the program for the rhs of (1).

� Each value x for u is “hardwired” —as u ← x— in the
program for φS1

1(i,x) rather than being inputted via an
implicit “read u”. �

†Algorithmically.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.2. An Enumeration of all one-argument functions of P 21

The program Nv
z for φS1

1(i,x) —for a given i and each
x— is almost the same as Muv

z , namely, it is

Nv
z =

(replaces read u︷ ︸︸ ︷
1 : u← x; M

)v

z

(3)

where all instruction labels ofM (even inside if-statments)
are shifted by adding 1 to them.

Trivially, for all i (that is, all Muv
z) and all x, we

have (2) of the theorem.

Remains to argue that we can compute S1
1(i, x), for all

i, x.

• Given i, x

• Develop the list (2) of the φ
(2)
i on p.19 (this is “List′3”

of (D′)) on p.19) until we can obtain its i-th member,
Muv

z

• Now, Build the URM Nv
z from Muv

z as in (3) above.

• Now, Develop List3 —essentially the list of the φj—
built by (D), p.12 and go down while you keep com-
paring, until you find Nv

z .

• Output the location of Nv
z that you found —this is

S1
1(i, x).

You WILL find said location since List3 contains
ALL unary φj (listed as URM programs MX

Y).

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

22

• So S1
1 is total.

By Church’s thesis the above informal process can be
done by URMs. Thus, S1

1 ∈ R. �

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.2. An Enumeration of all one-argument functions of P 23

LECTURE #13 Nov. 2

� λx.S1
1(i, x) is strictly increasing. Indeed, S1

1(i, x) is the
location of (replaces read u︷ ︸︸ ︷

1 : u← x; M

)v

z

(†)

in the enumeration of the (unary) φj (p.13) while S1
1(i, x′)

is the location of (replaces read u︷ ︸︸ ︷
1 : u← x′; M

)v

z

(‡)

Now if x < x′ then x is earlier than x′ in the alphabetic
ordering of x and x′ viewed as strings of decimal digits.

But then —all other things being equal— program (†)
appears earlier than program (‡) in the lexicographic or-
dering of programs NX

Y .

Thus location S1
1(i, x) is before location S1

1(i, x′).

In short, S1
1(i, x) < S1

1(i, x′). �

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

24

1.3. Unsolvable “Problems”
The Halting Problem

The following definition is repeated “for the record”.

1.3.1 Definition. (Computable or Decidable relations)
“A relation Q(~xn) is computable, or decidable or solv-
able” means that it is Recursive;

That is, the function

cQ = λ~xn.

{
0 if Q(~xn)

1 otherwise

is in R.

The collection (set) of all computable relations we de-
note by R∗. �

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.3. Unsolvable “Problems” The Halting Problem 25

� Thus, “a relationQ(~xn) is computable or decidable” means
that some URM computes cQ.

But that means that some URM behaves as follows:

On input ~xn, it halts and outputs 0 iff ~xn satisfies Q
(i.e., iff Q(~xn)),

it halts and outputs 1 iff ~xn does not satisfy Q (i.e.,
iff ¬Q(~xn)).

We say that the relation has a decider, i.e., the URM
that decides membership of any tuple ~xn in the relation. �

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

26

1.3.2 Definition. (Problems)
A “Problem” is —by definition— a formula of the

type “~xn ∈ Q” or, equivalently, “Q(~xn)”.

Thus, by definition, a “problem” is a membership
question. �

1.3.3 Definition. (Unsolvable Problems) A problem
“~xn ∈ Q” is called any of the following:

Undecidable

Recursively unsolvable

or just

Unsolvable

iff Q /∈ R∗—in words, iff Q is not a computable rela-
tion. �

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.3. Unsolvable “Problems” The Halting Problem 27

Here is the most famous undecidable problem:

φx(x) ↓ (1)

A different formulation uses the set

K
Def
= {x : φx(x) ↓}† (2)

that is, the set of all numbers x, such that the URM
at location x on input x has a (halting!) computation.

We shall call K the “halting set”, and (1) we shall
call the “halting problem”.

Clearly, (1) is equivalent to

x ∈ K

†All three [Rog67, Tou84, Tou12] use K for this set, but this notation is by no means
standard. It is unfortunate that this notation clashes with that for the first projection K of
a pairing function J . However the context will manage to fend for itself!

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

28

1.3.4 Theorem. The halting problem is unsolvable.

Proof. We show, by contradiction, that K /∈ R∗.

Thus we start by assuming the opposite.

Let K ∈ R∗ (3)

(3) says that we can decide membership in K via a
URM, or, what is the same, we can decide truth or false-
hood of φx(x) ↓ for any x:

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.3. Unsolvable “Problems” The Halting Problem 29

Consider then the infinite matrix below, each row of
which denotes a function in P as an array of outputs,

the outputs being numerical, or the special symbol “↑”
for any undefined entry φx(y).

� By 1.2.3 and the comments following it, each one-argument
function of P is in some row (as an array of outputs). �

φ0(0) φ0(1) φ0(2) . . . φ0(i) . . .

φ1(0) φ1(1) φ1(2) . . . φ1(i) . . .

φ2(0) φ2(1) φ2(2) . . . φ2(i) . . .
...

φi(0) φi(1) φi(2) . . . φi(i) . . .
...

We will use the assumed (3) above AND the main di-
agonal (red) of the above matrix to define a function that
is a 1-argument function of P that is NOT a row above.

This will contradict “each” above.

So define the function d of one argument by

d(x) =

{
42 if φx(x) ↑
↑ if φx(x) ↓

(4)

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

30

Here is why the function in (4) is partial recursive:

Given x, do:

• Use the decider forK (for φx(x) ↓, that is) —assumed
to exist by (3)— to test which condition is true in (4);
top or bottom.

• If the top condition is true, then we return 42 and
stop.

• If the bottom condition holds, then transfer to an
infinite loop:

k : X ← 1

k + 1 : goto 1

By CT, the 3-bullet program has a URM realisation,
so d is computable.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.3. Unsolvable “Problems” The Halting Problem 31

Say now
d = φi (5)

Substitute φi for d in (4) to get

φi(x) =

{
42 if φx(x) ↑
↑ if φx(x) ↓

(6)

As (6) is correct for all x, it is correct for x = i.

So we get

φi(i) =

{
42 if φi(i) ↑
↑ if φi(i) ↓

You see the contradiction?

Cases.

• φi(i) = lhs = 42. Then we are in the top case. But
that implies φi(i) ↑ No good!!!

• Well maybe the other case works? φi(i) = lhs =↑.
We are in the bottom case. But this implies φi(i) ↓
No good!!!

We have a contradiction no matter which case we pick.

So we reject (3). Done! �

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

32

In terms of theoretical significance, the above is a very
significant unsolvable problem that enables the process of
finding more! How?

As an Example we illustrate the “program correctness
problem” (see below).

But how does “x ∈ K” help?

Through the following technique of reduction:

� Let P be a new problem for which we want to see whether
~y ∈ P can be solved by a URM.

We build a reduction that goes like this:

1. Suppose that we have a URM M that decides ~y ∈ P ,
for any ~y.

2. Then we show how to use M as a subroutine to also
solve x ∈ K, for any x.

3. Since the latter is unsolvable, no such URM M exists!

�

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.3. Unsolvable “Problems” The Halting Problem 33

The equivalence problem is

Given two programs M and N can we test to see
whether they compute the same function?

� Of course, “testing” for such a question cannot be done
by experiment : We cannot just run M and N for all
inputs to see if they get the same output, because, for one
thing, “all inputs” are infinitely many, and, for another,
there may be inputs that cause one or the other program
to run forever (infinite loop). �

By the way, the equivalence problem is the general
case of the “program correctness” problem which asks

Given a program P and a program specification
S, does the program fit the specification for all
inputs?

How so? Well, we can view a specification as just another
formalism to FINITELY express a function computation.

By CT, all such formalisms, programs or specifications,
boil down to URMs, and hence, at the end of the day,
the above asks whether two given URMs compute the
same function —program equivalence.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

34

Let us show now that the program equivalence
problem cannot be solved by any URM.

1.3.5 Theorem. (Equivalence problem) The equiva-
lence problem of URMs is the problem “given i and j; is
φi = φj?”

This problem is undecidable.

Proof. We will show that if we have a URM that solves
the equivalence problem, “yes”/“no”, then we have a
URM that solves the halting problem too!

So assume (URM) E solves the equivalence problem.

Let us use E to answer the question “a ∈ K”—that
is, “φa(a) ↓”, for any a.

So, fix an a (2)

Consider these two computable functions given by:

For all x:
Z(x) = 0

and

Z̃(x) =

{
0 if x = 0 ∧ φa(a) ↓
0 if x 6= 0

Both functions are intuitively computable: For Z we
already have actually constructed a URM M that com-
putes it (in class/notes/text).

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

1.3. Unsolvable “Problems” The Halting Problem 35

For Z̃ and input x compute as follows:

• Print 0 and stop if x 6= 0.

• On the other hand, if x = 0 then, call U (P)(a, a),
which is the same as φa(a) (cf. 1.2.3).

If this ever halts just print 0 and halt; otherwise let
it loop forever.

By CT, Z̃ has a URM program, say M̃ .

We can compute the locations i and j of M and M̃ re-
spectively by going down the list of all Nw

w′ (List3, p.12).

Thus Z = φi and Z̃ = φj.

Since we ASSUMED that E solves the equivalence
problem, feed it i and j and let it crank.

By definition of a decider, E will terminate with an-
swer one of:

• 0. Then Z(x) = Z̃(x), for all x. But lhs is always
defined, thus so is rhs. We conclude φa(a) ↓.

• 1. Z(x) = Z̃(x), is NOT true for all x. The only

possibility for that is ¬
(
Z(0) = Z̃(0)

)
(for all other

x-values, lhs=rhs).

This can only be because rhs is undefined. We con-
clude φa(a) ↑.

We just solved the halting problem using E as a sub-
routine! IMPOSSIBLE. So E does not exist. �

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

36

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

Bibliography

[Chu36a] Alonzo Church, A note on the Entschei-
dungsproblem, J. Symbolic Logic 1 (1936), 40–
41, 101–102.

[Chu36b] , An unsolvable problem of elementary
number theory, Amer. Journal of Math. 58
(1936), 345–363, (Also in Davis [?, 89–107]).

[Dav58] M. Davis, Computability and Unsolvability,
McGraw-Hill, New York, 1958.

[Kal57] L. Kalmár, An argument against the plausibil-
ity of Church’s thesis, Constructivity in Math-
ematics, Proc. of the Colloquium, Amsterdam,
1957, pp. 72–80.

[Kle43] S.C. Kleene, Recursive predicates and quanti-
fiers, Transactions of the Amer. Math. Soc. 53
(1943), 41–73, (Also in Davis [?, 255–287]).

[Mar60] A. A. Markov, Theory of algorithms, Transl.
Amer. Math. Soc. 2 (1960), no. 15.

[P6́7] Rózsa Péter, Recursive Functions, Academic
Press, New York, 1967.

[Pos36] Emil L. Post, Finite combinatory processes, J.
Symbolic Logic 1 (1936), 103–105.

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

38 BIBLIOGRAPHY

[Pos44] , Recursively enumerable sets of posi-
tive integers and their decision problems, Bull.
Amer. Math. Soc. 50 (1944), 284–316.

[Rog67] H. Rogers, Theory of Recursive Functions and
Effective Computability, McGraw-Hill, New
York, 1967.

[SS63] J. C. Shepherdson and H. E. Sturgis, Com-
putability of recursive functions, Journal of the
ACM 10 (1963), 217–255.

[Tou84] G. Tourlakis, Computability, Reston Publish-
ing, Reston, VA, 1984.

[Tou86] G. Tourlakis, Some reflections on the founda-
tions of ordinary recursion theory, and a new
proposal, Zeitschrift für math. Logik 32 (1986),
no. 6, 503–515.

[Tou12] G. Tourlakis, Theory of Computation, John
Wiley & Sons, Hoboken, NJ, 2012.

[Tur37] Alan M. Turing, On computable numbers, with
an application to the Entscheidungsproblem,
Proc. London Math Soc. 2 (1936, 1937), no. 42,
43, 230–265, 544–546, (Also in Davis [?, 115–
154].).

Intro to (un)Computability and Unprovability via URMs and Church’s Thesis © by
George Tourlakis, 2011 – 2020

	A leap of faith: Church's Thesis
	An Enumeration of redall one-argument functions of P
	A Universal function for unary P functions

	blueUnsolvable ``Problems'' The Halting Problem

