
A user-friendly
Introduction to
(un)Computability
and Unprovability
via “Church’s Thesis”
Part II

This is Part II of our Uncomputability notes. We introduce “half-computable”
relations Q(~x) here. These play a central role in Computability. The term
“half-computable” describes them well: For each of these relations there is a
URM M that will halt precisely for the inputs ~a that make the relation true:
i.e., ~a ∈ Q or equivalently Q(~a) is true. For the inputs that make the relation

false —~b /∈ Q— M loops forever. That is, M verifies membership but does not
yes/no-decide it by halting and “printing” the appropriate 0 (yes) or 1 (no).

Can’t we tweak M into M ′ that is a decider of such a Q? No, not in gen-
eral! For example, our halting set K has a verifier but no decider! (The latter
we know: having a decider means K ∈ R∗ and we know that this NOT the case.

Since the “yes” of a verifier M is signaled by halting but the “no” is signaled
by looping forever, the definition below does not require the verifier to print 0
for “yes”. Here “yes” equals “halting”.

0.1. Semi-decidable relations (or sets)

0.1.1 Definition. (Semi-recursive or semi-decidable sets)

A relation Q(~xn) is semi-decidable or semi-recursive —what we called sug-
gestively “half-computable” above— iff there is a URM, M , which on input ~xn
has a (halting!) computation iff ~xn ∈ Q. The output of M is unim-

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

2

portant!
A less civilized, but more mathematically precise way to say the above is:
A relation Q(~xn) is semi-decidable or semi-recursive iff there is an f ∈ P

such that

Q(~xn) ≡ f(~xn) ↓ (1)

Clearly, an f ∈ P is some M~xn
y . Thus, M is a verifier for Q.

The set of all semi-decidable relations we will denote by P∗.† �

The following figure shows the two modes of handling a query, “~xn ∈ A”, by
a URM.

A Decider

"yes"=print"0"
andhalt

"yes"=justhalt.
Output is irrelevant

"no"=print"1"
andhalt "no"=loop

for ever

input input

A Verifier

A URM for the

 problem
A URM for the

 problem

Here is an important semi-decidable set.

0.1.2� Example. K is semi-decidable. To work within the formal definition
(0.1.1) we note that the function λx.φx(x) is in P via the universal function
theorem of Part I: λx.φx(x) = λx.h(x, x) and we know h ∈ P.

Thus x ∈ K ≡ φx(x) ↓ settles it. By Definition 0.1.1 (statement labeled (1))
we are done. � �

0.1.3� Example. Any recursive relation A is also semi-recursive.
That is,

R∗ ⊆ P∗
†This is not a standard symbol in the literature. Most of the time the set of all semi-

recursive relations has no symbolic name! We are using this symbol in analogy to R∗—the
latter being fairly “standard”.

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

0.1. Semi-decidable relations (or sets) 3

Indeed, intuitively, all we need to do to convert a decider for ~xn ∈ A into a
verifier is to “intercept” the “print 1”-step and convert it into an “infinite loop”,

while(1)
{
}

By CT we can certainly do that via a URM implementation.
A more elegant way (which still invokes CT) is to say, OK: Since A ∈ R∗, it

follows that cA, its characteristic function, is in R.
Define a new function f as follows:

f(~xn) =

{
0 if cA(~xn) = 0

↑ if cA(~xn) = 1

This is intuitively computable (the “↑” is implemented by the same while as
above).

Hence, by CT, f ∈ P. But

~xn ∈ A ≡ f(~xn) ↓

because of the way f was defined. Definition 0.1.1 rests the case.

One more way to do this: Totally mathematical (“formal”, as people say
incorrectly†) this time!

OK,

f(~xn) = if cA(~xn) = 0 then 0 else ∅(~xn)

That is using the sw function that is in PR and hence in P, as in

f(~xn) = if

cA(~xn)
↓
z = 0 then

0
↓
u else

∅(~xn)
↓
w

∅ is, of course, the empty function which by Grz-Ops can have any number of
arguments we please! For example, we may take

∅ = λ~xn.(µy)g(y, ~xn)

where g = λy~xn.SZ(y) = λy~xn.1.

In what follows we will prefer the informal way (proofs by Church’s Thesis)
of doing things, most of the time. �

�

†“Formal” refers to syntactic proofs based on axioms. Our “mathematical” proofs are
mostly semantic, depend on meaning, not just syntax. That is how it is in the majority of
MATH publications.

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

4

An important observation following from the above examples deserves the-
orem status:

0.1.4 Theorem. R∗ ⊂ P∗

Proof. The ⊆ part of “⊂” is Example 0.1.3 above.
The 6= part is due to K ∈ P∗ (0.1.2) and the fact that the halting problem

is unsolvable (K /∈ R∗).
So, there are sets in P∗ (e.g., K) that are not in R∗. �
What about K, that is, the complement

K = N−K = {x : φx(x) ↑}

of K?
The following general result helps us handle this question.

0.1.5 Theorem. A relation Q(~xn) is recursive if both Q(~xn) and ¬Q(~xn) are
semi-recursive.

� Before we proceed with the proof, a remark on notation is in order.
In “set notation” we write the complement of a set, A, of n-tuples as A.

This means, of course, Nn −A, where

Nn = N× · · · × N︸ ︷︷ ︸
n copies of N

In “relational notation” we write the same thing (complement) as

¬A(~xn)

Similarly,
“set notation”: A ∪B, A ∩B
“relational notation”: A(~xn) ∨B(~ym), A(~xn) ∧B(~ym) �

Back to the proof.
Proof. We want to prove that some URM, N , decides

~xn ∈ Q

We take two verifiers, M for “~xn ∈ Q” and M ′ for “~xn ∈ Q”,† and run them
—on input ~xn— as “co-routines” (i.e., we crank them simultaneously).

If M halts, then we stop everything and print “0” (i.e., “yes”).
If M ′ halts, then we stop everything and print “1” (i.e., “no”).
CT tells us that we can put the above —if we want to— into a single URM,

N . �

†We can do that, i.e., M and M ′ exist, since both Q and Q are semi-recursive.

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

0.2. Unsolvability via Reducibility 5

0.1.6� Remark. The above is really an “iff”-result, because R∗ is closed under
complement as we showed in an earlier Note.

Thus, if Q is in R∗, then so is Q, by closure under ¬. By Theorem 0.1.4,
both of Q and Q are in P∗. � �

0.1.7� Example. K /∈ P∗.

Now, this (K) is a horrendously unsolvable problem! This problem is so
hard it is not even semi-decidable!

Why? Well, if instead it were K ∈ P∗, then combining this with Exam-
ple 0.1.2 and Theorem 0.1.5 we would get K ∈ R∗, which we know is not true.

� �

0.2. Unsolvability via Reducibility

We turn our attention now to a methodology towards discovering new unde-
cidable problems, and also new non semi-recursive problems, beyond the ones
we learnt about so far, which are just, x ∈ K, φi = φj (equivalence problem)
and x ∈ K. In fact, we will learn shortly that φi = φj is worse than undecidable;
just like K it is not even semi-decidable.

The tool we will use for such discoveries is the concept of reducibility of one
set to another:

0.2.1 Definition. (Strong reducibility) For any two subsets of N, A and B,
we write

A ≤m B†

or more simply
A ≤ B (1)

pronounced A is strongly reducible to B, meaning that there is a (total) recursive
function f such that

x ∈ A ≡ f(x) ∈ B (2)

We say that “the reduction is effected by f”. �

� In words, A ≤m B says that we can algorithmically solve the problem x ∈ A if
we know how to solve z ∈ B. The algorithm is:

1. Given x.

2. Given the “subroutine” z ∈ B.

3. Compute f(x).

†The subscript m stands for “many one”, and refers to f . We do not require it to be 1-1,
that is; many (inputs) to one (output) will be fine.

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

6

4. Give the same answer for x ∈ A (true or false) as you did for f(x) ∈ B.

�

When (1) holds, then, intuitively, “A is easier than B to either decide or
verify” since if we know how to decide or (only) verify membership in B then
we can use this to decide or (only) verify membership in A. This observation
has a very precise counterpart (Theorem 0.2.3 below). But first,

0.2.2 Lemma. If Q(y, ~x) ∈ P∗ and λ~z.f(~z) ∈ R, then Q(f(~z), ~x) ∈ P∗.

Proof. By Definition 0.1.1 there is a g ∈ P such that

Q(y, ~x) ≡ g(y, ~x) ↓ (1)

Now, for any ~z, f(~z) is some number which if we plug into y in (1) throughout
we get an equivalence:

Q(f(~z), ~x) ≡ g(f(~z), ~x) ↓ (2)

But λ~z~x.g(f(~z), ~x) ∈ P by Grz-Ops. Thus, (2) and Definition 0.1.1 yield
Q(f(~z), ~x) ∈ P∗. �

0.2.3 Theorem. If A ≤ B in the sense of 0.2.1, then

(i) if B ∈ R∗, then also A ∈ R∗

(ii) if B ∈ P∗, then also A ∈ P∗

Proof.

Let f ∈ R effect the reduction.

(i) Let z ∈ B be in R∗.
Then for some g ∈ R we have

z ∈ B ≡ g(z) = 0

and thus
f(x) ∈ B ≡ g(f(x)) = 0 (1)

But λx.g(f(x)) ∈ R by composition, so (1) says that “f(x) ∈ B” is in R∗.
But that is the same as “x ∈ A”.

(ii) Let z ∈ B be in P∗. By 0.2.2, so is f(x) ∈ B. But this says x ∈ A. �

Taking the “contrapositive”, we have at once:

0.2.4 Corollary. If A ≤ B in the sense of 0.2.1, then

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

0.2. Unsolvability via Reducibility 7

(i) if A /∈ R∗, then also B /∈ R∗

(ii) if A /∈ P∗, then also B /∈ P∗

We can now use K and K as a “yardsticks” —or reference “problems”— and
discover more undecidable and also non semi-decidable problems.

The idea of the corollary is applicable to the so-called “complete index sets”.

0.2.5 Definition. (Complete Index Sets) Let C ⊆ P and A = {x : φx ∈ C}.
A is thus the set of ALL programs (known by their addresses) x that compute
any unary f ∈ C: Indeed, let λx.f(x) ∈ C. Thus f = φi for some i. Then i ∈ A.
But this is true of all φm that equal f .

We call A a complete (all) index (programs) set. �

0.2.6 Example. The set A = {x : ran(φx) = ∅} is not semi-recursive.

� Recall that “range” for λx.f(x), denoted by ran(f), is defined by

{x : (∃y)f(y) = x}

�

We will try to show that

K ≤ A (1)

If we can do that much, then Corollary 0.2.4, part ii, will do the rest.
Well, define

ψ(x, y) =

{
0 if φx(x) ↓
↑ if φx(x) ↑

(2)

Here is how to compute ψ:
Given x, y, ignore y. Fetch machineM at address x from the standard listing,

and call it on input x. If it ever halts, then print “0” and halt everything. If
it never halts, then you will never return from the call, which is the correct
specified in (2) behaviour for ψ(x, y).

By CT, ψ is in P, so, by the S-m-n Theorem, there is a recursive h such that

ψ(x, y) = φh(x)(y), for all x, y

� You may NOT use S-m-n UNTIL after you have proved that your
“λxy.ψ(x, y)” is in P. �

We can rewrite this as,

φh(x)(y) =

{
0 if φx(x) ↓
↑ if φx(x) ↑

(3)

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

8

or, rewriting (3) without arguments (as equality of functions, not equality of
function calls)

φh(x) =

{
λy.0 if φx(x) ↓
∅ if φx(x) ↑

(3′)

In (3′), ∅ stands for λy. ↑, the empty function.

Thus,

h(x) ∈ A iff ran(φh(x)) = ∅
bottom case in 3′︷︸︸︷

iff φx(x) ↑

The above says x ∈ K ≡ h(x) ∈ A, hence K ≤ A, and thus A /∈ P∗ by
Corollary 0.2.4, part ii. �

0.2.7 Example. The set B = {x : φx has finite domain} is not semi-recursive.
This is really easy (once we have done the previous example)! All we have

to do is “talk about” our findings, above, differently!
We use the same ψ as in the previous example, as well as the same h as

above, obtained by S-m-n.
Looking at (3′) above we see that the top case has infinite domain, while the

bottom one has finite domain (indeed, empty). Thus,

h(x) ∈ B iff φh(x) has finite domain

bottom case in 3′︷︸︸︷
iff φx(x) ↑

The above says x ∈ K ≡ h(x) ∈ B, hence B /∈ P∗ by Corollary 0.2.4, part
ii. �

0.2.8 Example. Let us mine twice more (3′) to obtain two more important
undecidability results.

1. Show that G = {x : φx is a constant function} is undecidable.

We (re-)use (3′) of 0.2.6. Note that in (3′) the top case defines a constant
function, but the bottom case defines a non-constant. Thus

h(x) ∈ G ≡ φx = λy.0 ≡ x ∈ K

Hence K ≤ G, therefore G /∈ R∗.

2. Show that I = {x : φx ∈ R} is undecidable. Again, we retell what we can
read from (3′) in words that are relevant to the set I:

h(x) ∈ I ∅ /∈ R!≡ φx = λy.0 ≡ x ∈ K

Thus K ≤ I, therefore I /∈ R∗. �

� In Notes #8 we will sharpen the result 2 of the previous example. �

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

0.2. Unsolvability via Reducibility 9

0.2.9� Example. (The Equivalence Problem, again) We now revisit the equiv-
alence problem and show it is more unsolvable than we originally thought (cf.
Notes #6): The relation φx = φy is not semi-decidable.

By 0.2.2, if the 2-variable predicate above is in P∗ then so is λx.φx = φy,
i.e., taking a constant for y. Choose then for y a φ-index for the empty function.

So, if λxy.φx = φy is in P∗ then so is

φx = ∅

which is equivalent to
ran(φx) = ∅

and thus not in P∗ by 0.2.6. � �

0.2.10 Example. The set C = {x : ran(φx) is finite} is not semi-decidable.
Here we cannot reuse (3′) above, because both cases —in the definition by

cases— have functions of finite range. We want one case to have a function
of finite range, but the other to have infinite range.

Aha! This motivates us to choose a different “ψ” (hence a different “h”),
and retrace the steps we took above.

OK, define

g(x, y) =

{
y if φx(x) ↓
↑ if φx(x) ↑

(ii)

Here is an algorithm for g:

Given x, y.

Use the universal program M for unary partial computable functions (com-
putes the λxy.h(x, y) of Notes #6) and start computing h(x, x), that is, φx(x).

If this ever halts, then print “y” and halt everything. If it never halts then
you will never return from the call, which is the correct behaviour for g(x, y):
namely, we want g(x, y) ↑ if x ∈ K.

By CT, g is partial recursive, thus by S-m-n, for some recursive unary k we
have

g(x, y) = φk(x)(y), for all x, y

Thus, by (ii)

φk(x) =

{
λy.y if x ∈ K
∅ othw

(iii)

Hence,

k(x) ∈ C iff φh(x) has finite range

bottom case in iii︷︸︸︷
iff x ∈ K

That is, K ≤ C and we are done. �

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

10

0.2.11 Exercise. Show that D = {x : ran(φx) is infinite} is undecidable. �

0.2.12 Exercise. Show that F = {x : dom(φx) is infinite} is undecidable. �

Enough “negativity”! Here is an important “positive result” that helps to
prove that certain relations are semi-decidable:

0.2.13 Theorem. (Projection theorem) A relation Q(~xn) is semi-recursive
iff there is a recursive (decidable) relation S(y, ~xn) such that

Q(~xn) ≡ (∃y)S(y, ~xn) (1)

� Q is obtained by “projecting” S along the y-co-ordinate, hence the name of the
theorem. �

Proof. If-part. Let S ∈ R∗, and Q be given by (1) of the theorem.
We show that some M semi-decides

~xn ∈ Q (2)

Here is how:
proc Q(~xn)
y ← 0 /* Initialize “search” */
while (cS(y, ~xn) = 1) /* This call always terminates since S ∈ R∗ */
{
y ← y + 1

}

By CT, there is a URM N that implements the above pseudo-code. Clearly,
this URM semi-decides (2).

� Did I say “search”? But of course! Trivially,

(∃y)S(y, ~xn) ≡ (µy)S(y, ~xn) ↓ (∗)

But λ~xn.(µy)S(y, ~xn) ∈ P.† Hence Q(~xn) is semi-recursive by Definition 0.1.1
since, by (∗),

Q(~xn) ≡ (µy)S(y, ~xn) ↓

�

Only if-part. This is more interesting because it introduces a new proof-
technique:

So, we now know that Q ∈ P∗, and want to show that there is an S ∈ R∗
for which (1) above holds:

Well, let M semi-decide ~xn ∈ Q.

†You recall, of course, that (µy)S(y, ~xn) is defined to mean (µy)cS(y, ~xn).

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

0.2. Unsolvability via Reducibility 11

Define S(y, ~xn) as follows:

S(y, ~xn)
by Def
≡

{
true if M on input ~xn halts in exactly y computation steps

false otherwise

We argue that S(y, ~xn) is decidable. Indeed, here is how to decide it:

1. Enlist the help of someone who keeps track of computing time for M
from the time the URM’s (program’s) computation starts and onwards.

In intuitive (non mathematical) terms, this “someone” could be the Op-
erating System under which the program M is compiled and executed.

2. Given an input y, ~xn, the System keeps track of elapsed computation
time during M ’s computation. This “time” could be in time units, like
seconds, nanoseconds, etc., or in instruction-execution units, that is, the
number of instructions executed —with repetitions, of course: instruction,
say, L : . . ., if embedded in a loop, may be executed several times. Each
counts!

The system will halt the entire process (including exiting M even
if M did not hit its stop instruction yet) as soon as y time units
have elapsed.

� It is absolutely important to remember at this point that any URM M will
continue computing in a trivial manner once it hits stop: This “trivial
manner” is that M will go on “computing”, specifically “executing” stop
ad infinitum, and doing so by changing nothing in any variable. See
Definition 0.1.1.2, case (iv), in Notes #2. �

3. Output Decisions at time y.

Output will be as follows:

• true (0) if M was executing stop, but not doing so at step y − 1.

Comment. The above is the case where M hit its stop instruction
exactly in y steps.

• false (1) if M was not executing stop at the time the System halted
everything.

Comment. The above is the case where M needed MORE than y
steps to finish its computation (if at all).

• false (1) if M was executing stop, and doing so at step y−1 as well.

Comment. The above is the case where M hit its stop before y
steps.

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

12

By CT, the above algorithm, M plus Operating System plus decisions on
what to output, can be formalized into a URM, N , which decides (true/false)
S, i.e., S ∈ R∗.

Now it is trivial that (1) holds, for we have the equivalences

Q(~xn) ≡ For some y, M , on input ~xn, halts in exactly y steps

That is
Q(~xn) ≡ For some y, S(y, ~x) is true

�

0.2.14 Example. The set A = {(x, y, z) : φx(y) = z} is semi-recursive.
Here is a verifier for the above predicate:

Given input x, y, z. Comment. Note that φx(y) = z is true iff two things
happen: (1) φx(y) ↓ and (2) the computed value is z.

1. Call the universal function h on input x, y.

2. If the Universal program H for h halts, then

• If the output of H equals z then halt everything (the “yes” output).

• If the output is not equal to z, then enter an infinite loop (say “no”,
by looping).

By CT the above informal verifier can be formalised as a URM M .
But is it correct? Does it verify φx(y) = z?
Yes. See Comment above. �

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

	Semi-decidable relations (or sets)
	Unsolvability via Reducibility

