A user-friendly Introduction to (un)Computability and Unprovability via "Church's Thesis" Part II

This is Part II of our Uncomputability notes.

We introduce "half-computable" relations $Q(\vec{x})$ here.
These play a central role in Computability.
The term "half-computable" describes them well: For each of these relations there is a URM M that will halt precisely for the inputs \vec{a} that make the relation true:
i.e., $\vec{a} \in Q$ or equivalently $Q(\vec{a})$ is true.

For the inputs that make the relation false $\vec{b} \notin Q-M$ loops forever.

That is, M verifies membership but does not yes/no-decide it by halting and "printing" the appropriate 0 (yes) or 1 (no).

Can't we tweak M into M^{\prime} that is a decider of such a Q ?
No, not in general! For example, the halting set K has a verifier
(2) Right? $x \in K \equiv \phi_{x}(x) \downarrow \equiv U^{(P)}(x, x) \downarrow$.

So any program M_{Y}^{X} for the partial recursive $\lambda x \cdot U^{(P)}(x, x)$ is a verifier for $x \in K$. See also 0.1.2 below.
(2)

But we KNOW that $x \in K$ has NO decider!
Since the "yes" of a verifier M is signaled by halting but the "no" is signaled by looping forever, the definition below does not require the verifier to print 0 for "yes". Here "yes" equals "halting".

0.1. Semi-decidable relations (or sets)

0.1.1 Definition. (Semi-recursive or semi-decidable sets)

A relation $Q\left(\vec{x}_{n}\right)$ is semi-decidable or semi-recursive - what we called suggestively "half-computable" above-
iff
there is a URM, M, which on input \vec{x}_{n} has a (halting!) computation iff $\vec{x}_{n} \in Q$.

The output of M is unimportant!

A less civilized, but more mathematically precise way to say the above is:
A relation $Q\left(\vec{x}_{n}\right)$ is semi-decidable or semi-recursive iff there is an $f \in \mathcal{P}$ such that

$$
\begin{equation*}
Q\left(\vec{x}_{n}\right) \equiv f\left(\vec{x}_{n}\right) \downarrow \tag{1}
\end{equation*}
$$

Clearly, an $f \in \mathcal{P}$ is some $M_{y}^{Z_{n}}$. Thus, M is a verifier for Q.

The set of all semi-decidable relations we will denote by $\mathcal{P}_{*} .^{\dagger}$

[^0]The following figure shows the two modes of handling a query, " $\vec{x}_{n} \in A$ ", by a URM.

Here is an important semi-decidable set.
< 0.1.2 Example. K is semi-decidable. To work within the formal definition II. (0.1.1) we note that the function $\lambda x . \phi_{x}(x)$ is in \mathcal{P} via the universal function theorem of Part I: $\lambda x \cdot \phi_{x}(x)=\lambda x \cdot U^{(P)}(x, x)$ and we know $U^{(P)} \in \mathcal{P}$.

Thus $x \in K \equiv \phi_{x}(x) \downarrow$ settles it. By Definition 0.1.1 (statement labeled (1)) we are done.

2 0.1.3 Example. Any recursive relation A is also semi-recursive.
That is,

$$
\mathcal{R}_{*} \subseteq \mathcal{P}_{*}
$$

Indeed, intuitively, all we need to do to convert a decider for $\vec{x}_{n} \in A$ into a verifier is to "intercept" the "print 1 "-step and convert it into an "infinite loop",
k : goto k

By CT we can certainly do the whole thing via a URM implementation.

A more elegant way (which still invokes CT) is to say, OK: Since $A \in \mathcal{R}_{*}$, it follows that c_{A}, its characteristic function, is in \mathcal{R}.

Define a new function f as follows:

$$
f\left(\vec{x}_{n}\right)= \begin{cases}0 & \text { if } c_{A}\left(\vec{x}_{n}\right)=0 \\ \uparrow & \text { if } c_{A}\left(\vec{x}_{n}\right)=1\end{cases}
$$

This is intuitively computable (the " \uparrow " is implemented by the same "piece of code" as above).

Hence, by CT, $f \in \mathcal{P}$. But

$$
\vec{x}_{n} \in A \equiv f\left(\vec{x}_{n}\right) \downarrow
$$

because of the way f was defined. Definition 0.1 .1 rests the case.

One more way to do this: Totally mathematical ("formal", as people say incorrectly ${ }^{\dagger}$) this time!

OK,

$$
f\left(\vec{x}_{n}\right)=\text { if } c_{A}\left(\vec{x}_{n}\right)=0 \text { then } 0 \text { else } \emptyset\left(\vec{x}_{n}\right)
$$

That is, using the $s w$ function that is in $\mathcal{P} \mathcal{R}$ and hence in \mathcal{P}, as in

\emptyset is, of course, the empty function which by Grz-Ops can have any number of arguments we please! For example, we may take

$$
\emptyset=\lambda \vec{x}_{n} \cdot(\mu y) g\left(y, \vec{x}_{n}\right)
$$

where $g=\lambda y \vec{x}_{n} . S Z(y)=\lambda y \vec{x}_{n} .1$.

In what follows we will prefer the informal way (proofs by Church's Thesis) of doing things, most of the time.

An important observation following from the above examples deserves theorem status:

[^1]0.1.4 Theorem. $\mathcal{R}_{*} \subset \mathcal{P}_{*}$

Proof. The \subseteq part of " \subset " is Example 0.1.3 above.
The \neq part is due to $K \in \mathcal{P}_{*}$ (0.1.2) and the fact that the halting problem is unsolvable $\left(K \notin \mathcal{R}_{*}\right)$.

So, there are sets in \mathcal{P}_{*} (e.g., K) that are not in \mathcal{R}_{*}.

What about \bar{K}, that is, the complement

$$
\bar{K}=\mathbb{N}-K=\left\{x: \phi_{x}(x) \uparrow\right\}
$$

of K ? Is it perhaps semi-recursive (verifiable)?

The following general result helps us handle the above question.
0.1.5 Theorem. A relation $Q\left(\vec{x}_{n}\right)$ is recursive jiff both $Q\left(\vec{x}_{n}\right)$ and $\neg Q\left(\vec{x}_{n}\right)$ are semi-recursive.

Before we proceed with the proof, a remark on notation is in order.
In "set notation" we write the complement of a set, A, of n-tuples as \bar{A}. This means, of course, $\mathbb{N}^{n}-A$, where

$$
\mathbb{N}^{n}=\underbrace{\mathbb{N} \times \cdots \times \mathbb{N}}_{n \text { copies of } \mathbb{N}}
$$

In "relational notation" we write the same thing (complement) as

$$
\neg A\left(\vec{x}_{n}\right)
$$

Similarly,

$$
\begin{aligned}
& \text { "set notation": } A \cup B, \quad A \cap B \\
& \text { "relational notation": } A\left(\vec{x}_{n}\right) \vee B\left(\vec{y}_{m}\right), \quad A\left(\vec{x}_{n}\right) \wedge B\left(\vec{y}_{m}\right)
\end{aligned}
$$

Back to the proof.

Proof. We want to prove that some URM, N, decides

$$
\vec{x}_{n} \in Q
$$

We take two verifiers, M for " $\vec{x}_{n} \in Q$ " and M^{\prime} for " $\vec{x}_{n} \in \bar{Q} ",{ }^{\dagger}$ and run them -on input \vec{x}_{n} - as "co-routines" (i.e., we crank them simultaneously).

If M halts, then we stop everything and print "0" (i.e., "yes").
If M^{\prime} halts, then we stop everything and print "1" (i.e., "no").
CT tells us that we can put the above - if we want to - into a single URM, N.

[^2]2 0.1.6 Remark. The above proof handled only the "if" direction. For the "only II if" this is trivial:
\mathcal{R}_{*} is closed under complement (negation) as we showed way back in a perevious Note.

Thus, if Q is in \mathcal{R}_{*}, then so is \bar{Q}, by closure under \neg. By Theorem 0.1.4, both of Q and \bar{Q} are in \mathcal{P}_{*}.
0.1.7 Example. $\bar{K} \notin \mathcal{P}_{*}$.

Now, this (\bar{K}) is a horrendously unsolvable problem! This problem is so hard it is not even semi-decidable!

Why? Well, if instead it were $\bar{K} \in \mathcal{P}_{*}$, then combining this with Example 0.1.2 and Theorem 0.1 .5 we would get $K \in \mathcal{R}_{*}$, which we know is not true.

0.2. Unsolvability via Reducibility

We turn our attention now to a methodology towards discovering new undecidable problems, and also new non semi-recursive problems, beyond the ones we learnt about so far, which are just,

1. $x \in K$,
2. $\phi_{i}=\phi_{j}$ (equivalence problem)
3. and $x \in \bar{K}$.

In fact, we will learn shortly that $\phi_{i}=\phi_{j}$ is worse than undecidable; just like \bar{K} it too is not even semi-decidable.

The tool we will use for such discoveries is the concept of reducibility of one set to another:
0.2.1 Definition. (Strong reducibility) For any two subsets of \mathbb{N}, A and B, we write

$$
A \leq_{m} B^{\dagger}
$$

or more simply

$$
\begin{equation*}
A \leq B \tag{1}
\end{equation*}
$$

pronounced A is strongly reducible to B, meaning that there is a (total) recursive function f such that

$$
\begin{equation*}
x \in A \equiv f(x) \in B \tag{2}
\end{equation*}
$$

We say that "the reduction is effected by f".
The last sentence has the notation $A \leq^{f} B$.

In words, $A \leq_{m} B$ says that we can algorithmically solve the problem $x \in A$ if we know how to solve $z \in B$. The algorithm is:

1. Given x.
2. Given the "subroutine" $z \in B$.
3. Compute $f(x)$.
4. Give the same answer for $x \in A$ (true or false) as you do for $f(x) \in B$.
[^3]When $A \leq_{m} B$ holds, then, intuitively,
" A is easier than B to either decide or verify"
since if we know how to decide or (only) verify membership in B then we can decide or (only) verify membership in $A: \quad x \in A$?"

All we have to do is compute $f(x)$ and ask instead the question " $f(x) \in B$ " which we can decide or verify.

This observation has a very precise counterpart (Theorem 0.2 .3 below).
0.2.2 Lemma. If $Q(y, \vec{x}) \in \mathcal{P}_{*}$ and $\lambda \vec{z} . f(\vec{z}) \in \mathcal{R}$, then $Q(f(\vec{z}), \vec{x}) \in \mathcal{P}_{*}$.

Proof. By Definition 0.1 .1 there is a $g \in \mathcal{P}$ such that

$$
\begin{equation*}
Q(y, \vec{x}) \equiv g(y, \vec{x}) \downarrow \tag{1}
\end{equation*}
$$

Now, for any $\vec{z}, f(\vec{z})$ is some number which if we plug into y in (1) we get an equivalence:

$$
\begin{equation*}
Q(f(\vec{z}), \vec{x}) \equiv g(f(\vec{z}), \vec{x}) \downarrow \tag{2}
\end{equation*}
$$

But $\lambda \vec{z} \vec{x} \cdot g(f(\vec{z}), \vec{x}) \in \mathcal{P}$ by Grz-Ops. Thus, (2) and Definition 0.1.1 yield $Q(f(\vec{z}), \vec{x}) \in \mathcal{P}_{*}$.
0.2.3 Theorem. If $A \leq^{g} B$ in the sense of 0.2.1, then
(i) if $B \in \mathcal{R}_{*}$, then also $A \in \mathcal{R}_{*}$
(ii) if $B \in \mathcal{P}_{*}$, then also $A \in \mathcal{P}_{*}$

Proof.
(i) The assumption says that $z \in B$ is in \mathcal{R}_{*}.

So is $g(x) \in B$ by Grz. Ops. (Way back).

But $x \in A \equiv g(x) \in B$, so $x \in A$ is in \mathcal{R}_{*}.
(ii) Let $z \in B$ be in \mathcal{P}_{*}.

By 0.2.2, so is $g(x) \in B$. But this says $x \in A$.

Taking the "contrapositive", we have at once:
0.2.4 Corollary. If $A \leq B$ in the sense of 0.2.1, then
(i) if $A \notin \mathcal{R}_{*}$, then also $B \notin \mathcal{R}_{*}$
(ii) if $A \notin \mathcal{P}_{*}$, then also $B \notin \mathcal{P}_{*}$

We can now use K and \bar{K} as a "yardsticks" -or reference "problems" - and discover new undecidable and also non semi-decidable problems.

The idea of the corollary is applicable to the so-called "complete index sets".
0.2.5 Definition. (Complete Index Sets) Let $\mathcal{C} \subseteq \mathcal{P}$ and $A=\left\{x: \phi_{x} \in \mathcal{C}\right\}$.
A is thus the set of ALL programs (known by their addresses) x that compute any unary $f \in \mathcal{C}$:

Indeed, let $\lambda x . f(x) \in \mathcal{C}$. Thus $f=\phi_{i}$ for some i. Then $i \in A$.
But this is true of all ϕ_{m} that equal f.
We call A a complete index (programs-) set.

We embark on several examples, but first note the FORM of S-m-n Theorem that we will be using going forward:
0.2.6 Theorem. (S-m-n in practice) If $\psi \in \mathcal{P}$ has two arguments, then there is a unary $h \in \mathcal{R}$ such that

$$
\begin{equation*}
\psi(x, y)=\phi_{h(x)}(y) \tag{1}
\end{equation*}
$$

for all x, y.

Proof. Fix an i such that $\psi(x, y)=\phi_{i}^{(2)}(x, y)$, for all x, y.
By S-m-n, we have a recursive $\lambda i x \cdot S_{1}^{1}(i, x)$ such that

$$
\phi_{i}^{(2)}(x, y)=\phi_{S_{1}^{1}(i, x)}(y)
$$

for all i, x, y.
But i is fixed.
Thus $\lambda x . S_{1}^{1}(i, x)$ is the " h " we want.
0.2.7 Example. The set $A=\left\{x: \operatorname{ran}\left(\phi_{x}\right)=\emptyset\right\}$ is not semi-recursive.

2 Recall that "range" for $\lambda x . f(x)$, denoted by $\operatorname{ran}(f)$, is defined by

$$
\{x:(\exists y) f(y)=x\}
$$

We will try to show that

$$
\begin{equation*}
\bar{K} \leq A \tag{1}
\end{equation*}
$$

If we can do that much, then Corollary 0.2.4, part ii, will do the rest.

Well, define

$$
\psi(x, y)= \begin{cases}0 & \text { if } \phi_{x}(x) \downarrow \tag{2}\\ \uparrow & \text { if } \phi_{x}(x) \uparrow\end{cases}
$$

Here is how to compute ψ :

- Given x, y, ignore y.
- Call $\phi_{x}(x)$-that is, $U^{(P)}(x, x)$,
- If the call ever returns, then print "0" and halt everything.
- If it never returns, then this agrees with the specified in (2) behaviour for $\psi(x, y)$.

By CT, ψ is in \mathcal{P}, so, by the S-m-n Theorem, there is a recursive h such that

$$
\psi(x, y)=\phi_{h(x)}(y), \text { for all } x, y
$$

< You may NOT use S-m-n UNTIL after you have proved that your II " $\lambda x y \cdot \psi(x, y)$ " is in \mathcal{P}.

We can rewrite this as,

$$
\phi_{h(x)}(y)= \begin{cases}0 & \text { if } \phi_{x}(x) \downarrow \tag{3}\\ \uparrow & \text { if } \phi_{x}(x) \uparrow\end{cases}
$$

or, rewriting (3) without arguments (as equality of functions, not equality of function calls)

$$
\phi_{h(x)}=\left\{\begin{array}{ll}
\lambda y .0 & \text { if } \phi_{x}(x) \downarrow \\
\emptyset & \text { if } \phi_{x}(x) \uparrow
\end{array} \quad \text { says } x \in \bar{K}\right.
$$

In $\left(3^{\prime}\right), \emptyset$ stands for $\lambda y . \uparrow$, the empty function.
Thus,

$$
h(x) \in A \text { iff } \operatorname{ran}\left(\phi_{h(x)}\right)=\emptyset \overbrace{\text { iff }}^{\text {bottom case in } 3^{\prime}} \phi_{x}(x) \uparrow
$$

The above says $x \in \bar{K} \equiv h(x) \in A$, hence $\bar{K} \leq^{h} A$, and thus $A \notin \mathcal{P}_{*}$ by Corollary 0.2.4, part ii.

$$
\begin{aligned}
& K \stackrel{\text { Def }}{=}\left\{x: \phi_{x}(x) \downarrow\right\} \\
& \bar{K} \stackrel{\text { Def }}{=}\left\{x: \phi_{x}(x) \uparrow\right\}
\end{aligned}
$$

Lecture \#15, Nov. 9 .
0.2.8 Example. The set $B=\left\{x: \phi_{x}\right.$ has finite domain $\}$ is not semi-recursive.

This is really easy (once we have done the previous example)! All we have to do is "talk about" our findings, above, differently!

We use the same ψ as in the previous example, as well as the same h as above, obtained by S-m-n.

Looking at (3^{\prime}) above we see that the top case has infinite domain, while the bottom one has finite domain (indeed, empty). Thus,

$$
h(x) \in B \text { iff } \phi_{h(x)} \text { has finite domain } \overbrace{\text { iff }}^{\text {bottom case in } 3^{\prime}} \phi_{x}(x) \uparrow
$$

The above says $x \in \bar{K} \equiv h(x) \in B$, hence $\bar{K} \leq B$, hence $B \notin \mathcal{P}_{*}$ by Corollary 0.2.4, part ii.
0.2.9 Example. Let us mine twice more $\left(3^{\prime}\right)$ to obtain two more important undecidability results.

1. Show that $G=\left\{x: \phi_{x}\right.$ is a constant function $\}$ is undecidable.

We (re-) use $\left(3^{\prime}\right)$ of 0.2 .7 . Note that in $\left(3^{\prime}\right)$ the top case defines a constant function, but the bottom case defines a non-constant. Thus

$$
h(x) \in G \equiv \phi_{h(x)}=\lambda y .0 \equiv \text { top case in } 3^{\prime} \equiv x \in K
$$

Hence $K \leq G$, therefore $G \notin \mathcal{R}_{*}$.
2. Show that $I=\left\{x: \phi_{x} \in \mathcal{R}\right\}$ is undecidable. Again, we retell what we can read from (3^{\prime}) in words that are relevant to the set I :

$$
h(x) \in I^{\emptyset} \stackrel{\notin \mathcal{R}!}{=} \phi_{h(x)}=\lambda y .0 \equiv x \in K
$$

Thus $K \leq I$, therefore $I \notin \mathcal{R}_{*}$.
In Notes $\# 8$ we will sharpen the result 2 of the previous example.
<0.2.10 Example. (The Equivalence Problem, again) We now revisit the ${ }^{\text {requivalence problem and show it is worse than unsolvable (cf. Notes }}$ \#6):

The relation $\phi_{x}=\phi_{y}$ is not semi-decidable.

By 0.2 .2 , if the 2 -variable predicate above is in \mathcal{P}_{*} then so is $\lambda x . \phi_{x}=\phi_{y}$, i.e., taking a constant for y.

Choose then for y a ϕ-index for the empty function.
In short,

If the equivalence problem is VERIFIABLE, then so is

$$
\begin{gathered}
\phi_{x}=\emptyset \\
E q=\left\{x: \phi_{x}=\emptyset\right\}=\left\{x: \operatorname{ran}\left(\phi_{x}\right)=\emptyset\right\}=A
\end{gathered}
$$

which says the same thing as

$$
\operatorname{ran}\left(\phi_{x}\right)=\emptyset
$$

We saw that this NOT SEMI-RECURSIVE in 0.2.7.
0.2.11 Example. The set $C=\left\{x: \operatorname{ran}\left(\phi_{x}\right)\right.$ is finite $\}$ is not semi-decidable.

Here we cannot reuse (3^{\prime}) above, because both cases in the definition by cases - top and bottom- have functions of finite range.

We want one case to have a function of finite range, but the other to have infinite range.

Aha! This motivates us to choose a different " ψ " (hence a different " h "), and retrace the steps we took above.

OK, define

$$
g(x, y)= \begin{cases}y & \text { if } \phi_{x}(x) \downarrow \tag{ii}\\ \uparrow & \text { if } \phi_{x}(x) \uparrow\end{cases}
$$

Here is an algorithm for g :

- Given x, y.
- Call $\phi_{x}(x)$-i.e., call $U^{(P)}(x, x)$.
- If this ever returns, then print " y " and halt everything.
- If it never returns from the call, this is the correct behaviour for $g(x, y)$ as well:
namely, we want $g(x, y) \uparrow$ if $x \in \bar{K}$.

By CT, g is partial recursive, thus by S-m-n, for some recursive unary k we have

$$
g(x, y)=\phi_{k(x)}(y), \text { for all } x, y
$$

Thus, by (ii)

$$
\phi_{k(x)}= \begin{cases}\lambda y \cdot y & \text { if } x \in K \tag{iii}\\ \emptyset & \text { othw }\end{cases}
$$

Intro to (un)Computability via URMs—Part II © by George Tourlakis

Hence,
bottom case in $i i i$
$k(x) \in C$ iff $\phi_{k(x)}$ has finite range $\quad \overbrace{\text { iff }} x \in \bar{K}$
That is, $\bar{K} \leq C$ and we are done.
0.2.12 Exercise. Show that $D=\left\{x: \operatorname{ran}\left(\phi_{x}\right)\right.$ is infinite $\}$ is undecidable.
0.2.13 Exercise. Show that $F=\left\{x: \operatorname{dom}\left(\phi_{x}\right)\right.$ is infinite $\}$ is undecidable.

Enough "negativity"!

Here is an important "positive result" that helps to prove that certain relations $A R E$ semi-decidable:
0.2.14 Theorem. (Projection theorem; Part I) A relation $Q\left(\vec{x}_{n}\right)$ that is expressible as

$$
\begin{equation*}
Q\left(\vec{x}_{n}\right) \equiv(\exists y) S\left(y, \vec{x}_{n}\right) \tag{1}
\end{equation*}
$$

where $S\left(y, \vec{x}_{n}\right)$ is recursive is itself semi-recursive.

2 Q is obtained by "projecting" S along the y-co-ordinate, hence the name of the II theorem.

Proof. Let $S \in \mathcal{R}_{*}$, and Q be connected as in (1) of the theorem.
Clearly,

$$
\begin{equation*}
(\exists y) S\left(y, \vec{x}_{n}\right) \equiv(\mu y) S\left(y, \vec{x}_{n}\right) \downarrow \tag{2}
\end{equation*}
$$

and we know that

$$
\begin{equation*}
(\mu y) S\left(y, \vec{x}_{n}\right) \stackrel{\text { Def }}{=}(\mu y) c_{S}\left(y, \vec{x}_{n}\right), \text { for all } \vec{x}_{n} \tag{3}
\end{equation*}
$$

Thus $\lambda \vec{x}_{n} .(\mu y) c_{S}\left(y, \vec{x}_{n}\right)$ is partial recursive by closure of \mathcal{P} under UNbounded search. Thus so is $\lambda \vec{x}_{n}(\mu y) S\left(y, \vec{x}_{n}\right)$ by (3).

Now (1) and (2) give

$$
Q\left(\vec{x}_{n}\right) \equiv(\mu y) S\left(y, \vec{x}_{n}\right) \downarrow
$$

We are done by Def. 0.1.1.
0.2.15 Example. The set $A=\left\{(x, y, z): \phi_{x}(y)=z\right\}$ is semi-recursive.

Here is a verifier for the above predicate:
Given input x, y, z. Comment. Note that $\phi_{x}(y)=z$ is true iff two things happen: (1) $\phi_{x}(y) \downarrow$ and (2) the computed value is z.

1. Given x, y, z.
2. Call $\phi_{x}(y)=U^{(P)}(x, y)$.
3. If the call returns, then

- If the output of $U^{(P)}(x, y) \underline{\text { equals } z} z$, then halt everything (the "yes" output).
- If the output of $U^{(P)}(x, y)$ does NOT equal z, then get into an infinite loop (the "no" case).

4. If the $U^{(P)}(x, y) \uparrow$, then keep looping (say "no", by looping).

By CT the above informal verifier can be formalised as a URM M.

Lecture \#16, Nov. 11.

0.3. Projection Theorem II

This section provides a new powerful tool AND proves the converse of Projection Theorem Part I.

How can we trace a (computation of a) URM ?

Exactly in the same manner that we learnt to trace a commercially available program such as C.

0.3.1. Computation simulating functions

Given a URM $M_{X_{1}}^{\vec{X}_{m}}$ where -without loss of generalitywe selected X_{1} as the output variable.

Let all its variables be

$$
\begin{equation*}
\overbrace{X_{1}, \ldots, X_{m}}^{\text {inputs }}, \overbrace{X_{m+1}, \ldots, X_{n}}^{\text {Non inputs }} \tag{1}
\end{equation*}
$$

For any input \vec{a}_{m}, M 's computation can be tabulated in a (potentially infinite) table - p. 29 below- where for each $y \geq 0$, row y contains the values of ALL the variables in (1) as well the value of the Instruction Pointer $I P$ - that points to the CURRENT instruction- at step y.

A "step" is the act of executing ONE instruction of M and reaching the next CURRENT instruction.

At step zero, $(y=0)$ the computation ponders the first instruction of M after the " I / O Agent" initialised the input variables and has set all non-input variables to zero.

The entries on the zeroth row are self-evident.

Table 1: M Simulation Table

y	$I P$	X_{1}	X_{2}	\ldots	X_{m}	X_{m+1}	X_{m+2}	\ldots	X_{n}
0	1	a_{1}	a_{2}	\ldots	a_{m}	0	0	\ldots	0
\vdots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots	\vdots	\ldots	\vdots
i	L	b_{1}	b_{2}	\ldots	b_{m}	b_{m+1}	b_{m+2}	\ldots	b_{n}
$i+1$	L^{\prime}	b_{1}^{\prime}	b_{2}^{\prime}	\ldots	b_{m}^{\prime}	b_{m+1}^{\prime}	b_{m+2}^{\prime}	\ldots	b_{n}^{\prime}
\vdots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots	\vdots	\ldots	\vdots

The process for filling the table is algorithmic as follows:

Going from row i to row $i+1$ (Cf. p. 10 in http:// www.cs.yorku.ca/~gt/papers/NOTES-2-URMs.pdf):

1. L points to $X_{k} \leftarrow r$. Then $b_{k}^{\prime}=r$ while $b_{j}^{\prime}=b_{j}$ for $j \neq k$. Also $L^{\prime}=L+1$.
2. L points to $X_{k} \leftarrow X_{k}+1$. Then $b_{k}^{\prime}=b_{k}+1$ while $b_{j}^{\prime}=b_{j}$ for $j \neq k$. Moreover $L^{\prime}=L+1$.
3. L points to $X_{k} \leftarrow X_{k} \doteq 1$. Then $b_{k}^{\prime}=b_{k} \doteq 1$ while $b_{j}^{\prime}=b_{j}$ for $j \neq k$. Moreover $L^{\prime}=L+1$.
4. L points to stop. Then $b_{j}^{\prime}=b_{j}$ for all $j \neq n$. Moreover $L^{\prime}=L$.
5. L points to if $X_{k}=0$ goto R else goto Q. Then $b_{j}^{\prime}=b_{j}$ for all $j \neq n$. Moreover $L^{\prime}=$ if $b_{k}=$ 0 then R else Q.

Note that at "time" y each X_{j} and the IP function hold a value that depends on the initial \vec{a}_{m}-and on y.
-. Thus we associate with each X_{j} and with the $I P$ a TOTAL function - $\lambda y \vec{a}_{m} \cdot f_{j}\left(y, \vec{a}_{m}\right)$ and $\lambda y \vec{a}_{m} . I P\left(y, \vec{a}_{m}\right)$.

Since I can produce each such function-value, for the X_{j} and IP-for example, by hand- in the mechanical way indicated,
by $C T$, each such function f_{j} and $I P$ is RECURSIVE.
In particular, $f_{1}=M_{X_{1}}^{\vec{X}_{m}} \in \mathcal{R}$ and $\lambda y \vec{a}_{m} . I P\left(y, \vec{a}_{m}\right) \in$ \mathcal{R}.

(2) Important!

0.3.1 Theorem. With reference to the URM M that we "traced" above, we have that $M_{X_{1}}^{\vec{X}_{m}}$ halts for input \vec{a}_{m} iff there is some step value y where M makes its stop instruction current.

That is

$$
(\exists y) I P\left(y, \vec{a}_{m}\right)=k \text {, where } k \text { is the label of stop }
$$

0.3.2 Theorem. (Projection Theorem Part II) $\underline{I F} Q\left(\vec{x}_{m}\right)$

 is semi-recursive, THEN there is a recursive $P\left(y, \vec{x}_{m}\right)$ such that$$
Q\left(\vec{x}_{m}\right) \equiv(\exists y) P\left(y, \vec{x}_{m}\right)
$$

Proof. By Definition 0.1.1,

$$
Q\left(\vec{a}_{m}\right) \equiv g\left(\vec{a}_{m}\right) \downarrow
$$

where $g \in \mathcal{P}$.
Let then $g=M_{X_{1}}^{\vec{X}_{m}}$.
By 0.3.1, $g\left(\vec{a}_{m}\right) \downarrow \equiv(\exists y) I P\left(y, \vec{a}_{m}\right)=q$, where q labels stop in M

But $\operatorname{IP}\left(y, \vec{a}_{m}\right)=q$ is recursive so we may take it as the " $P\left(y, \vec{x}_{m}\right)$ " we want.

[^0]: ${ }^{\dagger}$ This is not a standard symbol in the literature. Most of the time the set of all semirecursive relations has no symbolic name! We are using this symbol in analogy to \mathcal{R}_{*} - the latter being fairly "standard".

[^1]: \dagger "Formal" refers to syntactic proofs based on axioms. Our "mathematical" proofs are mostly semantic, depend on meaning, not just syntax. That is how it is in the majority of MATH publications.

[^2]: ${ }^{\dagger}$ We can do that, i.e., M and M^{\prime} exist, since both Q and \bar{Q} are semi-recursive.

 Intro to (un)Computability via URMs—Part II © by George Tourlakis

[^3]: ${ }^{\dagger}$ The subscript m stands for "many one", and refers to f. We do not require it to be $1-1$, that is; many (inputs) to one (output) will be fine.

 Intro to (un)Computability via URMs—Part II © by George Tourlakis

