
A user-friendly
Introduction to
(un)Computability
and Unprovability
via “Church’s Thesis”
Part III

0.1. Recursively Enumerable Sets

In this section we explore the rationale behind the alternative name “recursively
enumerable” or “computably enumerable” that is used in the literature for the
semi-recursive or semi-computable sets/predicates. Short names for this alter-
native jargon are “r.e.” and “c.e.” respectively. To avoid cumbersome codings
(of n-tuples, by single numbers) we restrict attention to the one variable case
in this section. I.e., predicates that are subsets of Nn for the case n = 1.

First we define:

0.1.1 Definition. A set A ⊆ N is called computably enumerable (c.e.) or re-
cursively enumerable (r.e.) precisely if one of the following cases holds:

• A = ∅

• A = ran(f), where f ∈ R.

�

� Thus, the c.e. or r.e. relations are exactly those we can algorithmically enu-
merate as the set of outputs of a (total) recursive function:

A = {f(0), f(1), f(2), . . . , f(x), . . .}

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

2

Hence the use of the term “c.e.” replaces the non technical term “algorithmi-
cally” (in “algorithmically” enumerable) by the technical term “computably”.

Note that we had to hedge and ask that A 6= ∅ for any enumeration to take
place, because no recursive function (remember: these are total) can have an
empty range. �

Next we prove:

0.1.2 Theorem. (“c.e.” or “r.e.” vs. semi-recursive)
Any non empty semi-recursive relation A (A ⊆ N) is the range of some

(emphasis: total) recursive function of one variable.
Conversely, every set A such that A = ran(f)—where λx.f(x) is recursive—

is semi-recursive (and, trivially, nonempty).

� For short, the semi-recursive sets are precisely the c.e. or r.e. sets. For A 6= ∅
this is the content of 0.1.2 while ∅ is r.e. by definition and known to us to be
also semi-recursive. �

Before we prove the result, here is an example:

0.1.3 Example. The set {0} is c.e. Indeed, f = λx.0, our familiar function Z,
effects the enumeration with repetitions (lots of them!)

x = 0 1 2 3 4 . . .
f(x)= 0 0 0 0 0 . . .

�

Proof. (I) We prove the first sentence of the theorem. So, let A 6= ∅ be
semi-recursive.

By the projection theorem (see Notes #7) there is a decidable (recursive)
relation Q(y, x) such that

x ∈ A ≡ (∃y)Q(y, x), for all x (1)

Thus,

every x ∈ A will have some associated value y such that Q(y, x) holds. (2)

and conversely,

if Q(y, x) holds for some y, x pair, then x ∈ A. (2′)

(2) and (2′) jointly rephrase (1), but also suggest a very high level process to
enumerate all x ∈ A: We should look for all pairs (y, x) in a systematic
manner, and for each such pair that is in Q we should just output (enumerate)
the x-component!

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

0.1. Recursively Enumerable Sets 3

Ah! But we know how to generate all pairs in a systematic manner, algo-
rithmically!

for z = 0, 1, 2, 3, . . . do
generate the pair consisting of (z)0 (represents “y” in the blue text above)

and (z)1 (represents “x”).

� Wait! Will the above generate all pairs? Sure: For any x and y, the pair (y, x)
is guaranteed to be output when we reach the z-value 〈y, x〉 (= 2y+13x+1). �

Here is then how to enumerate all of A (first draft!)

for z = 0, 1, 2, 3, . . . do{
1. generate the pair

(
(z)0, (z)1

)
2. if Q

(
(z)0, (z)1

)
is true then output (z)1

3. if Q
(

(z)0, (z)1

)
is false then do not output anything in this iteration}

Is the above algorithm correct? Well, yes:

• One, if x ∈ A, then some y certifies (1) above, that is Q(y, x) is true.
But when we iterate with z = 2y+13x+1 we will have Q(y, x) verified and
indeed the algorithm will output x = (z)1 (step 2).

• Two, if x /∈ A, then no y paired with x will make Q(y, x) true, and unless
we verify such truth we do not output anything (step 3. in the algorithm).

By CT, the above procedure, mathematised in our theory via URMs, defines a
computable function λz.f(z) such that ran(f) = A, that is f enumerates A.

But, you will protest, we did not use the assumption A 6= ∅, nor seems that
we can conclude that f is total —see step 3. above, which declines output.

That is why I said “first draft” earlier! So, let us work with A 6= ∅. Then
there is an a ∈ A. We do not need to find it! The theorem says there IS a
recursive enumerating function. It does not say construct one! So, with the
guarantee of A 6= ∅, and fixing attention on one a ∈ A, we modify the f above
as

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

4

for z = 0, 1, 2, 3, . . . do{
1. generate the pair

(
(z)0, (z)1

)
2. if Q

(
(z)0, (z)1

)
is true then output (z)1

3. if Q
(

(z)0, (z)1

)
is false then output a Comment. It is always correct

to output a.}
Trivially, the function defined by the red program still enumerates A (over-

doing the case of a ∈ A) but now the function defined is total!
(II) Proof of the second sentence of the theorem. So, let A = ran(f)

—where f is recursive. Thus,

x ∈ A ≡ (∃y)f(y) = x (1)

By Grz-Ops, the fact that z = x is in R∗ and the assumption f ∈ R, the
relation f(y) = x is decidable (recursive). By (1) we are done by the Projection
Theorem. �

0.1.4 Corollary. If A is semi-recursive, then A = ran(f) for some f ∈ P.

Proof. This follows from the “draft” solution to Part (I) of the previous proof.
Indeed, if A 6= ∅, then use the draft solution to obtain an f ∈ P such that
A = ran(f). If A = ∅ —of course such A is in PR∗ ⊆ R∗ ⊆ P∗— then A is the
range of the empty function which is in P. �

Do we have a converse? Is the range of any partial recursive function semi-
recursive? Yes! Wait for Section 0.3, Theorem 0.3.2.

0.1.5 Corollary. An A ⊆ N is semi-recursive iff it is r.e. (c.e.)

Proof. For nonempty A this is Theorem 0.1.2. For empty A we note that this
is r.e. by 0.1.2 but also semi-recursive by ∅ ⊆ PR∗ ⊆ R∗ ⊆ P∗. �

� Corollary 0.1.5 allows us to prove some non-semi-recursiveness results by good
old-fashioned Cantor diagonalisation. See below. �

0.1.6 Theorem. The complete index set A = {x : φx ∈ R} is not semi-
recursive.

� This sharpens the undecidability result for A that we established in Note #7. �

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

0.2. Some closure properties of decidable and semi-decidable relations 5

Proof. By the equivalence of c.e.-ness and semi-recursiveness we prove that A
is not c.e.

If not, note first that A 6= ∅ since, e.g., Z ∈ R and thus at least one φ-index
is in A (a φ-index for Z).

Thus, theorem 0.1.2 applies and there is an f ∈ R such that A = ran(f) =
{y : y = f(x), for some x}, that is

y ∈ A ≡ (∃x)f(x) = y

In words, a φ-index y is in A iff it has the form f(x) for some x.
Define

d = λx.1 + φf(x)(x) (1)

Seeing that φf(x)(x) = h(f(x), x), we obtain d ∈ P. But φf(x) is total since all
the f(x) are φ-indices of total functions by the red comment above.

By the same comment,

d = φf(i), for some i (2)

Let us compute d(i): d(i) = 1+φf(i)(i) by (1). Also, d(i) = φf(i)(i) by (2), thus

1 + φf(i)(i) = φf(i)(i)

which is a contradiction since both sides of “=” are defined. �

� One can take as d different functions, for example, either of d = λx.42+φf(x)(x)
or d = λx.1 .− φf(x)(x) works. And infinitely many other choices do! �

0.2. Some closure properties of decidable and
semi-decidable relations

We already know that

0.2.1 Theorem. R∗ is closed under all Boolean operations, ¬,∧,∨,⇒,≡, as
well as under (∃y)<z and (∀y)<z.

0.2.2� Remark. We took the point of view of Computability, as founded via
URMs, as the theory of computing functions of (natural) number inputs and
outputs. As such it is not readily meaningful to ask if decidable sets are closed
under string operations, such as concatenation, because the sets of our theory
are sets of numbers, or tuples of numbers.

Pretend, however, for a moment that we never restricted the input format,
and that we allowed our URMs to process strings rather than “numerical in-
puts”†

†True, numerical inputs are also denoted by strings, but strings of a very restricted type.

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

6

Under these (hypothetical) circumstances, we ask at the very informal level:
Are decidable sets (of strings!) closed under concatenation?

That is, if A and B are decidable, is A ·B also decidable?
Easily, yes. Given input z we test “z ∈ A ·B” as follows:
For each decomposition of z as z = xy‡ we process (using deciders for A and

B) the queries x ∈ A and y ∈ B. If (and only if) some such decomposition
allows both queries to print “0” (“yes”), then I print a “0” and halt everything.

Otherwise (no decomposition worked), I print “1” and halt everything. �

0.2.3 Theorem. P∗ is closed under ∧ and ∨. It is also closed under (∃y), or,
as we say, “under projection”. It is also closed under (∃y)<z and (∀y)<z.

It is not closed under negation (complement), nor under (∀y).

Proof.

1. Let Q(~xn) be semi-decided by a URM M , and S(~ym) be semi-decided by
a URM N .

Here is how to semi-decide Q(~xn) ∨ S(~ym):

Given input ~xn, ~ym, we call machine M with input ~xn, and machine N
with input ~ym and let them crank simultaneously (as “co-routines”).

If either one halts, then halt everything! This is the case of “yes” (input
verified).

2. For ∧ it is almost the same, but our halting criterion is different:

Here is how to semi-decide Q(~xn) ∧ S(~ym):

Given input ~xn, ~ym, we call machine M with input ~xn, and machine N
with input ~ym and let them crank simultaneously (“co-routines”).

If both halt, then halt everything!

3. The (∃y) is very interesting as it relies on the Projection Theo-
rem:

Let Q(y, ~xn) be semi-decidable. Then, by Projection Theorem, a decid-
able P (z, y, ~xn) exists such that

Q(y, ~xn) ≡ (∃z)P (z, y, ~xn) (1)

It follows that
(∃y)Q(y, ~xn) ≡ (∃y)(∃z)P (z, y, ~xn) (2)

This does not settle the story, as I cannot readily conclude that (∃y)(∃z)P (z, y, ~xn)
is semi-decidable because the Projection Theorem requires a single (∃y)

‡By “xy” I mean concatenation of x and y in that order. Note that there are exactly |z|+1
such decompositions, “|z|” denoting the length of z.

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

0.2. Some closure properties of decidable and semi-decidable relations 7

in front of a decidable predicate!

What do I do? Coding to the rescue!

Well, instead of saying that there are two values y and z that verify (along
with ~xn) the predicate P (z, y, ~xn), I can say the same thing —after setting
w = 2z+13y+1 = 〈z, y〉— as (∃w)P ((w)0, (w)1, ~xn) and thus I have

(∃y)Q(y, ~xn) ≡ (∃w)P ((w)0, (w)1, ~xn) (3)

But now P ((w)0, (w)1, ~xn) is decidable by the decidability of P and Grz-
Ops, and in (3) we quantified the decidable P ((w)0, (w)1, ~xn) with just
one (∃w). The Projection Theorem now applies!

4. For (∃y)<zQ(y, ~x), where Q(y, ~x) is semi-recursive, we first note that

(∃y)<zQ(y, ~x) ≡ (∃y)
(
y < z ∧Q(y, ~x)

)
(∗)

By PR∗ ⊆ R∗ ⊆ P∗, y < z is semi-recursive. By closure properties
established already in this proof, the rhs of ≡ in (∗) is semi-recursive, thus
so is the lhs.

5. For (∀y)<zQ(y, ~x), where Q(y, ~x) is semi-recursive, we first note that (by
Strong Projection) a decidable P exists such that

Q(y, ~x) ≡ (∃w)P (w, y, ~x)

By the above equivalence, we need to prove that

(∀y)<z(∃w)P (w, y, ~x) is semi-recursive (∗∗)

(∗∗) says that

for each y = 0, 1, 2, . . . , z − 1 there is a w-value wy so that P (wy, y, ~x) holds

Since all those wy are finitely many (z many!) there is a value u bigger
than all of them (for example, take u = max(w0, . . . , wz−1) + 1). Thus
(∗∗) says (i.e., is equivalent to)

(∃u)(∀y)<z(∃w)<uP (w, y, ~x)

The blue part of the above is decidable (by closure properties of R∗,
since P ∈ R∗ —you may peek at 0.2.1). We are done by strong projection.

� Why not work as in case 4. above and use the equivalent to (∀y)<zQ(y, ~x)

expression (∀y)
(
y < z → Q(y, ~x)

)
? �

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

8

6. Why is P∗ not closed under negation (complement)?

Because we know that K ∈ P∗, but K /∈ P∗.

7. Why is P∗ not closed under (∀y)?

Well,
x ∈ K ≡ (∃y)Q(y, x) (1)

for some recursive Q (Projection Theorem) and by the fact (quoted again
above) that K ∈ P∗.
(1) is equivalent to

x ∈ K ≡ ¬(∃y)Q(y, x)

which in turn is equivalent to

x ∈ K ≡ (∀y)¬Q(y, x) (2)

Now, by closure properties of R∗, ¬Q(y, x) is recursive, hence also in P∗
since R∗ ⊆ P∗.

So, if P∗ were closed under (∀y), then the above (∀y)¬Q(y, x) would be
semi-recursive. But that is x ∈ K ! �

0.3. Computable functions and their graphs

We prove a fundamental result here, that

0.3.1 Theorem. λ~x.f(~x) ∈ P iff the graph y = f(~x) is in P∗.

Proof.

• (→, that is, the Only if) Let λ~x.f(~x) ∈ P. By an easy adaptation of the
proof in Example 0.2.14 of Notes #7 (the universal function h is NOT
involved here!) it follows that y = f(~x) is semi-computable.

• (←, that is, the If) Let y = f(~x) be semi-computable.

Here is an obvious idea: Let M be a verifier for y = f(~x). Program as
follows:

1. for z = 0, 1, 2, . . . do:

2. if M verified z = f(~x) then return (z)

� Let us emphasise: The verifierM does not compute f(~x) but rather verifies
when a pair z, ~x belongs to the graph of f . If we knew a priori how to
compute f(~x) we would not need to deal with the graph and its verifier
at all! �

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

0.4. Some tricky reductions 9

Alas, the above idea does not work! For any z-value that is < f(~x) in
the above search for the “correct” z† the verifier says “no” by looping
forever! We will never reach the correct z, if there is one.‡

We must be more sophisticated in what and how we are searching for:

By (strong projection theorem)

y = f(~x) ≡ (∃z)Q(z, y, ~x) (1)

for some decidable Q. The idea of how to find the correct y, if any, once
we are given an ~x, is to search (simultaneously!) for a z and y that
“work” —i.e., they satisfy Q(z, y, ~x) for the given ~x.§ So, informally, we
search the sequence

w = 0, 1, 2, 3, . . .

and stop as soon as we note that Q((w)0, (w)1, ~x) is true —if this ever
happens!

As (w)0 plays the role of z and (w)1 plays the role of y, we obviously
report (w)1 as our answer, if and when we stop the search.

Mathematically,

f(~x) =
(

(µw)Q((w)0, (w)1, ~x)
)
1

f is in P by closure properties. �

We can now settle

0.3.2 Theorem. If A = ran(f) and f ∈ P, then A ∈ P∗.

Proof. By 0.3.1 y = f(x) is semi-recursive. By closure properties of P∗, so is
(∃x)y = f(x). But (∃x)y = f(x) ≡ y ∈ ran(f), that is, (∃x)y = f(x) ≡ y ∈ A
since ran(f) = A. Done. �

0.4. Some tricky reductions

This section highlights a more sophisticated reduction scheme that improves our
ability to effect reductions of the type K ≤ A.

0.4.1 Example. Prove that A = {x : φx is a constant} is not semi-recursive.
This is not amenable to the technique of saying “OK, if A is semi-recursive,
then it is r.e. Let me show that it is not so by diagonalisation”. This worked

†That is, such that z = f(~x).
‡It may well be that f(~x) ↑ for the given ~x.
§We saw this idea in the proof of Theorem 0.1.2 at the beginning of this note.

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

10

for B = {x : φx is total} but no obvious diagonalisasion comes to mind for A.

Nor can we simplistically say, OK, start by defining

g(x, y) =

{
0 if x ∈ K
↑ othw

The problem is that if we plan next to say “by CT g is partial recursive hence
by S-m-n, etc.”, then the underlined part is wrong. g /∈ P, provably ! For if it is
computable, then so is λx.g(x, x) by Grz-Ops. But

g(x, x) ↓ iff we have the top case, iff x ∈ K

Thus
x ∈ K ≡ g(x, x) ↓

which proves that K ∈ P∗ using the verifier for “g(x, x) ↓”. Contradiction.

�

0.4.2 Example. (0.4.1 continued) Now, “Plan B” is to “approximate”
the top condition φx(x) ↑ (same as x ∈ K).

The idea is that, “practically”, if the computation φx(x) after a “huge”
number of steps y has still not hit stop, this situation approximates —let me say
once more— “practically”, the situation φx(x) ↑. This fuzzy thinking suggests
that we try next

f(x, y) =

{
0 if the computation φx(x) has not reached stop after y steps

↑ othw

The “othw” says, of course, that the computation of the call φx(x) —or h(x, x),
where h is the universal function— did halt in y steps or fewer.

Next step is to enable the S-m-n theorem application, so we must show that
f defined above is computable. Well here is an informal algorithm:

(0) proc f(x, y)
(1) Call h(x, x), that is, φx(x), and keep count of its computation steps
(2) Return 0 if φx(x) did not hit stop in y steps
(3) Loop if φx(x) halted in ≤ y steps

Of course, the “command” Loop means

“transfer to the subprogram” while 1=1 do { }

By CT, the pseudo algorithm (0)–(3) is implementable as a URM. That is,
f ∈ P.

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

0.4. Some tricky reductions 11

By S-m-n applied to f there is a recursive k such that

φk(x)(y) =

{
0 if φx(x) is still not at stop after y steps

↑ othw
(1)

Analysis of (1) in terms of the “key” conditions φx(x) ↑ and φx(x) ↓:

(A) Case where φx(x) ↑.
Then, φx(x) did not halt in y steps, for any y!

Thus, by (1), we have φk(x)(y) = 0, for all y, that is,

φx(x) ↑ =⇒ φk(x) = λy.0 (2)

(B) Case where φx(x) ↓. Let m = smallest y such that the call φx(x) —i.e.,
h(x, x)— ended in m steps. Therefore,

• for step counts y = 0, 1, 2, . . . ,m − 1 the computation of h(x, x) has
not yet hit stop, so the top case of definition (1) holds. We get

for y =0, 1, . . . , m− 1
φk(x)(y)=0, 0, . . . , 0

• for step counts y = m,m + 1,m + 2, . . . the computation of h(x, x)
has already halted (it hit stop), so the bottom case of definition (1)
holds. We get

for y =m, m+ 1, m+ 2, . . .
φk(x)(y)=↑, ↑, ↑, . . .

for short:

φx(x) ↓ =⇒ φk(x) =

length m︷ ︸︸ ︷
(0, 0, . . . , 0) (3)

In

φk(x) =

length m︷ ︸︸ ︷
(0, 0, . . . , 0)

we depict the function φk(x) as an array of m output values.

� Two things: One, in English, when φx(x) ↓, the function φk(x) is NOT a
constant! Not even total!

Two, m depends on x, of course, when said x brings us to case (B). Re-
gardless, the non-constant / non total nature of φk(x) is still a fact; just

the length m of the finite array

length m︷ ︸︸ ︷
(0, 0, . . . , 0) changes. �

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

12

Our analysis yielded:

φk(x) =

{
λy.0 if φx(x) ↑
not a constant function if φx(x) ↓

(4)

We conclude now as follows for A = {x : φx is a constant}:

k(x) ∈ A iff φk(x) is a constant iff the top case of (4) applies iff φx(x) ↑

That is, x ∈ K ≡ k(x) ∈ A, hence K ≤ A. �

0.4.3 Example. Prove (again) that B = {x : φx ∈ R} = {x : φx is total} is
not semi-recursive.

We piggy back on the previous example and the same f through which we
found a k ∈ R such that

φk(x) =

λy.0 if φx(x) ↑

length m︷ ︸︸ ︷
(0, 0, . . . , 0) if φx(x) ↓

(5)

The above is (4) of the previous example, but we will use different words now

for the bottom case, which we displayed explicitly in (5). Note that

length m︷ ︸︸ ︷
(0, 0, . . . , 0)

is a non-recursive (nontotal) function listed as a finite array of outputs. Thus
we have

φk(x) =

{
λy.0 if φx(x) ↑
nontotal function if φx(x) ↓

(6)

and therefore

k(x) ∈ B iff φk(x) is total iff the top case of (6) applies iff φx(x) ↑

That is, x ∈ K ≡ k(x) ∈ B, hence K ≤ B. �

0.4.4 Example. In Notes #7, Exercise 0.2.11 I ask you to prove that D =
{x : ran(φx) is infinite} is not recursive. This is directly based on Example
0.2.10 of Notes #7, and the work on the complement of D, that was called
C = {x : ran(φx) is finite} in said example.

Here I show that D actually is not semi-recursive either, a fact that fur-
nishes an example of a set that neither it, nor its complement are semi-recursive!

We (heavily) piggy back on Example 0.4.2 above. We want to find j ∈ R
such that

φj(x) =

{
inf. range if φx(x) ↑
finite range if φx(x) ↓

(∗)

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

0.4. Some tricky reductions 13

OK, define ψ (almost) like f of Example 0.4.2 by

ψ(x, y) =

{
y if the computation φx(x) has still not hit stop after y steps

↑ othw

other than the trivial difference (function name) the important difference is that
we force infinite range in the top case by outputting the input y.

The argument that ψ ∈ P goes as the one for f in Example 0.4.2. The
only difference is that in the algorithm (0)–(3) we change “Return 0” to
“Return y”.

The question ψ ∈ P settled, by S-m-n there is a j ∈ R such that

φj(x)(y) =

{
y if the computation φx(x) has not hit stop after y steps

↑ othw
(†)

Analysis of (†) in terms of the “key” conditions φx(x) ↑ and φx(x) ↓:

(I) Case where φx(x) ↑.
Then, for all input values y, φx(x) is still not at stop after y steps. Thus
by (†), we have φj(x)(y) = y, for all y, that is,

φx(x) ↑ =⇒ φj(x) = λy.y (1)

(II) Case where φx(x) ↓. Let m = smallest y such that the call φx(x) —
i.e., h(x, x)— ended in m steps. Therefore, as before we find that for
y = 0, 1, . . . ,m− 1 we have φj(x)(y) = y, that is,

for y =0, 1, . . . , m− 1
φj(x)(y)=0, 1, . . . , m− 1

and as before,

for y =m, m+ 1, m+ 2, . . .
φj(x)(y)=↑, ↑, ↑, . . .

that is,

φx(x) ↓ =⇒ φj(x) = (0, 1, . . . ,m− 1) —finite range (2)

(1) and (2) say that we got (∗) —p.12— above. Thus

j(x) ∈ D iff ran(φj(x)) is infinite, iff we have the top case, iff φx(x) ↑

Thus K ≤ D via j. �

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

14

0.5. An application of the GraphTheorem

A definition like

f(x, y) =

{
0 if x ∈ K
↑ othw

(1)

is a special case of a so-called “Definition by Positive Cases”. That is

• The cases listed explicitly (here x ∈ K) are semi-recursive, but the “othw”
is not semi-recursive. Therefore, as the latter cannot be verified, we let
the function output be undefined in this case.

� In any definition by cases

g(~x) =

...

...

gi(~x) if Ri(~x)
...

...

we have
If Ri(~x) then gi(~x)

that is, we only need verify Ri(~x) —even if it is (primitive)recursive— to
select the answer gi(~x). However, in the (primitive)recursive case the
“othw” is the negation of R1(~x) ∨ R2(~x) ∨ . . . ∨ Rm(~x), where Rm(~x) is
the last explicit condition/case. By closure properties of R∗, the “othw”
case is recursive as well. �

• In a Definition by Positive Cases the gi are partial recursive.

The general form of Definition by Positive Cases is

g(~x) =

...
...

gi(~x) if Ri(~x)
...

...

gk(~x) if Rk(~x)

↑ othw

(2)

where the gi are in P and the Ri are in P∗.

� Note that P∗ is not closed under negation, thus the “othw” in (2) is not in
general semi-recursive. This is so in the case of (1) where the “othw” is x ∈ K. �

Does a definition like (2) yield a partial recursive g?

Yes:

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

0.5. An application of the GraphTheorem 15

0.5.1 Theorem. g in (2), under the stated conditions, is partial recursive.

Proof. We use the graph theorem, so it suffices to prove

y = g(~x) is semi-recursive (3)

Now, (3) is true precisely when g(~x) ↓ and the output is the number y. For
this to happen, some explicit condition Ri(~x) was true and y = gi(~x) was also
true. For short, y = gi(~x) ∧Ri(~x) was true. Thus we prove (3) by noting

y = g(~x) ≡ y = g1(~x) ∧R1(~x) ∨ y = g2(~x) ∧R2(~x) ∨ . . . ∨ y = gk(~x) ∧Rk(~x)

The rhs of ≡ is semi-recursive since each Ri(~x) is (given) and each y = gi(~x) is
(gi ∈ P and 0.3.1) at which point we invoke closure properties of P∗ (0.2.3). �

The immediate import of 0.5.1 is that, for example, we can prove without
using CT that functions given as in (1), p.14, are in P.

Intro to (un)Computability via URMs—Part II c© by George Tourlakis

	Recursively Enumerable Sets
	Some closure properties of decidable and semi-decidable relations
	Computable functions and their graphs
	Some tricky reductions
	An application of the GraphTheorem

