
A user-friendly
Introduction to
(un)Computability
and Unprovability
via “Church’s Thesis”
Part III

0.1. Recursively Enumerable Sets

In this section we explore the rationale behind the al-
ternative name “recursively enumerable” —r.e.— or “com-
putably enumerable” —c.e.— that is used in the literature
for the semi-recursive or semi-computable sets/predicates.

To avoid cumbersome codings (of n-tuples, by single
numbers) we restrict attention to the one variable case
in this section.

That is, our predicates are subsets of N.
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First we define:

0.1.1 Definition. A set A ⊆ N is called computably
enumerable (c.e.) or recursively enumerable (r.e.) pre-
cisely if one of the following cases holds:

• A = ∅

• A = ran(f), where f ∈ R.

�

� Thus, the c.e. or r.e. relations are exactly those we can
algorithmically enumerate as the set of outputs
of a (total) recursive function:

A = {f(0), f(1), f(2), . . . , f(x), . . .}

Hence the use of the term “c.e.” replaces the non techni-
cal term “algorithmically” (in “algorithmically” enumer-
able) by the technical term “computably”.

Note that we had to hedge and ask that A 6= ∅ for any
enumeration to take place, because no recursive function
(remember: these are total) can have an empty range. �
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Next we prove:

0.1.2 Theorem. (“c.e.” or “r.e.” vs. semi-recursive)
Any non empty semi-recursive relation A (A ⊆ N) is the
range of some (emphasis: total) recursive function of
one variable.

Conversely, every set A such that A = ran(f) —where
λx.f(x) is recursive— is semi-recursive (and, trivially,
nonempty).
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Before we prove the theorem, here is an example:

0.1.3 Example. The set {0} is c.e. Indeed, f = λx.0,
our familiar function Z, effects the enumeration with rep-
etitions (lots of them!)

x = 0 1 2 3 4 . . .
f(x)= 0 0 0 0 0 . . .

�

Proof. of Theorem 0.1.2.

(I) We prove the first sentence of the theorem.
So, let A 6= ∅ be semi-recursive.

By the projection theorem (see Notes #7) there is
a recursive relation Q(y, x) such that

x ∈ A ≡ (∃y)Q(y, x), for all x (1)

Thus, the totality of the x in A are the 2nd coor-
dinates of ALL pairs (y, x) that satisfy Q(y, x).

So, to enumerate all x ∈ A just enumerate all pairs
(y, x), and OUTPUT x just in case (y, x) ∈ Q.
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We enumerate all POSSIBLE PAIRS y, x by

(y = (z)0, x = (z)1)

for each z = 0, 1, 2, 3, . . ..

Recall that A 6= ∅. So fix an a ∈ A. f below does
the enumeration!

f(z) =

{
(z)1 if Q((z)0, (z)1)

a othw

The above is a definition by recursive cases hence
f is a recursive function, and the values x = (z)1
that it outputs for each z = 0, 1, 2, 3, . . . enumerate
A.

Intro to (un)Computability via URMs—Part II © by George Tourlakis



6

(II) Proof of the second sentence of the theorem.

So, let A = ran(f) —where f is recursive.

Thus,
x ∈ A ≡ (∃y)f(y) = x (1)

By Grz-Ops, plus the facts that z = x is in R∗ and
the assumption f ∈ R,

the relation f(y) = x is recursive.

By (1) we are done by the Projection Theorem.

�
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0.1.4 Corollary. An A ⊆ N is semi-recursive iff it is
r.e. (c.e.)

Proof. For nonempty A this is Theorem 0.1.2. For empty
A we note that this is r.e. by Definition 0.1.1 but is also
semi-recursive by ∅ ∈ PR∗ ⊆ R∗ ⊆ P∗. �

� Corollary 0.1.4 allows us to prove some non-semi-recursiveness
results by good old-fashioned Cantor diagonalisation.

See below. �

Intro to (un)Computability via URMs—Part II © by George Tourlakis



8

0.1.5 Theorem. The complete index set A = {x : φx ∈
R} is not semi-recursive.

� This sharpens the undecidability result for A that we es-
tablished in Note #7. �

Proof. Since c.e. = semi-recursive, we will prove instead
that A is not c.e.

If not, note first that A 6= ∅ —e.g., S ∈ R and thus
all φ-indices of A are in A.

Thus, theorem 0.1.2 applies and there is an f ∈ R
that enumerates A:

A = {f(0), f(1), f(2), f(3), . . .}

The above says: ALL programs for unary R-functions are f(i)’s.

Define now
d = λx.1 + φf(x)(x) (1)

Seeing that φf(x)(x) = U (P )(f(x), x) —you remember
U (P )?— we obtain d ∈ P .

But φf(x) is total since all the f(x) are φ-indices of
total functions by the underlined blue comment above.

By the same comment,

d = φf(i), for some i (2)
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Let us compute d(i): d(i) = 1 + φf(i)(i) by (1).

Also, d(i) = φf(i)(i) by (2),

thus
1 + φf(i)(i) = φf(i)(i)

which is a contradiction since both sides of “=” are
defined. �

� One can take as d different functions, for example, either
of d = λx.42 + φf(x)(x) or d = λx.1 .− φf(x)(x) works.
And infinitely many other choices do! �
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Lecture #17, Nov. 16

0.2. Some closure properties of decidable and
semi-decidable relations

We already know that

0.2.1 Theorem. R∗ is closed under all Boolean opera-
tions, ¬,∧,∨,→,≡, as well as under (∃y)<z and (∀y)<z.

How about closure properties of P∗?
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0.2.2 Theorem. P∗ is closed under ∧ and ∨. It is also
closed under (∃y), or, as we say, “under projection”.

Moreover it is closed under (∃y)<z and (∀y)<z.
It is not closed under negation (complement), nor un-

der (∀y).

Proof.

1. Let Q(~xn) be verified by a URM M , and S(~ym) be
verified by a URM N .

Here is how to semi-decide Q(~xn) ∨ S(~ym):

Given input ~xn, ~ym, we call machine M with input
~xn, and machine N with input ~ym and let them crank
simultaneously (as “co-routines”).

If either one halts, then halt everything! This is
the case of “yes” (input verified).

2. For ∧ it is almost the same, but our halting criterion
is different:

Here is how to semi-decide Q(~xn) ∧ S(~ym):

Given input ~xn, ~ym, we call machine M with input
~xn, and machine N with input ~ym and let them crank
simultaneously (“co-routines”).

If both halt, then halt everything!

By CT, each of the processes in 1. and 2. can be
implemented by some URM.
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3. The (∃y) is very interesting as it relies on the
Projection Theorem:

LetQ(y, ~xn) be semi-decidable. Then, by Projection
Theorem, a decidable P (z, y, ~xn) exists such that

Q(y, ~xn) ≡ (∃z)P (z, y, ~xn) (1)

It follows that

(∃y)Q(y, ~xn) ≡ (∃y)(∃z)P (z, y, ~xn) (2)

This does not settle the story, as I cannot readily
conclude that (∃y)(∃z)P (z, y, ~xn) is semi-decidable
Ibecause the Projection Theorem requires a single
(∃y) in front of a decidable predicate!

Well, instead of saying that there are two values
z and y that verify (along with ~xn) the predicate
P (z, y, ~xn), I can say there is a PAIR of values (z, y).

In fact I can CODE the pair as w = 〈z, y〉 and say
there is ONE value, w:

(∃w)P (

z︷︸︸︷
(w)0,

y︷︸︸︷
(w)1, ~xn)

and thus I have —by (2) and the above—

(∃y)Q(y, ~xn) ≡ (∃w)P ((w)0, (w)1, ~xn) (3)
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But since P ((w)0, (w)1, ~xn) is recursive by the de-
cidability of P and Grz-Ops, we end up in (3) quan-
tifying the decidable P ((w)0, (w)1, ~xn) with just one
(∃w). The Projection Theorem now applies!

4. For (∃y)<zQ(y, ~x), where Q(y, ~x) is semi-recursive,
we first note that

(∃y)<zQ(y, ~x) ≡ (∃y)
(
y < z ∧Q(y, ~x)

)
(∗)

By PR∗ ⊆ R∗ ⊆ P∗, y < z is semi-recursive. By
closure properties established SO FAR in this proof,
the rhs of ≡ in (∗) is semi-recursive, thus so is the
lhs.
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5. For (∀y)<zQ(y, ~x), where Q(y, ~x) is semi-recursive,
we first note that (by Strong Projection) a decid-
able P exists such that

Q(y, ~x) ≡ (∃w)P (w, y, ~x)

By the above equivalence, we need to prove that

(∀y)<z(∃w)P (w, y, ~x) is semi-recursive (∗∗)

(∗∗) says that

for each y = 0, 1, 2, . . . , z − 1 there is a w-value wy

—likely dependent on y— so that P (wy, y, ~x) holds

Since all those wy are finitely many (z many!) there
is a value u bigger than all of them (for example,
take u = max(w0, . . . , wz−1) + 1). Thus (∗∗) says
(i.e., is equivalent to)

(∃u)(∀y)<z(∃w)<uP (w, y, ~x)

The blue part of the above is decidable (by closure
properties of R∗, since P ∈ R∗ —you may peek at
0.2.1). We are done by strong projection.
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6. Why is P∗ not closed under negation (complement)?

Because we know that K ∈ P∗, but also know that
K /∈ P∗.

7. Why is P∗ not closed under (∀y)?

Well,
x ∈ K ≡ (∃y)Q(y, x) (1)

for some recursive Q (Projection Theorem) and by
the known fact (quoted again above) that K ∈ P∗.

(1) is equivalent to

x ∈ K ≡ ¬(∃y)Q(y, x)

which in turn is equivalent to

x ∈ K ≡ (∀y)¬Q(y, x) (2)

Now, by closure properties ofR∗ See 0.2.1), ¬Q(y, x)
is recursive, hence also is in P∗ since R∗ ⊆ P∗.

Therefore, if P∗ were closed under (∀y), then the above
(∀y)¬Q(y, x) would be semi-recursive.

But that is x ∈ K ! �
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0.3. Some tricky reductions

This section highlights a more sophisticated reduction
scheme that improves our ability to effect reductions of
the type K ≤ A.
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0.3.1 Example. Prove that A = {x : φx is a constant}
is not semi-recursive. This is not amenable to the tech-
nique of saying “OK, if A is semi-recursive, then it is r.e.
Let me show that it is not so by diagonalisation”. This
worked for B = {x : φx is total} but no obvious diago-
nalisation comes to mind for A.

Nor can we simplistically say, OK, start by defining

g(x, y) =

{
0 if x ∈ K
↑ othw

The problem is that if we plan next to say “by CT g is partial
recursive hence by S-m-n, etc.”, we shouldn’t!

The underlined part is wrong: g /∈ P , provably!

I For if it is computable, then so is λx.g(x, x) by Grz-
Ops.

But

g(x, x) ↓ iff we have the top case, iff x ∈ K

In short,
x ∈ K ≡ g(x, x) ↓

which proves thatK ∈ P∗ using the verifier for “g(x, x) ↓”.
Contradiction. �
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0.3.2 Example. (0.3.1 continued) Now, “Plan B” is
to “approximate” the top condition φx(x) ↑ (same as
x ∈ K).

The idea is that, “practically”, if the computation
φx(x) after a “huge” number of steps y has still not
hit stop, this situation approximates —let me say once
more, “practically”— the situation φx(x) ↑. This fuzzy
thinking suggests that we try next

f(x, y) =

{
0 if φx(x) did not return in ≤ y steps

↑ othw

If the top condition is true for a given x it means
that at step y the URM that we picked to compute φx(x)
has not hit stop yet.

The “othw” says, of course, that the computation of
the call φx(x) —or U (P )(x, x)— did return in y steps or
fewer.

Next step is to invoke an S-m-n theorem application,
so we must show that f defined above is computable.
Well here is an informal algorithm:

(0) proc f(x, y)
(1) Call φx(x) ; keep count of computation steps
(2) Return 0 if φx(x) did not return in ≤ y steps
(3) “Loop” if φx(x) returned in ≤ y steps
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Of course, the “command” Loop means

“transfer to the subprogram” while 1=1 do { }

By CT, the pseudo algorithm (0)–(3) is implementable
as a URM. That is, f ∈ P.

By S-m-n applied to f there is a recursive k such that

φk(x)(y) =

{
0 if φx(x) did not return in ≤ y steps

↑ othw

(1)
Analysis of (1) in terms of the “key” conditions

φx(x) ↑ and φx(x) ↓:

(A) Case where φx(x) ↑.
Then, φx(x) did not halt in y steps, for any y!

Thus, by (1), we have φk(x)(y) = 0, for all y, that
is,

φx(x) ↑ =⇒ φk(x) = λy.0 (2)
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(B) Case where φx(x) ↓. Let m = smallest y such that
the call φx(x) ended in m steps. Therefore,

• for step counts y = 0, 1, 2, . . . ,m−1 the compu-
tation of U (P )(x, x) has not yet hit stop, so the
top case of definition (1) holds. We get

for y =0, 1, . . . , m− 1
φk(x)(y)=0, 0, . . . , 0

• for step counts y = m,m + 1,m + 2, . . . the
computation of U (P )(x, x) has already halted (it
hit stop), so the bottom case of definition (1)
holds. We get

for y =m, m+ 1, m+ 2, . . .

φk(x)(y)=↑, ↑, ↑, . . .

for short:

φx(x) ↓ =⇒ φk(x) =

length m︷ ︸︸ ︷
(0, 0, . . . , 0) (3)

In

φk(x) =

length m︷ ︸︸ ︷
(0, 0, . . . , 0)

we depict the function φk(x) as an array of its
m output values.
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� Thus, in Plain English, when φx(x) ↓, the function
φk(x) is NOT a constant! Not even total! �

Our analysis yielded:

φk(x) =

{
λy.0 if φx(x) ↑
not a constant function if φx(x) ↓

(4)

We conclude now as follows for A = {x : φx is a constant}:

k(x) ∈ A iff φk(x) is a constant iff the top case of (4) applies

iff φx(x) ↑

That is, x ∈ K ≡ k(x) ∈ A, hence K ≤ A. �
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0.3.3 Example. Prove (again) that B = {x : φx ∈
R} = {x : φx is total} is not semi-recursive.

We piggy back on the previous example and the same
f through which we found a k ∈ R such that

φk(x) =


λy.0 if φx(x) ↑

length m︷ ︸︸ ︷
(0, 0, . . . , 0) if φx(x) ↓

(5)

The above is (4) of the previous example, but we will
use different English words to describe the bottom case,
which we displayed explicitly in (5).

Note that

length m︷ ︸︸ ︷
(0, 0, . . . , 0) is a non-recursive (nontotal)

function listed as a finite array of outputs. Thus we
have

φk(x) =

{
λy.0 if φx(x) ↑
nontotal function if φx(x) ↓

(6)

and therefore

k(x) ∈ B iff φk(x) is total iff the top case of (6) applies iff φx(x) ↑

That is, x ∈ K ≡ k(x) ∈ B, hence K ≤ B. �
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0.3.4 Example. We will prove that D = {x : ran(φx) is
infinite} is not semi-recursive.

We (heavily) piggy back on Example 0.3.2 above.

We want to find j ∈ R such that

φj(x) =

{
inf. range if φx(x) ↑
finite range if φx(x) ↓

(∗)

OK, define ψ (almost) like f of Example 0.3.2 by

ψ(x, y) =

{
y if the call φx(x) did not return in ≤ y steps

↑ othw

Other than the trivial difference (function name) the
important difference is that we force infinite range in the
top case by outputting the input y.

The argument that ψ ∈ P goes as the one for f in Ex-
ample 0.3.2. The only difference is that in the algorithm
(0)–(3) we change “Return 0” to “Return y”.

The question ψ ∈ P settled, by S-m-n there is a j ∈ R
such that

φj(x)(y) =

{
y if the call φx(x) returns in ≤ y steps

↑ othw

(†)
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Analysis of (†) in terms of the “key” conditions
φx(x) ↑ and φx(x) ↓:

(I) Case where φx(x) ↑.
Then, for all input values y, φx(x) is still not at
stop after y steps. Thus by (†), we have φj(x)(y) =
y, for all y, that is,

φx(x) ↑ =⇒ φj(x) = λy.y (1)

(II) Case where φx(x) ↓. Let m = smallest y such
that the call φx(x) returned in m steps.

As before we find that for y = 0, 1, . . . ,m− 1 we
have φj(x)(y) = y, that is,

for y =0, 1, . . . , m− 1
φj(x)(y)=0, 1, . . . , m− 1

and as before,

for y =m, m+ 1, m+ 2, . . .

φj(x)(y)=↑, ↑, ↑, . . .

that is,

φx(x) ↓ =⇒ φj(x) = (0, 1, . . . ,m−1) —finite range
(2)

(1) and (2) say that we got (∗) —p.23— above.
Thus

j(x) ∈ D iff ran(φj(x)) infinite iff top case holds, iff φx(x) ↑

Thus K ≤ D via j. �
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