A user-friendly Introduction to (un)Computability and Unprovability via "Church's Thesis" Part III

0.1. Recursively Enumerable Sets

In this section we explore the rationale behind the alternative name "recursively enumerable" -r.e.- or "computably enumerable" - c.e.- that is used in the literature for the semi-recursive or semi-computable sets/predicates.

To avoid cumbersome codings (of n-tuples, by single numbers) we restrict attention to the one variable case in this section.

That is, our predicates are subsets of \mathbb{N}.

First we define:
0.1.1 Definition. A set $A \subseteq \mathbb{N}$ is called computably enumerable (c.e.) or recursively enumerable (r.e.) precisely if one of the following cases holds:

- $A=\emptyset$
- $A=\operatorname{ran}(f)$, where $f \in \mathcal{R}$.
(2)Thus, the c.e. or r.e. relations are exactly those we can algorithmically enumerate as the set of outputs of a (total) recursive function:

$$
A=\{f(0), f(1), f(2), \ldots, f(x), \ldots\}
$$

Hence the use of the term "c.e." replaces the non technical term "algorithmically" (in "algorithmically" enumerable) by the technical term "computably".

Note that we had to hedge and ask that $A \neq \emptyset$ for any enumeration to take place, because no recursive function (remember: these are total) can have an empty range.

Next we prove:

0.1.2 Theorem. ("c.e." or "r.e." vs. semi-recursive)

 Any non empty semi-recursive relation $A(A \subseteq \mathbb{N})$ is the range of some (emphasis: total) recursive function of one variable.Conversely, every set A such that $A=\operatorname{ran}(f)$-where $\lambda x . f(x)$ is recursive - is semi-recursive (and, trivially, nonempty).

Before we prove the theorem, here is an example:
0.1.3 Example. The set $\{0\}$ is c.e. Indeed, $f=\lambda x .0$, our familiar function Z, effects the enumeration with repetitions (lots of them!)
$x \quad=\begin{array}{llllll}0 & 1 & 2 & 3 & 4 & \ldots\end{array}$
$f(x)=0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \ldots$

Proof. of Theorem 0.1.2.
(I) We prove the first sentence of the theorem. So, let $A \neq \emptyset$ be semi-recursive.
By the projection theorem (see Notes \#7) there is a recursive relation $Q(y, x)$ such that

$$
\begin{equation*}
x \in A \equiv(\exists y) Q(y, x), \text { for all } x \tag{1}
\end{equation*}
$$

Thus, the totality of the x in A are the $2 n d$ coordinates of ALL pairs (y, x) that satisfy $Q(y, x)$.

So, to enumerate all $x \in A$ just enumerate all pairs (y, x), and OUTPUT x just in case $(y, x) \in Q$.

We enumerate all POSSIBLE PAIRS y, x by

$$
\left(y=(z)_{0}, \quad x=(z)_{1}\right)
$$

for each $z=0,1,2,3, \ldots$.

Recall that $A \neq \emptyset$. So fix an $a \in A . ~ f$ below does the enumeration!

$$
f(z)= \begin{cases}(z)_{1} & \text { if } Q\left((z)_{0},(z)_{1}\right) \\ a & \text { othw }\end{cases}
$$

The above is a definition by recursive cases hence $\underline{f \text { is a recursive function, and the values } x=(z)_{1}}$ that it outputs for each $z=0,1,2,3, \ldots$ enumerate A.
(II) Proof of the second sentence of the theorem.

So, let $A=\operatorname{ran}(f)$-where f is recursive.

Thus,

$$
\begin{equation*}
x \in A \equiv(\exists y) f(y)=x \tag{1}
\end{equation*}
$$

By Grz-Ops, plus the facts that $z=x$ is in \mathcal{R}_{*} and the assumption $f \in \mathcal{R}$, the relation $f(y)=x$ is recursive.

By (1) we are done by the Projection Theorem.
0.1.4 Corollary. $A n A \subseteq \mathbb{N}$ is semi-recursive iff it is r.e. (c.e.)

Proof. For nonempty A this is Theorem 0.1.2. For empty A we note that this is r.e. by Definition 0.1.1 but is also semi-recursive by $\emptyset \in \mathcal{P} \mathcal{R}_{*} \subseteq \mathcal{R}_{*} \subseteq \mathcal{P}_{*}$.
(2) Corollary 0.1.4 allows us to prove some non-semi-recursiveness

See below.
0.1.5 Theorem. The complete index set $A=\left\{x: \phi_{x} \in\right.$ $\mathcal{R}\}$ is not semi-recursive.
(2) This sharpens the undecidability result for A that we established in Note \#7.

Proof. Since c.e. $=$ semi-recursive, we will prove instead that A is not c.e.

If not, note first that $A \neq \emptyset-$ e.g., $S \in \mathcal{R}$ and thus all ϕ-indices of A are in A.

Thus, theorem 0.1.2 applies and there is an $f \in \mathcal{R}$ that enumerates A :

$$
A=\{f(0), f(1), f(2), f(3), \ldots\}
$$

The above says: ALL programs for unary \mathcal{R}-functions are $f(i)$'s.
Define now

$$
\begin{equation*}
d=\lambda x .1+\phi_{f(x)}(x) \tag{1}
\end{equation*}
$$

Seeing that $\phi_{f(x)}(x)=U^{(P)}(f(x), x)$ - you remember $U^{(P)}$? - we obtain $d \in \mathcal{P}$.

But $\phi_{f(x)}$ is total since all the $f(x)$ are ϕ-indices of total functions by the underlined blue comment above.

By the same comment,

$$
\begin{equation*}
d=\phi_{f(i)}, \text { for some } i \tag{2}
\end{equation*}
$$

Intro to (un)Computability via URMs_Part II © by George Tourlakis

Let us compute $d(i): d(i)=1+\phi_{f(i)}(i)$ by (1).
Also, $d(i)=\phi_{f(i)}(i)$ by (2),
thus

$$
1+\phi_{f(i)}(i)=\phi_{f(i)}(i)
$$

which is a contradiction since both sides of "=" are defined.
(2) One can take as d different functions, for example, either of $d=\lambda x .42+\phi_{f(x)}(x)$ or $d=\lambda x .1-\phi_{f(x)}(x)$ works. And infinitely many other choices do!

Lecture \#17, Nov. 16

0.2. Some closure properties of decidable and semi-decidable relations

We already know that
0.2.1 Theorem. \mathcal{R}_{*} is closed under all Boolean operations, $\neg, \wedge, \vee, \rightarrow, \equiv$, as well as under $(\exists y)_{<z}$ and $(\forall y)_{<z}$.

How about closure properties of \mathcal{P}_{*} ?
0.2.2 Theorem. \mathcal{P}_{*} is closed under \wedge and \vee. It is also closed under ($\exists y$), or, as we say, "under projection".

Moreover it is closed under $(\exists y)_{<z}$ and $(\forall y)_{<z}$.
It is not closed under negation (complement), nor un$\operatorname{der}(\forall y)$.

Proof.

1. Let $Q\left(\vec{x}_{n}\right)$ be verified by a URM M, and $S\left(\vec{y}_{m}\right)$ be verified by a URM N.
Here is how to semi-decide $Q\left(\vec{x}_{n}\right) \vee S\left(\vec{y}_{m}\right)$:
Given input \vec{x}_{n}, \vec{y}_{m}, we call machine M with input \vec{x}_{n}, and machine N with input \vec{y}_{m} and let them crank simultaneously (as "co-routines").

If either one halts, then halt everything! This is the case of "yes" (input verified).
2. For \wedge it is almost the same, but our halting criterion is different:

Here is how to semi-decide $Q\left(\vec{x}_{n}\right) \wedge S\left(\vec{y}_{m}\right)$:
Given input \vec{x}_{n}, \vec{y}_{m}, we call machine M with input \vec{x}_{n}, and machine N with input \vec{y}_{m} and let them crank simultaneously ("co-routines").
If both halt, then halt everything!

By CT, each of the processes in 1. and 2. can be implemented by some URM.
3. The $(\exists y)$ is very interesting as it relies on the Projection Theorem:

Let $Q\left(y, \vec{x}_{n}\right)$ be semi-decidable. Then, by Projection Theorem, a decidable $P\left(z, y, \vec{x}_{n}\right)$ exists such that

$$
\begin{equation*}
Q\left(y, \vec{x}_{n}\right) \equiv(\exists z) P\left(z, y, \vec{x}_{n}\right) \tag{1}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
(\exists y) Q\left(y, \vec{x}_{n}\right) \equiv(\exists y)(\exists z) P\left(z, y, \vec{x}_{n}\right) \tag{2}
\end{equation*}
$$

This does not settle the story, as I cannot readily conclude that $(\exists y)(\exists z) P\left(z, y, \vec{x}_{n}\right)$ is semi-decidable - because the Projection Theorem requires a single $(\exists y)$ in front of a decidable predicate!

Well, instead of saying that there are two values z and y that verify (along with \vec{x}_{n}) the predicate $P\left(z, y, \vec{x}_{n}\right)$, I can say there is a PAIR of values (z, y).

In fact I can CODE the pair as $w=\langle z, y\rangle$ and say there is ONE value, w :
$(\exists w) P(\overbrace{(w)_{0}}^{z}, \overbrace{(w)_{1}}^{y}, \vec{x}_{n})$
and thus I have - by (2) and the above -

$$
\begin{equation*}
(\exists y) Q\left(y, \vec{x}_{n}\right) \equiv(\exists w) P\left((w)_{0},(w)_{1}, \vec{x}_{n}\right) \tag{3}
\end{equation*}
$$

But since $P\left((w)_{0},(w)_{1}, \vec{x}_{n}\right)$ is recursive by the decidability of P and Grz-Ops, we end up in (3) quantifying the decidable $P\left((w)_{0},(w)_{1}, \vec{x}_{n}\right)$ with just one $(\exists w)$. The Projection Theorem now applies!
4. For $(\exists y)_{<z} Q(y, \vec{x})$, where $Q(y, \vec{x})$ is semi-recursive, we first note that

$$
(\exists y)_{<z} Q(y, \vec{x}) \equiv(\exists y)(y<z \wedge Q(y, \vec{x})) \quad(*)
$$

By $\mathcal{P} \mathcal{R}_{*} \subseteq \mathcal{R}_{*} \subseteq \mathcal{P}_{*}, y<z$ is semi-recursive. By closure properties established SO FAR in this proof, the rhs of \equiv in $(*)$ is semi-recursive, thus so is the lhs.
5. For $(\forall y)_{<z} Q(y, \vec{x})$, where $Q(y, \vec{x})$ is semi-recursive, we first note that (by Strong Projection) a decidable P exists such that

$$
Q(y, \vec{x}) \equiv(\exists w) P(w, y, \vec{x})
$$

By the above equivalence, we need to prove that

$$
(\forall y)_{<z}(\exists w) P(w, y, \vec{x}) \text { is semi-recursive } \quad(* *)
$$

(**) says that
for each $y=0,1,2, \ldots, z-1$ there is a w-value w_{y} -likely dependent on y - so that $P\left(w_{y}, y, \vec{x}\right)$ holds

Since all those w_{y} are finitely many (z many!) there is a value u bigger than all of them (for example, take $\left.u=\max \left(w_{0}, \ldots, w_{z-1}\right)+1\right)$. Thus $(* *)$ says (i.e., is equivalent to)

$$
(\exists u)(\forall y)_{<z}(\exists w)_{<u} P(w, y, \vec{x})
$$

The blue part of the above is decidable (by closure properties of \mathcal{R}_{*}, since $P \in \mathcal{R}_{*}$ - you may peek at 0.2.1). We are done by strong projection.
6. Why is \mathcal{P}_{*} not closed under negation (complement)? Because we know that $K \in \mathcal{P}_{*}$, but also know that $\bar{K} \notin \mathcal{P}_{*}$.
7. Why is \mathcal{P}_{*} not closed under $(\forall y)$?

Well,

$$
\begin{equation*}
x \in K \equiv(\exists y) Q(y, x) \tag{1}
\end{equation*}
$$

for some recursive Q (Projection Theorem) and by the known fact (quoted again above) that $K \in \mathcal{P}_{*}$.
(1) is equivalent to

$$
x \in \bar{K} \equiv \neg(\exists y) Q(y, x)
$$

which in turn is equivalent to

$$
\begin{equation*}
x \in \bar{K} \equiv(\forall y) \neg Q(y, x) \tag{2}
\end{equation*}
$$

Now, by closure properties of \mathcal{R}_{*} See 0.2 .1$), \neg Q(y, x)$ is recursive, hence also is in \mathcal{P}_{*} since $\mathcal{R}_{*} \subseteq \mathcal{P}_{*}$.

Therefore, if \mathcal{P}_{*} were closed under $(\forall y)$, then the above $(\forall y) \neg Q(y, x)$ would be semi-recursive.
But that is $x \in \bar{K}$!

0.3. Some tricky reductions

This section highlights a more sophisticated reduction scheme that improves our ability to effect reductions of the type $\bar{K} \leq A$.
0.3.1 Example. Prove that $A=\left\{x: \phi_{x}\right.$ is a constant $\}$ is not semi-recursive. This is not amenable to the technique of saying "OK, if A is semi-recursive, then it is r.e. Let me show that it is not so by diagonalisation". This worked for $B=\left\{x: \phi_{x}\right.$ is total $\}$ but no obvious diagonalisation comes to mind for A.

Nor can we simplistically say, OK, start by defining

$$
g(x, y)= \begin{cases}0 & \text { if } x \in \bar{K} \\ \uparrow & \text { othw }\end{cases}
$$

The problem is that if we plan next to say "by CT g is partial recursive hence by $S-m-n$, etc.", we shouldn't!

The underlined part is wrong: $g \notin \mathcal{P}$, provably!

- For if it is computable, then so is $\lambda x . g(x, x)$ by GrzOps.

But

$$
g(x, x) \downarrow \text { iff we have the top case, iff } x \in \bar{K}
$$

In short,

$$
x \in \bar{K} \equiv g(x, x) \downarrow
$$

which proves that $\bar{K} \in \mathcal{P}_{*}$ using the verifier for " $g(x, x) \downarrow$ ". Contradiction.
0.3.2 Example. (0.3.1 continued) Now, "Plan B " is to "approximate" the top condition $\phi_{x}(x) \uparrow$ (same as $x \in \bar{K})$.

The idea is that, "practically", if the computation $\phi_{x}(x)$ after a "huge" number of steps y has still not hit stop, this situation approximates - let me say once more, "practically" - the situation $\phi_{x}(x) \uparrow$. This fuzzy thinking suggests that we try next

$$
f(x, y)= \begin{cases}0 & \text { if } \phi_{x}(x) \text { did not return in } \leq y \text { steps } \\ \uparrow & \text { othw }\end{cases}
$$

If the top condition is true for a given x it means that at step y the URM that we picked to compute $\phi_{x}(x)$ has not hit stop yet.

The "othw" says, of course, that the computation of the call $\phi_{x}(x)$-or $U^{(P)}(x, x)$ - did return in y steps or fewer.

Next step is to invoke an S-m-n theorem application, so we must show that f defined above is computable. Well here is an informal algorithm:
(0) proc $\quad f(x, y)$
(1) Call $\phi_{x}(x)$; keep count of computation steps
(2) Return 0 if $\phi_{x}(x)$ did not return in $\leq y$ steps (3) "Loop" if $\phi_{x}(x)$ returned in $\leq y$ steps

Of course, the "command" Loop means
"transfer to the subprogram" while $1=1$ do $\}$
By CT, the pseudo algorithm (0)-(3) is implementable as a URM. That is, $f \in \mathcal{P}$.

By S-m-n applied to f there is a recursive k such that

$$
\phi_{k(x)}(y)= \begin{cases}0 & \text { if } \phi_{x}(x) \text { did not return in } \leq y \text { steps } \tag{1}\\ \uparrow & \text { othw }\end{cases}
$$

Analysis of (1) in terms of the "key" conditions $\phi_{x}(x) \uparrow$ and $\phi_{x}(x) \downarrow:$
(A) Case where $\phi_{x}(x) \uparrow$.

Then, $\phi_{x}(x)$ did not halt in y steps, for any y !
Thus, by (1), we have $\phi_{k(x)}(y)=0$, for all y, that is,

$$
\begin{equation*}
\phi_{x}(x) \uparrow \Longrightarrow \phi_{k(x)}=\lambda y .0 \tag{2}
\end{equation*}
$$

(B) Case where $\phi_{x}(x) \downarrow$. Let $m=$ smallest y such that the call $\phi_{x}(x)$ ended in m steps. Therefore,

- for step counts $y=0,1,2, \ldots, m-1$ the computation of $U^{(P)}(x, x)$ has not yet hit stop, so the top case of definition (1) holds. We get
for $y \quad=0, \quad 1, \quad \ldots, \quad m-1$
$\phi_{k(x)}(y)=0, \quad 0, \quad \ldots, \quad 0$
- for step counts $y=m, m+1, m+2, \ldots$ the computation of $U^{(P)}(x, x)$ has already halted (it hit stop), so the bottom case of definition (1) holds. We get
$\begin{array}{lllll}\text { for } y & =m, & m+1, & m+2, & \ldots \\ \phi_{k(x)}(y) & =\uparrow, & \uparrow, & \uparrow, & \ldots\end{array}$ for short:

$$
\begin{equation*}
\phi_{x}(x) \downarrow \Longrightarrow \phi_{k(x)}=\overbrace{(0,0, \ldots, 0)}^{\text {length } m} \tag{3}
\end{equation*}
$$

In

$$
\phi_{k(x)}=\overbrace{(0,0, \ldots, 0)}^{\text {length } m}
$$

we depict the function $\phi_{k(x)}$ as an array of its m output values.
(2)Thus, in Plain English, when $\phi_{x}(x) \downarrow$, the function $\phi_{k(x)}$ is NOT a constant! Not even total!

Our analysis yielded:

$$
\phi_{k(x)}= \begin{cases}\lambda y .0 & \text { if } \phi_{x}(x) \uparrow \tag{4}\\ \text { not a constant function } & \text { if } \phi_{x}(x) \downarrow\end{cases}
$$

We conclude now as follows for $A=\left\{x: \phi_{x}\right.$ is a constant $\}$:
$k(x) \in A$ iff $\phi_{k(x)}$ is a constant iff the top case of (4) applies

$$
\text { iff } \phi_{x}(x) \uparrow
$$

That is, $x \in \bar{K} \equiv k(x) \in A$, hence $\bar{K} \leq A$.
0.3.3 Example. Prove (again) that $B=\left\{x: \phi_{x} \in\right.$ $\mathcal{R}\}=\left\{x: \phi_{x}\right.$ is total $\}$ is not semi-recursive.

We piggy back on the previous example and the same f through which we found a $k \in \mathcal{R}$ such that

$$
\phi_{k(x)}= \begin{cases}\lambda y .0 & \text { if } \phi_{x}(x) \uparrow \tag{5}\\ \overbrace{(0,0, \ldots, 0)}^{\text {length } m} & \text { if } \phi_{x}(x) \downarrow\end{cases}
$$

The above is (4) of the previous example, but we will use different English words to describe the bottom case, which we displayed explicitly in (5).

Note that $\overbrace{(0,0, \ldots, 0)}^{\text {length } m}$ is a non-recursive (nontotal) function listed as a finite array of outputs. Thus we have

$$
\phi_{k(x)}= \begin{cases}\lambda y .0 & \text { if } \phi_{x}(x) \uparrow \tag{6}\\ \text { nontotal function } & \text { if } \phi_{x}(x) \downarrow\end{cases}
$$

and therefore
$k(x) \in B$ iff $\phi_{k(x)}$ is total iff the top case of (6) applies iff $\phi_{x}(x) \uparrow$ That is, $x \in \bar{K} \equiv k(x) \in B$, hence $\bar{K} \leq B$.
0.3.4 Example. We will prove that $D=\left\{x: \operatorname{ran}\left(\phi_{x}\right)\right.$ is infinite\} is not semi-recursive.

We (heavily) piggy back on Example 0.3.2 above.
We want to find $j \in \mathcal{R}$ such that

$$
\phi_{j(x)}= \begin{cases}\text { inf. range } & \text { if } \phi_{x}(x) \uparrow \tag{*}\\ \text { finite range } & \text { if } \phi_{x}(x) \downarrow\end{cases}
$$

OK, define ψ (almost) like f of Example 0.3 .2 by
$\psi(x, y)= \begin{cases}y & \text { if the call } \phi_{x}(x) \text { did not return in } \leq y \text { steps } \\ \uparrow & \text { othw }\end{cases}$

Other than the trivial difference (function name) the important difference is that we force infinite range in the top case by outputting the input y.

The argument that $\psi \in \mathcal{P}$ goes as the one for f in Example 0.3 .2 . The only difference is that in the algorithm (0)-(3) we change "Return 0" to "Return y ".

The question $\psi \in \mathcal{P}$ settled, by S-m-n there is a $j \in \mathcal{R}$ such that

$$
\phi_{j(x)}(y)= \begin{cases}y & \text { if the call } \phi_{x}(x) \text { returns in } \leq y \text { steps } \\ \uparrow & \text { othw }\end{cases}
$$

Analysis of (\dagger) in terms of the "key" conditions $\phi_{x}(x) \uparrow$ and $\phi_{x}(x) \downarrow:$
(I) Case where $\phi_{x}(x) \uparrow$.

Then, for all input values $y, \phi_{x}(x)$ is still not at stop after y steps. Thus by (\dagger), we have $\phi_{j(x)}(y)=$ y, for all y, that is,

$$
\begin{equation*}
\phi_{x}(x) \uparrow \Longrightarrow \phi_{j(x)}=\lambda y . y \tag{1}
\end{equation*}
$$

(II) Case where $\phi_{x}(x) \downarrow$. Let $m=$ smallest y such that the call $\phi_{x}(x)$ returned in m steps.

As before we find that for $y=0,1, \ldots, m-1$ we have $\phi_{j(x)}(y)=y$, that is,
for $y \quad=0, \quad 1, \quad \ldots, \quad m-1$

$$
\phi_{j(x)}(y)=0, \quad 1, \quad \ldots, \quad m-1
$$

and as before,

$$
\begin{array}{cllll}
\text { for } y & =m, & m+1, & m+2, & \cdots \\
\phi_{j(x)}(y)=\uparrow, & \uparrow, & \uparrow, & \cdots
\end{array}
$$

that is,
$\phi_{x}(x) \downarrow \Longrightarrow \phi_{j(x)}=(0,1, \ldots, m-1)$ —finite range
(1) and (2) say that we got (*) - p.23- above. Thus
$j(x) \in D$ iff $\operatorname{ran}\left(\phi_{j(x)}\right)$ infinite iff top case holds, iff $\phi_{x}(x) \uparrow$

Thus $\bar{K} \leq D$ via j.

