A user-friendly Introduction to (un)Computability and Unprovability via "Church's Thesis" Part III

0.1. Recursively Enumerable Sets

In this section we explore the rationale behind the alternative name "*recursively enumerable*" — r.e.— or "*computably enumerable*" — c.e.— that is used in the literature for *the semi-recursive or semi-computable* sets/predicates.

To avoid cumbersome codings (of *n*-tuples, by single numbers) we restrict attention to the one variable case in this section.

That is, our predicates are subsets of \mathbb{N} .

Intro to (un)Computability via URMs—Part II O by George Tourlakis

First we define:

0.1.1 Definition. A set $A \subseteq \mathbb{N}$ is called *computably* enumerable (c.e.) or recursively enumerable (r.e.) precisely if <u>one</u> of the following cases holds:

- $\bullet \ A = \emptyset$
- $A = \operatorname{ran}(f)$, where $f \in \mathcal{R}$.

Ś	Thus, the c.e. or r.e. relations are exactly those we can
	algorithmically enumerate as the set of outputs
	of a (total) recursive function:

$$A = \{f(0), f(1), f(2), \dots, f(x), \dots\}$$

Hence the use of the term "c.e." replaces the non technical term "algorithmically" (in "algorithmically" enumerable) by the technical term "computably".

Note that we had to hedge and ask that $A \neq \emptyset$ for any enumeration to take place, because no recursive function (remember: these are total) can have an empty range.

2

Next we prove:

0.1.2 Theorem. ("c.e." or "r.e." vs. semi-recursive) Any <u>non empty</u> semi-recursive relation $A \ (A \subseteq \mathbb{N})$ is the range of some (emphasis: total) recursive function of one variable.

Conversely, every set A such that $A = \operatorname{ran}(f)$ —where $\lambda x.f(x)$ is <u>recursive</u>— is semi-recursive (and, trivially, nonempty).

Before we prove the theorem, here is an example:

0.1.3 Example. The set $\{0\}$ is c.e. Indeed, $f = \lambda x.0$, our familiar function Z, effects the enumeration with repetitions (lots of them!)

Proof. of Theorem 0.1.2.

(I) We prove the first sentence of the theorem. So, let $A \neq \emptyset$ be *semi-recursive*.

By the projection theorem (see Notes #7) there is a **recursive** relation Q(y, x) such that

$$x \in A \equiv (\exists y)Q(y, x), \text{ for all } x$$
 (1)

Thus, the totality of the x in A are the 2nd coordinates of ALL pairs (y, x) that satisfy Q(y, x).

So, to enumerate all $x \in A$ just enumerate all pairs (y, x), and <u>OUTPUT</u> x just in case $(y, x) \in Q$.

4

0.1. Recursively Enumerable Sets

We enumerate *all POSSIBLE PAIRS* y, x by

$$(y = (z)_0, \quad x = (z)_1)$$

for each $z = 0, 1, 2, 3, \dots$.

Recall that $A \neq \emptyset$. So fix an $a \in A$. f below does the enumeration!

$$f(z) = \begin{cases} (z)_1 & \text{if } Q((z)_0, (z)_1) \\ a & \text{othw} \end{cases}$$

The above is a definition by recursive cases hence \underline{f} is a recursive function, and the values $x = (z)_1$ that it outputs for each $z = 0, 1, 2, 3, \ldots$ enumerate A.

(II) Proof of the second sentence of the theorem.

So, let $A = \operatorname{ran}(f)$ —where f is recursive.

Thus,

$$x \in A \equiv (\exists y)f(y) = x \tag{1}$$

By Grz-Ops, plus the facts that z = x is in \mathcal{R}_* and the assumption $f \in \mathcal{R}$,

the relation f(y) = x is *recursive*.

By (1) we are done by the Projection Theorem.

Intro to (un)Computability via URMs-Part II © by George Tourlakis

0.1.4 Corollary. An $A \subseteq \mathbb{N}$ is semi-recursive iff it is r.e. (c.e.)

Proof. For nonempty A this is Theorem 0.1.2. For empty A we note that this is r.e. by Definition 0.1.1 but is also semi-recursive by $\emptyset \in \mathcal{PR}_* \subseteq \mathcal{R}_* \subseteq \mathcal{P}_*$.

Corollary 0.1.4 allows us to prove some non-semi-recursiveness results by good old-fashioned Cantor diagonalisation.

See below.

Intro to (un)Computability via URMs—Part II C by George Tourlakis

0.1.5 Theorem. The complete index set $A = \{x : \phi_x \in \mathcal{R}\}$ is not semi-recursive.

8

This sharpens the undecidability result for A that we established in Note #7.

Ş

Proof. Since c.e. = semi-recursive, we will prove instead that A is *not* c.e.

If not, note first that $A \neq \emptyset$ —e.g., $S \in \mathcal{R}$ and thus all ϕ -indices of A are in A.

Thus, theorem 0.1.2 applies and there is an $f \in \mathcal{R}$ that enumerates A:

$$A = \{f(0), f(1), f(2), f(3), \ldots\}$$

The above says: ALL programs for unary \mathcal{R} -functions are f(i)'s.

Define now

$$d = \lambda x.1 + \phi_{f(x)}(x) \tag{1}$$

Seeing that $\phi_{f(x)}(x) = U^{(P)}(f(x), x)$ —you remember $U^{(P)}$?—we obtain $d \in \mathcal{P}$.

But $\phi_{f(x)}$ is total since all the f(x) are ϕ -indices of total functions by the underlined blue comment above.

By the same comment,

$$d = \phi_{f(i)}, \text{ for some } i$$
 (2)

Intro to (un)Computability via URMs—Part II (C) by George Tourlakis

0.1. Recursively Enumerable Sets

Let us compute d(i): $d(i) = 1 + \phi_{f(i)}(i)$ by (1).

Also,
$$d(i) = \phi_{f(i)}(i) \ by \ (2)$$
,

thus

$$1 + \phi_{f(i)}(i) = \phi_{f(i)}(i)$$

which is a contradiction since both sides of "=" are defined. $\hfill \square$

Ś

One can take as d different functions, for example, either of $d = \lambda x.42 + \phi_{f(x)}(x)$ or $d = \lambda x.1 - \phi_{f(x)}(x)$ works. And infinitely many other choices do!

Ś

Lecture #17, Nov. 16

0.2. Some closure properties of decidable and semi-decidable relations

We already *know* that

0.2.1 Theorem. \mathcal{R}_* is closed under all Boolean operations, $\neg, \land, \lor, \Rightarrow, \equiv$, as well as under $(\exists y)_{<z}$ and $(\forall y)_{<z}$.

How about closure properties of \mathcal{P}_* ?

0.2.2 Theorem. \mathcal{P}_* is closed under \land and \lor . It is also closed under $(\exists y)$, or, as we say, "under projection".

Moreover it is closed under $(\exists y)_{\leq z}$ and $(\forall y)_{\leq z}$. It is **not** closed under negation (complement), **nor** under $(\forall y)$.

Proof.

1. Let $Q(\vec{x}_n)$ be verified by a URM M, and $S(\vec{y}_m)$ be verified by a URM N.

Here is how to semi-decide $Q(\vec{x}_n) \vee S(\vec{y}_m)$:

Given input \vec{x}_n, \vec{y}_m , we call machine M with input \vec{x}_n , and machine N with input \vec{y}_m and let them crank simultaneously (as "co-routines").

If either one halts, then halt everything! This is the case of "yes" (input verified).

2. For \wedge it is almost the same, but our halting criterion is different:

Here is how to semi-decide $Q(\vec{x}_n) \wedge S(\vec{y}_m)$:

Given input \vec{x}_n, \vec{y}_m , we call machine M with input \vec{x}_n , and machine N with input \vec{y}_m and let them crank simultaneously ("co-routines").

If **both** halt, then halt everything!

By CT, each of the processes in 1. and 2. can be implemented by some URM.

3. The $(\exists y)$ is very interesting as it relies on the Projection Theorem:

Let $Q(y, \vec{x}_n)$ be semi-decidable. Then, by Projection Theorem, a decidable $P(z, y, \vec{x}_n)$ exists such that

$$Q(y, \vec{x}_n) \equiv (\exists z) P(z, y, \vec{x}_n) \tag{1}$$

It follows that

$$(\exists y)Q(y,\vec{x}_n) \equiv (\exists y)(\exists z)P(z,y,\vec{x}_n)$$
(2)

This does *not* settle the story, as *I cannot readily conclude* that $(\exists y)(\exists z)P(z, y, \vec{x}_n)$ is semi-decidable because the Projection Theorem requires a *single* $(\exists y)$ in front of a decidable predicate!

Well, instead of saying that there are **two** values z and y that verify (along with \vec{x}_n) the predicate $P(z, y, \vec{x}_n)$, I can say there is a <u>PAIR</u> of values (z, y).

In fact I can <u>CODE</u> the pair as $w = \langle z, y \rangle$ and say there is ONE value, w:

$$(\exists w) P(\overbrace{(w)_0}^z, \overbrace{(w)_1}^y, \overrightarrow{x_n})$$

and thus I have —by (2) and the above—

$$(\exists y)Q(y,\vec{x}_n) \equiv (\exists w)P((w)_0,(w)_1,\vec{x}_n)$$
(3)

13

But since $P((w)_0, (w)_1, \vec{x}_n)$ is **recursive** by the decidability of P and Grz-Ops, we end up in (3) quantifying the decidable $P((w)_0, (w)_1, \vec{x}_n)$ with just one $(\exists w)$. The Projection Theorem now applies!

4. For $(\exists y)_{\leq z}Q(y, \vec{x})$, where $Q(y, \vec{x})$ is semi-recursive, we first note that

$$(\exists y)_{$$

By $\mathcal{PR}_* \subseteq \mathcal{R}_* \subseteq \mathcal{P}_*$, y < z is semi-recursive. By closure properties established *SO FAR* in this proof, the rhs of \equiv in (*) is semi-recursive, thus so is the lhs.

5. For $(\forall y)_{\leq z}Q(y, \vec{x})$, where $Q(y, \vec{x})$ is semi-recursive, we first note that (by Strong Projection) a **decidable** P exists such that

$$Q(y,\vec{x}) \equiv (\exists w) P(w,y,\vec{x})$$

By the above equivalence, we need to prove that

$$(\forall y)_{ is semi-recursive (**)$$

(**) says that

for each y = 0, 1, 2, ..., z - 1 there is a *w*-value w_y —likely dependent on *y*— so that $P(w_y, y, \vec{x})$ holds

Since all those w_y are <u>finitely many</u> (z many!) there is a value u bigger than **all** of them (for example, take $u = \max(w_0, \ldots, w_{z-1}) + 1$). Thus (**) says (i.e., **is equivalent to**)

 $(\exists u)(\forall y)_{<z}(\exists w)_{<u}P(w,y,\vec{x})$

The blue part of the above is **decidable** (by closure properties of \mathcal{R}_* , since $P \in \mathcal{R}_*$ —you may peek at 0.2.1). We are done by *strong projection*.

- 6. Why is \mathcal{P}_* not closed under negation (complement)? Because we know that $K \in \mathcal{P}_*$, but also know that $\overline{K} \notin \mathcal{P}_*$.
- 7. Why is \mathcal{P}_* not closed under $(\forall y)$?

Well,

$$x \in K \equiv (\exists y)Q(y,x) \tag{1}$$

for some recursive Q (Projection Theorem) and bythe known fact (quoted again above) that $K \in \mathcal{P}_*$.

(1) is equivalent to

$$x \in \overline{K} \equiv \neg(\exists y)Q(y,x)$$

which in turn is equivalent to

$$x \in \overline{K} \equiv (\forall y) \neg Q(y, x) \tag{2}$$

Now, by closure properties of \mathcal{R}_* See 0.2.1), $\neg Q(y, x)$ is recursive, hence also is in \mathcal{P}_* since $\mathcal{R}_* \subseteq \mathcal{P}_*$.

Therefore, if \mathcal{P}_* were closed under $(\forall y)$, then the above $(\forall y) \neg Q(y, \overline{x})$ would be semi-recursive. But that is $x \in \overline{K}$!

Intro to (un)Computability via URMs—Part II C by George Tourlakis

0.3. Some tricky reductions

This section highlights a more sophisticated reduction scheme that *improves our ability to effect reductions of* the type $\overline{K} \leq A$. **0.3.1 Example.** Prove that $A = \{x : \phi_x \text{ is a constant}\}$ is *not semi-recursive*. This is <u>not amenable</u> to the technique of saying "OK, if A is semi-recursive, then it is r.e. Let me show that it is not so by diagonalisation". This worked for $B = \{x : \phi_x \text{ is total}\}$ but *no obvious diagonalisation comes to mind for A*.

<u>Nor can we</u> simplistically say, OK, start by defining

$$g(x,y) = \begin{cases} 0 & \text{if } x \in \overline{K} \\ \uparrow & \text{othw} \end{cases}$$

The problem is that if we plan next to say "by CT g is partial recursive hence by S-m-n, etc.", we should n't!

The underlined part is wrong: $g \notin \mathcal{P}$, *provably*!

► For if it *is* computable, then so is $\lambda x.g(x, x)$ by Grz-Ops.

But

 $g(x,x) \downarrow$ iff we have the top case, iff $x \in \overline{K}$

In short,

$$x \in \overline{K} \equiv g(x, x) \downarrow$$

which proves that $\overline{K} \in \mathcal{P}_*$ using the verifier for " $g(x, x) \downarrow$ ". Contradiction.

Intro to (un)Computability via URMs—Part II C by George Tourlakis

0.3.2 Example. (0.3.1 continued) Now, "Plan B" is to "approximate" the top condition $\phi_x(x) \uparrow$ (same as $x \in \overline{K}$).

The idea is that, "**practically**", if the computation $\phi_x(x)$ after a "huge" number of steps y has still not hit **stop**, this situation *approximates* —let me say once more, "practically"— the situation $\phi_x(x) \uparrow$. This fuzzy thinking suggests that we try next

$$f(x,y) = \begin{cases} 0 & \text{if } \phi_x(x) \text{ did not return in } \leq y \text{ steps} \\ \uparrow & \text{othw} \end{cases}$$

If the top condition is true for a given x it means that at step y the URM that we picked to compute $\phi_x(x)$ has not hit stop yet.

The "othw" says, of course, that the computation of the call $\phi_x(x)$ —or $U^{(P)}(x, x)$ — <u>did return</u> in y steps or fewer.

Next step is to invoke an S-m-n theorem application, so <u>we must</u> show that f defined above is computable. Well here is an informal algorithm:

(0)	proc	f(x,y))
(1)	Call	$\phi_x(x)$; keep count of computation steps
(2)	Return	0	if $\phi_x(x)$ did not return in $\leq y$ steps
(3)	"Loop"		if $\phi_x(x)$ returned in $\leq y$ steps

Intro to (un)Computability via URMs—Part II O by George Tourlakis

Of course, the "command" Loop means

"transfer to the subprogram" while 1=1 do { }

By CT, the pseudo algorithm (0)–(3) is implementable as a URM. That is, $f \in \mathcal{P}$.

By S-m-n applied to f there is a recursive k such that

$$\phi_{k(x)}(y) = \begin{cases} 0 & \text{if } \phi_x(x) \text{ did not return in } \leq y \text{ steps} \\ \uparrow & \text{othw} \end{cases}$$
(1)

Analysis of (1) in terms of the "key" conditions $\phi_x(x) \uparrow$ and $\phi_x(x) \downarrow$:

(A) Case where $\phi_x(x) \uparrow$.

Then, $\phi_x(x)$ did **not** halt in y steps, for any y!

Thus, by (1), we have $\phi_{k(x)}(y) = 0$, for all y, that is,

$$\phi_x(x) \uparrow \Longrightarrow \phi_{k(x)} = \lambda y.0 \tag{2}$$

- (B) Case where $\phi_x(x) \downarrow$. Let m = smallest y such that the call $\phi_x(x)$ ended in m steps. Therefore,
 - for step counts y = 0, 1, 2, ..., m − 1 the computation of U^(P)(x, x) has not yet hit stop, so the top case of definition (1) holds. We get

for
$$y = 0, 1, \dots, m-1$$

 $\phi_{k(x)}(y) = 0, 0, \dots, 0$

for step counts y = m, m + 1, m + 2,... the computation of U^(P)(x, x) has already halted (it hit stop), so the bottom case of definition (1) holds. We get

for
$$y = m$$
, $m+1$, $m+2$, ...
 $\phi_{k(x)}(y) = \uparrow$, \uparrow , \uparrow , ...

for short:

$$\phi_x(x)\downarrow \Longrightarrow \phi_{k(x)} = \overbrace{(0,0,\ldots,0)}^{\text{length }m}$$
(3)

In

$$\phi_{k(x)} = \underbrace{(0, 0, \dots, 0)}^{\text{length } m}$$

we depict the function $\phi_{k(x)}$ as an array of its *m* output values.

P Thus, in Plain English, when $\phi_x(x) \downarrow$, the function $\phi_{k(x)}$ is NOT a constant! Not even total!

Our analysis yielded:

$$\phi_{k(x)} = \begin{cases} \lambda y.0 & \text{if } \phi_x(x) \uparrow \\ \text{not a constant function} & \text{if } \phi_x(x) \downarrow \end{cases}$$
(4)

We conclude now as follows for $A = \{x : \phi_x \text{ is a constant}\}$:

 $k(x) \in A$ iff $\phi_{k(x)}$ is a constant iff the top case of (4) applies iff $\phi_x(x) \uparrow$

That is, $x \in \overline{K} \equiv k(x) \in A$, hence $\overline{K} \leq A$.

Intro to (un)Computability via URMs—Part II (C) by George Tourlakis

Ś

0.3.3 Example. Prove (again) that $B = \{x : \phi_x \in \mathcal{R}\} = \{x : \phi_x \text{ is total}\}$ is not semi-recursive.

We piggy back on the previous example and the same f through which we found a $k \in \mathcal{R}$ such that

$$\phi_{k(x)} = \begin{cases} \lambda y.0 & \text{if } \phi_x(x) \uparrow \\ \underbrace{\text{length } m}_{(0,0,\ldots,0)} & \text{if } \phi_x(x) \downarrow \end{cases}$$
(5)

The above is (4) of the previous example, but we will use different English words to describe the bottom case, which we displayed explicitly in (5).

length m

Note that (0, 0, ..., 0) is a non-recursive (nontotal) function listed as a finite array of outputs. Thus we have

$$\phi_{k(x)} = \begin{cases} \lambda y.0 & \text{if } \phi_x(x) \uparrow\\ \text{nontotal function} & \text{if } \phi_x(x) \downarrow \end{cases}$$
(6)

and therefore

 $k(x) \in B$ iff $\phi_{k(x)}$ is total iff the top case of (6) applies iff $\phi_x(x) \uparrow$

That is,
$$x \in \overline{K} \equiv k(x) \in B$$
, hence $\overline{K} \leq B$.

0.3.4 Example. We will prove that $D = \{x : ran(\phi_x) \text{ is infinite}\}$ is *not semi-recursive*.

We (heavily) piggy back on Example 0.3.2 above.

We want to find $j \in \mathcal{R}$ such that

$$\phi_{j(x)} = \begin{cases} \text{inf. range} & \text{if } \phi_x(x) \uparrow \\ \text{finite range} & \text{if } \phi_x(x) \downarrow \end{cases}$$
(*)

OK, define ψ (almost) like f of Example 0.3.2 by

$$\psi(x,y) = \begin{cases} y & \text{if the call } \phi_x(x) \text{ did not return in } \le y \text{ steps} \\ \uparrow & \text{othw} \end{cases}$$

Other than the trivial difference (function name) the important difference is that we force infinite range in the top case by outputting the input y.

The argument that $\psi \in \mathcal{P}$ goes as the one for f in Example 0.3.2. The only difference is that in the algorithm (0)–(3) we change "**Return** 0" to "**Return** y".

The question $\psi \in \mathcal{P}$ settled, by S-m-n there is a $j \in \mathcal{R}$ such that

$$\phi_{j(x)}(y) = \begin{cases} y & \text{if the call } \phi_x(x) \text{ returns in } \le y \text{ steps} \\ \uparrow & \text{othw} \end{cases}$$
(†)

Intro to (un)Computability via URMs—Part II (C) by George Tourlakis

Analysis of (\dagger) in terms of the "key" conditions $\phi_x(x) \uparrow$ and $\phi_x(x) \downarrow$:

(I) Case where $\phi_x(x) \uparrow$.

Then, for all input values y, $\phi_x(x)$ is still not at **stop** after y steps. Thus by (\dagger) , we have $\phi_{j(x)}(y) = y$, for all y, that is,

$$\phi_x(x) \uparrow \Longrightarrow \phi_{j(x)} = \lambda y.y \tag{1}$$

(II) Case where $\phi_x(x) \downarrow$. Let m = smallest y such that the call $\phi_x(x)$ returned in m steps.

As before we find that for y = 0, 1, ..., m - 1 we have $\phi_{j(x)}(y) = y$, that is,

for
$$y = 0, 1, \dots, m-1$$

 $\phi_{j(x)}(y) = 0, 1, \dots, m-1$

and as before,

for y = m, m+1, m+2, ... $\phi_{j(x)}(y) = \uparrow$, \uparrow , \uparrow , ...

that is,

 $\phi_x(x) \downarrow \Longrightarrow \phi_{j(x)} = (0, 1, \dots, m-1)$ —finite range
(2)
(1) and (2) say that we got (*) —p.23— above.

(1) and (2) say that we got (*) -p.25 above. Thus

 $j(x) \in D$ iff $\operatorname{ran}(\phi_{j(x)})$ infinite iff top case holds, iff $\phi_x(x) \uparrow$

Thus $\overline{K} \leq D$ via j.

Intro to (un)Computability via URMs-Part II (C) by George Tourlakis