
Notes —#1

• This course is about the inherent limitations of computing: The things we
cannot do by writing a program!

1



2

• At the intuitive level, any practicing mathematician or computer scientist—
indeed any student of these two fields of study—will have no difficulty at all in
recognizing a computation or an algorithm as soon as they see one



3

• But how about:
“is there an algorithm that solves such and such a problem for all possible

inputs?”—a question with potentially a “no”-answer—and also

“is there an algorithm that solves such and such a problem via computations
that take no more steps than some (fixed) polynomial function of the
input length?”—this, too, being a question with a, potentially, “no” answer.

• Example:
– “is there an algorithm which can determine whether or not a given computer

program (the latter written in, say, the C-language) is correct?”1

and
– “is there an algorithm that will determine whether or not any given Boolean

formula is a tautology, doing so via computations that take no more steps than
some (fixed) polynomial function of the input length?”

1A “correct” program produces, for every input, precisely the output that is expected by an a priori
specification.



4

• But what do we mean by

“there is no algorithm that solves a given problem”—with or without
restrictions on the algorithm’s efficiency?

This appears to be a much harder statement to validate than “there is an
algorithm that solves such and such a problem”

I for the latter, all we have to do is to produce such an algorithm and a proof
that it works as claimed.

By contrast, the former statement implies, mathematically speaking, aprovably
failed search over the entire set of all algorithms, while we were looking for
one that solves our problem.



5

• One evidently needs a mathematically precise definition of the concept of
algorithm that is neither experiential nor technology-dependent in order to assert
that we encountered such a failed “search”.

This directly calls for a mathematical theory whose objects of study include al-
gorithms (and, correspondingly, computations) in order to construct such sets
of (all) algorithms within the theory and to be able to reason about the
membership problem of such sets.



6

• The “theory of computation” is the metatheory of computing.

In the field of computing one computes: that is, develops programs and large
scale software that are well-documented, correct, efficient, reliable and easily main-
tainable.

In the (meta)theory of computing one tackles the fundamental questions of
the limitations of computing, limitations that are intrinsic rather than technology-
dependent.2 These limitations may rule out outright the existence of algorithmic
solutions for some problems, while for others they rule out efficient solutions.

2However, this metatheory is called by most people “theory”. Hence the title of this volume.



7

• Our approach is anchored on the concrete (and assumed) practical knowl-
edge about general computer programming attained by the reader in a first year
programming course, as well as the knowledge of discrete mathematics at the same
level.

• Our chapter on computability is the most general metatheory of computing.

We develop this metatheory via the programming formalism known as Shepherdson-
Sturgis Unbounded Register “Machines” (URM)—which is a straightforward ab-
straction of modern high level programming languages.

I Contrast with TMs.

Within that chapter we will also explore a restriction of the URM programming
language, that of the loop programs of A. Meyer and D. Ritchie.

We will learn that while these loop programs can only compute a very small sub-
set of “all the computable functions”, nevertheless they are significantly more than
adequate for programming solutions of any “practical”, computationally solvable,
problem.

For example, even restricting the nesting of loop instructions to as low as two,
we can compute—in principle—enormously large functions, which with input x can
produce outputs such as

2·
··

2x
}

10350000 2’s
(1)

The qualification above, “in principle”, stems from the enormity of the output
displayed in (1)—even for the input x = 0—that renders the above function way
beyond “practical”.



8

• The chapter on Computability—after spending due care in developing the tech-
nique of reductions—concludes by demonstrating the intimate connection between
the unsolvability phenomenon of computing on one hand, and the unprovability phe-
nomenon of proving within first-order logic (cf. [Göd31]) on the other, when the
latter is called upon to reason about “rich” theories such as (Peano’s) arithmetic—
that is, the theory of natural numbers, equipped with: the standard operations
(plus, times); relations (less than); as well as with the principle of mathematical
induction.



9

• Restricted Models. FA and NFA and their Languages.



10

References

[Dav65] M. Davis, The undecidable, Raven Press, Hewlett, N. Y., 1965.

[Göd31] K. Gödel, Über formal unentsceidbare sätze der pricipia mathematica und verwandter systeme i,
Monatshefte für Math. und Physic 38 (1931), 173–198, (Also in English in Davis [Dav65, 5–38]).


