Chapter I

Post’s Theorem and other Tools

A note on notation and a few “reminders”: The silly symbol “/&y" T goes
at least as far back as the writings of Bourbaki.*

It has been made widely accessible to authors who like to typeset their
writings themselves—through the typesetting system of Donald Knuth (known
as “’IEX”)‘

I use these “road signs” as follows: A passage enclosed between two single
“@” symbols is purported to be very noteworthy, so please heed!

On the other hand, a passage enclosed between two double signs (“@ @”)
comes with two meanings:

The bad news is that it is rather difficult, or esoteric, or both. The good
news is that you do not need to understand (or even read) its contents in order
to understand the sequel. It is only there in the interest of the “demanding”
reader.

Let us recall the notion of I'-theorem. In the definition that follows we use
a crucial term about sets: “smallest”. This term implies a comparison. The
comparison is via the subset relation “C”. Recall that for sets S and S/, “S C 5”7
is short for “every member of S is also a member of S/ .5

If we have a lot of sets S, 5", 5”,S", ..., we will say that S is smallest among
them iff it satisfies S C X where X is any among the S,5’, 5", 5", ....

With these explanations out of the way we define a I'-theorem as a member
of the smallest set of formulas which satisfies the three conditions below:

Thl. This set contains all the formulas of T and all the formulas of A.Y

TThis symbol is a stylized version of the “(dangerous) winding road” road sign.

“Nicolas Bourbaki” is the pen-name of a team of top mathematicians who are responsible
for the monumental work “Eléments de Mathématique”, that starts with Logic and Set Theory
as the foundation, and then proceeds to extensively cover fields such as Algebra, Topology,
Analysis.

8Thus, in particular, it is always the case that S C S, for any set S.

9TRecall that A denotes all the specific instances of the Axiom Schemata of Chapter 3—the
so-called logical axioms.
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2 I. Post’s Theorem and other Tools

Th2. If both A and A = B are in the set, then so is B. We say that this
step was an application of Equanimity (“Eqnl”, as we call it in class, in
contradistinction with “Eqn2”).

Th3. If A = B is in the set, then so is C[p := A] = C[p := B] for any choice
of formula C' and variable p.

We say that this step was an application of Leibniz.

We write I' F A to indicate that A is in the set of I'-theorems. We often say “I'
proves A” or “A is proved from I'” (a synonym for “is proved” is “follows”), or
“A is a I'-theorem”.

We write - A rather than () = A. In this case we say that A is an absolute
or logical theorem (i.e., one that holds in all of Mathematics).

A related concept is that of a I'-proof: This is a finite (ordered) sequence of
formulas,

A, A,
where each A; (i = 1,...,n) satisfies:
Prl. A;isin T orin A, or

Pr2. A; is the conclusion (“denominator”) of one of the two rules (Leibniz,
or Equanimity), where the premise(s) (“numerator(s)”) has/have already
appeared to the left of A; in the sequence.

Hmmm. So, is the above “proof” —often called a “Hilbert-style proof” —the
same as an “Equational” or “Calculational” proof? NO!

An Equational proof is a “special technique” (just like the techniques we
have learned in trigonometry at school are “special”) to prove theorems.

What is an Equational (also called Calculational) proof? It is a sequence
of I'-theorems of a very restricted form, namely, each such theorem is an equiv-
alence A = B that is supposed to be provable very easily, very directly (how
“easily” is suggested below—p.3—where we discuss annotation and format of
Equational proofs). Indeed the sequence itself has a very special form:

Bl EBQ,BQ EBg,...,Bn,Q Eanlaanl EBn (1)

That is, one establishes all of the (Meta)theorems “I' -+ B; = B; "1, for i =
1,...,n — 1, hopefully giving a good reason for the validity of each.

At the end of all this, the transitivity (derived) rule yields (as shown in class)
I'+-B, =B,

which is often all we want to establish. However, sometimes we know more: We
may know that I' = B;. We can then conclude I' - B,, by “Eqnl”. Some other

TWait a minute! A few words ago I said “theorems”. How come I now say “metatheorems”?
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times we may know, instead, that I' - B,,. We can then conclude I' - By by
“Eqn2”.

The usual “protocol” for writing the above Equational proof (1) is to arrange
it with the help of the “conjunctional =", that we write as “=", as follows:

By

= <Reason for '+ By = Bs: Usually a proved equivalence, (may be an axiom)

via a single application of Leibniz, IF we work on a part of B; or Bz>
By
= <Reason .. >

= <Reason .. >
B,

In summary: An Equational proof is a sequence of independent, very
short (one-step) Hilbert-style proofs, each such step (as described

above) proving an equivalence.

FEquational proofs (from T') are meant to be “practical tools”.
They are most suitable—being usually very user-friendly—towards
proving theorems, i.e., when “doing” (or applying) Logic. However,
Hilbert-style proofs have the edge when it comes to proving Metathe-
orems., i.e., studying Logic as an object of study.

0.1 Remark. (1) It turns out (see Appendix, if interested—but you don’t
have to) that T' = A iff there is a T'-proof where A occurs as the last (rightmost)
formula.

(2) Note the omission of the rule transitivity in the definitions of I'-theorem
or -proof, above. We have omitted it for theoretical convenience, since it is a
derived rule, as you will show in Problem Set #3. This does not mean that you
are not supposed to use it! On the contrary! When we are inside our Logic and
prove theorems we are encouraged to use any/all of the tools we have available
to us. However, from the outside, in the Metatheory, when we study rather than
use our Logic, it pays to utilize the simplest possible description of it.

(3) Here is a simple example that suggests how to test whether you are in
the Theory (here, Propositional Calculus) or in the Metatheory: “p = p” is an
(absolute, or logical) theorem because we can prove it in the Theory—we have
actually done so in class/text.

On the other hand, “+ p = p” is a short form for the statement “p = p is
provable from the logical axioms alone”. Propositional Logic cannot make such
a “statement”. It can only state formulas, and “F p = p” is not a formula. We
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4 I. Post’s Theorem and other Tools

state “ p = p” from the “outside”. It also happens to be a true statement. So,
it is a Metatheorem!

Since theoremhood is defined inductively, we can prove properties of theo-
rems (from any I') by induction on T'-theorems.

Now, induction, in general, is a technique for proving “properties” of sets of
objects that have been defined (built) in a very special manner (by a so-called
inductive definition, like the one we gave for formulas in class, like the one we
gave for theorems earlier on in this paper).

Induction has two distinguished parts/steps:

Ind1. Basis. Here you verify the property (that may be easy, or hard—don’t
be fooled by the word “verify”) for the simplest objects.

Ind2. Here you show that “the property propagates”: That is, if in order to
build an object z we have used, in the very last building-step, objects
that (all) satisfy the property,” then so does .

In practice we split Ind2 into two sub-steps: In the first sub-step, we assume
that the property holds for the immediate predecessors of the “complex” object
x.

That is, we imagine that we step exactly one building step back—from z—to
obtain its immediate predecessors. We then assume that the property is true
for all such predecessors.

This is the Induction Hypothesis, in short, I.H.

In the second sub-step we proceed to prove that x, too, has the property.

For example, if we want to prove a property P(z) of a natural number by
induction on (natural) numbers, Ind1 asks us to verify P(0), i.e., for z = 0,
the “simplest object” in this context. Ind2 asks us to prove “if P(n), then
P(n+1)7, since, in this context, the “immediate predecessor” of n + 1 is n.

Again, in practice, we do this by assuming P(n) for an undisclosed general
fixed n (I.H.) and then proving P(n + 1).}

We did quite a few examples in class/Problem sets in the context of WFF.
To prove a property P(z) for an arbitrary WFF, A, Ind1 entailed verifying
P(A) for the simplest objects in the context: Namely, formulas A of the forms
true, false, or p (a Boolean variable).

For Ind2 one had to prove P(A) for “complex” formulas A, on the I.H. that
the immediate predecessors of A in the building process of WFF that is, the
immediate subformulas of AS—all satisfied P(x).

» What would the technique of induction on (I'-)theorems entail?

TWe may well call such objects immediate predecessors of x.

¥This “splitting” of the implication, P(n) = P(n + 1), is typical in mathematical practice.
It is legitimate by the Deduction Theorem (4.1 below).

§These “complicated A” can be of the forms -D, D= E, DVE, D = E, DAE. D is the
immediate subformula of the first, D and E of all the other forms.
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1. On TI'-theorems and proofs 5

To prove that P(z) holds for all T-theorems, Ind1 requires that you prove
P(z) for the simplest objects in the theorem building process. That is, for all A
inI" and all A in A.

For Ind2 you prove that P(x) holds for a T'-theorem A, provided it holds for
its immediate predecessors (in the theorem building process).

How do we build theorems? The definition says:

(i) UT'FBand ' - B = A, then I' A (Equanimity application). Here B
and B = A are immediate predecessors of A.T

e Thus, we must assume P(B) and P(B = A) and prove P(A).

(i) f T'F B = C and A is the string D[p := B] = D[p .= C], then '+ A

(Leibniz application). Here B = C' is an immediate predecessor of A.
e Thus, we must assume P(B = C) and prove P(A).

While immediate predecessors of an object n in the natural number building
process and an object A in the WFF building process are unique, this is not
the case in the theorem-building process. A theorem (from any I') need not
have uniquely defined immediate predecessors. For example, I may prove A in
at least two ways via Equanimity. It is possible that I have already proved B
and B = A. But it is also possible that I have also proved C and C' = A where
C is a formula different (as a string) than B. If this is the case, I have two (at
least) sets of (immediate) predecessors of A: {B, B = A} and {C,C = A}.

Still, this does not detract from the validity of the principle of induction
on theorems as described above and practiced in the rest of this note. After
all, step Ind2 is “general” and never fixes attention to specific predecessors.
For example, an argument that P(B) and P(B = A) jointly imply the truth of
P(A) is (if done correctly!) general and is independent of which exact formula B
might be. Such a properly applied general argument will also yield that “P(C)
and P(C = A) jointly imply the truth of P(A)”!

For the full justification of why the principle of induction on theorems works
see the Appendix.

1. On I'-theorems and proofs
1.1 Lemma. IfT' C A and '+ A, then also A F A.

Proof. This statement is a property of I'-theorems.? We naturally (!) prove it
by induction on such theorems.

Basis. Say, A € A. But then A - A (definition of A theorems!). Say, A € T.
But then A € A as well, hence A+ A (definition of A theorems!).

TThey are “simpler theorems” than A, since they are “proved earlier”. Thus, “simpler” is
a context-dependent concept. While, in this context, B = A is simpler than A, as a theorem,
in a different context, e.g., as a formula, it is more complex!

fIn English “every I'-theorem has the property of being a A-theorem”.
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6 I. Post’s Theorem and other Tools

Assume the claim for “simpler” T'-theorems, and move to “more complex
»
ones”.

Case: ' Band T' - B = A (i.e., Equanimity was applied to get A from
I). By LH.,, AF B and A+ B = A, thus, A F A by Equanimity.

Case: I' - B = C and A is the string D[p := B] = D[p := C] (i.e., Leibniz
was applied to get A). By LH., A+ B = C, hence (Leibniz!) A+ D[p:= B] =
Dlp:=C],ie, AFA O

We have not considered transitivity in the induction step, since we know it is a
derived rule (Problem set #3).

1.2 Remark. In particular, if - A, then I' - A for any I', since ) C T'.

1.3 Lemma. (Transitivity of “+”)
IfTHA;, fori=1,...,n, and if Ay,..., A, F B, then ' + B.

Proof. We do induction on A-theorems, where, for convenience, we have let
A={A,..., A}

Basis. Say, B € A. Then (definition of I-theorems) I' -+ B. Say, B € A.
That is, B is an A;. But we are told (hypothesis of Lemma!) that T' - A;.

Assume the claim for “simpler” A-theorems, and move to “more complex
ones”

Case: A+ C and A+ C = B (i.e., Equanimity was applied to get B from
A). ByLH., TFC and T'F C = B, thus, I' - B by Equanimity.

Case: A+ C = D and B is the string E[p := C] = E[p := D] (i.e., Leibniz
was applied to get B). By LH., '+ C = D, hence (Leibniz!) T+ E[p := C| =
Elp:=D],ie,TFB. O

“Transitivity of - legitimizes proofs that are based on previous theorems (rather
than always going all the way back to axioms).

It also legitimizes the immediate, off the shelf, use of derived rules of in-
ference in order to derive new theorems from old (“to continue a proof” as
it were). Recall that a derived rule of inference is a template (schema) like
“Ay,..., Ay F B”. For example, MP (A, A = BF B) is such a “template”.

We are told by 1.3 that

“if Aq1,..., A, are I'-theorems, then so is B, if we know that A,,..., A, - B”.

Hey! Isn’t that eractly how we apply the primitive! rules (Equanimity and
Leibniz) to derive new theorems? Indeed, the above sounds exactly like (part
of) the definition of I-theorems, namely, that “if A and A = B are I'-theorems,
then so is B, since we know that A, A = B+ B (Equanimity)”.

TRecall that “primitive” means “given up in front”.
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2. Soundness

We prove here that our Calculus is truthful, or Sound, as people say technically.
That is, whenever F A, then also = A. This will be a special case of 2.2 below.
First a Lemma:

2.1 Lemma. The two rules of inference “preserve truth”. That is,
A A=BEB (1)

and
A=BE=Clp:= Al =C[p:= B] (2)

Proof. (1) Let s be a state appropriate for A and B. Suppose it makes the left
hand side of “&=” ¢, that is, s(A) =t and s(A) = s(B). But then s(B) = t.

(2) Let s be a state appropriate for A, B and C[p := A] = Clp := B].
Suppose it makes the left hand side of “E” ¢, that is, s(A) = s(B). Now
s(C|p := A]) is determined by the s(r)-values of the various variables, r, in C
(r distinct from p) and the value of s(A) which is assigned to the original p in
C. On the other hand, s(C[p := B]) is determined by the s(r)-values of the r
in C (r distinct from p) and the value of s(B), which is assigned to the original
p in C. Since s(A) = s(B), s(Clp:= A]) =s(C[p:=B]). O

For the demanding reader who didn’t buy the argument in (2) above as being
“rigorous enough”, here is a rigorous one, by induction on WFF’s C: Given
that s(A) = s(B) and s is appropriate for C[p := A] = C[p := B].

If C is any of true, false or r (other than p), then Clp := A] = C|p := B]
is the same string as C' = C, hence s(C = C) = (s(C) = s(C)) = t. If finally
C is p, then C[p := A] = Clp := B] is the same string as A = B, hence
s(A= B) = (s(A) = s(B)) =t again.

For the induction step (“Ind2” on WFF), let first C' be the string —=D. Note
that the L.H. applies on D (immediate predecessor of C).

Now, C[p := A] = Cl[p := B] is the string =(D[p := A]) = =(D[p := B]),
and therefore

s(=(D[p := A]) = ~(D[p := B])) = [s(=(D[p := A])) = s(=(D[p := B]))]
= [s(D[p := A]) = s(D[p := B])]
=t (by LH.)

Let next C be DV E. The L.H. applies on D and E (immediate predecessors of
).
Now, C[p := A] = C[p := B] is the string

Dlp:= A]V E[p:= Al =DJp:= B]V E[p:= B]
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8 I. Post’s Theorem and other Tools

hence

AV Elp := A]) = s(D[p := A]) + s(E[p := A])
(D[p := BJ]) + s(E[p := BJ)

(Dlp := B] V Elp := B])

s (by LH.)
S

The cases where C is any of D = FE, D A E or D = FE are entirely similar to
the above and are omitted.

2.2 (Meta)theorem. (Soundness of Propositional Calculus) For any T', T -
A implies T | A.

Proof. (Outline) We do induction on I'-theorems.

Basis. If A is in T, then certainly I' E A (any state that makes all formulas
in " ¢ will do so for A in particular). If A is in A then = A (some of these you
have verified in Problem Set No. 2—the rest you may want to do on your own
(that’s why we said “Outline” all else is here)). But then I' = A, since again
any state s that makes all the formulas in I ¢t will make s(A) =t (any state
whatsoever will make s(A) = t).

We now argue (the “Ind2”) that the property propagates with the rules of
inference, i.e., if a theorem’s, A, immediate predecessors (in theoremhood) have
it, then so does A.

Equanimity. SoletT' = Band T = B = A—i.e., we just wrote that we have
assumed the claim for immediate predecessors of A. Let s be a state appropriate
for all of T, A and B, such that s(X) = ¢ for all X in I". Thus, s(B) =t and
s(B) = s(A). Hence, s(A) =t.

Leibniz. So let T' = B = C and A be the string D[p := B] = D[p := (]
i.e., we have again assumed the claim for an immediate predecessor (of different
type this time) of A. Let s be a state appropriate for all of I', B, C' and
DI[p := B] = D|p := C] such that s(X) = ¢ for all X in I". Thus, s(B) = s(C).
Hence, s(D[p := B] = D[p := C]) =t by Lemma 2.1. O

3. Post’s Theorem

We will employ below the following Lemma.

3.1 Lemma. (Proof by Cases) A= C,B=CF (AVB)=C.

Post’s Theorem and other Tools© by George Tourlakis
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3. Post’s Theorem 9

Proof. HereT'={A = C,B = C}.
(AvB)=C
FA=B=-AVE)

-(AvB)vC

Leib: r v C + deMorgan>
(mAN-B)VvC

=
{
<dlstr1b of V over /\>
(mAVC)A(=BVC)
<Lelb and- A= B=-AVB, tw1ce>
(A= C)N(B=C)
<Lelb rA(B=C),andT'FA=C Etrue>
-

true A (B = C)

by Ftrue A X = X>

B=C
ButI'FB=C,henceI' H(AVB)=C. O

3.2 Metatheorem. (Post’s Tautology Theorem) If = A, then - A.

Proof. First, we note the following equivalences.

E true = —p Vp, also F true=-pVp
E false = —p A p, also F false =-pAp
EC=D=-CVD,also FC=D=-CVD
ECAD=-=(-CV-D),also - CAD=-(=CV-D)

E(C=D)=(C=D)AN(D=C(C)),also - (C=D)=((C=D)A(D=C))
(I.1)
Thus, if we transform A into A’ by applying any sequence of the above
equivalences to eliminate all occurrences of true and false and all the connectives
except — and V, then we have, on the one hand, that = A = A’ and on the

other hand that - A = A’, both by the Leibniz rule. Indeed, say it took the
following steps to go from A to A’:

A=A =Ay=---=A, = A
Each “=" is a conjunctional “=". Each “=-step” is justified by an application

of “Leibniz” using as premise one of the equivalences under 1.1 above. Of course,
“Leibniz” is applicable both in the semantic and syntactic domain.

Thus, by equanimity, it suffices to prove - A’.
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10 I. Post’s Theorem and other Tools

A better way to say all this is that, “without loss of generality, we assume that
the only connectives in A are among V and — and that the constants true and
false do mot occur”.

Moreover, since - AV A = A, we may assume without loss of generality that
Ais a string Ay V---V A, with n > 2, so that none of the A; is a formula C'V D.

We are assuming metanotational abbreviations when it comes to
bracketing. In particular, our induction below will be for abbreviated
formulas!

Let us call an A; reducible iff it has the form —(C'V D) or =(=C). Otherwise
it is #rreducible. Thus, the only possible irreducible A; have the form p or —p
(where p is a variable). We say that p “occurs positively in ...V pV...”, while
it “occurs negatively in ...V —p V...”. In, for example, p V —p it occurs both
positively and negatively.

A is irreducible iff all the A; are.

We define the reducibility degree, of A;—in short, rd(A;)—to be the number
of — or V connectives in it, not counting a possible leftmost —. The reducibility
degree of A is the sum of the reducibility degrees of all its A;.

For example, rd(p) = 0, rd(=p) = 0, rd(=(=pV q)) = 2, rd(=(-p V —q)) = 3,
rd(=pV q)) = 0.

So let = A, where A is the string A1 V ---V A,, n > 2, where none of the
A; is a formula C Vv D, and prove (following Shoenfield) by induction on the
reducibility degree of A that - A.

For the basis, let A be an irreducible tautology (rd(A) = 0). It must be that
A is a string of the form “---VpV.--=pV-.-” for some p, otherwise (if no p
appears both “positively” and “negatively”) we can find a truth-assignment that
makes A false (f)—a contradiction (indeed, assign f to p’s that occur positively
only, and ¢ to those that occur negatively only).

Now

A

= <moving p and —p up in front via assoc, symm. (of V)

and Leib (whenever working on part of the formula)>
pV-pV B (whatis “B”?)

= <Leib: r V B + excluded middle, plus “ = true” intr0.>
trueV B

= <by FtrueV B = true>
true

Thus = A which settles the Basis-case rd(A) = 0.

Post’s Theorem and other Tools© by George Tourlakis
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3. Post’s Theorem 11

We now argue the case where rd(A) = n+ 1, on the I.H. that whenever, for any
formula @, rd(Q) < n, then | @ implies F Q.

By commutativity (symmetry) of “V”, let us assume without restricting
generality that rd(A;) > 0.

We have two cases:

(1) Ay is the string —(=C), hence A has the form —(=C) V D. Clearly
E C Vv D. Moreover, rd(C'V D) < rd(—=(=C) V D), hence

FCVD
by the I.H. But,

CvD
= (Leib: VD +F =X = X)
-(=C)Vv D
Hence, - =(=C) v D, that is, - A in this case.

One more case to go:
(2) Ay is the string =(C V D), hence A has the form —=(C vV D)V E.

We want: +—-(CVvD)VE (1)
SinceF X = Y ==X VY, it suffices to show that
F(CvD)=FE

We are given that |= (C'v D) = E. Clearly then C = E and D = E are both
tautologies (do you believe this?), and hence so are =C'V E and =D V E of
lower (each) reducibility degree than the original.

By ILH., we have - =C'VE and - =D V E, hence - C = E and - D = FE.
By Lemma 3.1, we have - (C vV D) = E, thus, (i) is established. [

Post’s theorem is often called the “Completeness Theorem”  of Propositional
Calculus. It shows that the syntactic manipulation apparatus completely cap-
tures the notion of “truth” (tautologyhood) in the propositional case.

3.3 Corollary. If Ay,..., A, E B, then Ay,..., A, + B.

Proof. Tt is an easy semantic exercise to see (indeed we have done so in class)
that

EA=...=A,= B.

TWhich is really a Metatheorem, right?
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By 3.2,
FA1=...=> A,= 1B

hence (by Lemma 1.1)
Ay,..., A, FA1=>...= A, =B (1)
Applying modus ponens n times to (1) we get
Ai,..., A, FB

g

The above corollary is very convenient.

It says that any (correct) schema Aj,..., A, |= B leads to a deriwed rule of
inference, A1,..., A, F B.

In particular, combining with Lemma 1.3, we get

3.4 Corollary. IfT'F A;, fori=1,...,n, and if A1,..., A, E B, then '+ B.

Thus—unless otherwise requested!—we can, from now on, rigorously mix syn-
tactic with semantic justifications of our proof steps.

For example, we have at once A A B - A, because (trivially) AA B = A
(compare with our earlier, much longer, proof given in class).

So, I' = A implies T' F A, right?
Well, yes and no. The statement

“I' = A implies ' - A” (P)

is right. However, we must take exception to the word “So”, above, as it may
suggest that the metatheorem (P) somehow is a trivial rephrasing or conse-
quence of Corollary 3.3.

(P) is not implied by 3.3 in general: When T is infinite, then in order to
prove (P), we need a sophisticated metatheorem known as the Compactness of
Propositional Logic—which we are not getting into.

In our course we should be content with the finite case given in 3.3 above.
Just a related remark here: Soundness (2.2) was proved without restriction on
whether I' is finite or not (check the proof once more!)

Post’s Theorem and other Tools© by George Tourlakis
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4. Deduction Theorem, Proof by Contradiction 13

4. Deduction Theorem,
Proof by Contradiction

4.1 Metatheorem. (The Deduction Theorem) I''A + B ¢ff ' - A = B,
where ‘T'; A” means “all the assumptions in T', plus the assumption A” (in set
notation this would be I' U {A4}).

Proof. ifpart. This is easy (by Modus Ponens, essentially). Indeed, we are
given
'-A=10B
Thus (Lemma 1.1)
I AFA=B (1)
But we know that 'y AF A (Why?), hence (by Lemma 1.3) and MP,

T,AF B

only if-part. Here we want to argue that all (T, A)-theorems B have a prop-
erty, that
'HrA=1B (%)
Naturally, we will do induction on (T, A)-theorems B.
Basis. We have the following cases:
Case where B is in A. Then (by Thl, p.1) I' - B. However,

BEA=B 2)

Pause. Do you believe (2)?

By Corollary 3.4 we get ' - A = B.

Case where B is in I. Then I' = B. By (2) and Corollary 3.4 we get
I'-A= B.

Case where B is the same string as A. Now E A = A, that is F A = B,
hence - A = B by Post’s theorem.
This last one leads to I' - A = B by Lemma 1.1.

Equanimity induction step. Say that B is a (T', A) theorem because C and
C = B are.

The I.H. requires the truth of (¥) when we replace B by the “simpler” (ear-
lier) theorems,’ C' and C' = B.
That is, we have as L.H. (3) and (4) below:

I'-A=cC (3)

TNote how I said “theorems”, not “formulas”, in connection with the qualification “sim-
pler”. If needed, review the discussion on induction starting on p.4.

Post’s Theorem and other Tools© by George Tourlakis



14 I. Post’s Theorem and other Tools

and
T'+A= (C=B) (4)
But,
A=CA=(C=B)EA=1B (5)
Pause. Do you believe (5)?
Now (3), (4) and (5) yield I' = A = B via Corollary 3.4.

Leibniz induction step. Say that B is a (T, A)-theorem, because C' = D is,
and B is the same string as E[p := C] = E[p := D].

The I.H. here is that

I'kA= (C=D) (6)
Now, by Lemma 2.1(2),
C=D Elp:=0C]=Elp:=D] (7)
hence
A:>(C’ED)|:A$(E[p::C]EE[p::D]) (8)

Pause. Do you believe that (8) really follows from (7)?

(6) and (8) yield again ' - A = (E[p =C|=E[p:= D]) via Corollary 3.4,
thatis, ' A= B. O

The mathematician, or indeed the mathematics practitioner, uses the Deduction
theorem all the time, without stopping to think about it. Metatheorem 4.1 above
makes an honest person of such a mathematician or practitioner.

The everyday “style” of applying the Metatheorem goes like this: Say we
have all sorts of assumptions (nonlogical axioms) and we want, under these
assumptions, to “prove” that “if A, then B” (verbose form of “A = B”). We
start by adding A to our assumptions, often with the words, “Assume A”. We
then proceed and prove just B (not A = B), and at that point we rest our case.

Thus, we may view an application of the Deduction theorem as a simplifi-
cation of the proof-task. It allows us to “split” an implication A = B that we
want to prove, moving its premise to join our other assumptions. We now have
to prove a simpler formula, B, with the help of stronger assumptions (that is,
all we knew so far, plus A). That often makes our task so much easier!

4.2 Definition. A set of formulas I is inconsistent or contradictory iff I' proves
every A in WFF. [

The following Lemma justifies the term “contradictory” for a I' such as
described above:

Post’s Theorem and other Tools© by George Tourlakis
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4.3 Lemma. I is inconsistent iff I' F false.

Proof. only if-part. IfT is asin 4.2, in particular it proves false since the latter
is a well formed formula.

ifpart. Say, conversely, that we have
' false 9)
Let now A be any formula in WFF whatsoever. We have
false = A (10)

Pause. Do you believe (10)?
By Corollary 3.4, I' = A follows from (9) and (10). O

Why “contradictory”? For example, because we know that = false = A A —A.

4.4 Metatheorem. (Proof by contradiction) '+ A iff T U {=A} is inconsis-
tent.

Proof. ifpart.  So let (by 4.3)
I',-At false

Hence
't —-A = false (1)

by the Deduction theorem. However —A = false = A, hence, by Corollary 3.4
and (1) above, T' - A.

only ifpart.  So let

T'FA
By 1.1,
I,-AF A (2)
Moreover, trivially,
Ir-AF-A (3)

Since A,—A [ false, (2) and (3) yield ' & false via Corollary 3.4, and we are
done by 4.3. O

4.4 legitimizes the tool of “proof by contradiction” that goes all the way back
to the ancient Greek mathematicians: To prove A assume instead the opposite
(=A). Proceed then to obtain a contradiction. This being accomplished, it is
as good as having proved A.

Post’s Theorem and other Tools© by George Tourlakis
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5. Appendix:
Theorems versus Proofs

5.1 Metatheorem. (Induction on Theorems) Let P(x) be a property of WFF’s.
Let T' be given.
Suppose we know that

I1. P(A) holds (is true) for all A in T and A.
12. Whenever P(B) and P(B = A) both hold, then also P(A) is true.

13. Whenever P(C' = D) holds, then also P(E[p := C| = E[p := D]) holds, no
matter how we pick F and p.

Then P(A) is true for all I'-theorems A.

Proof. Let us call S the set of all formulas X that make P(z) true. In set
notation we symbolize what we have just said by

Let S = {X € WFF : P(X)} (1)

Thus “P(X)” is the “entrance condition” for membership in S. A WFF A is in
S iff it satisfies the entrance condition, i.e.,

A€ Siff P(A)f 2)
We observe the following facts about S:

Factl. TCSand ACS.

Indeed (see p.1 for the meaning of “C”) if A is in either " or A, hypoth-
esis I1 yields P(A).

(2), above, then yields A € S.

Fact2. Whenever B and B = A are (both) in S, then so is A.

Indeed our assumption (“Whenever...”) yields that P(B) and P(B =
A) both hold by (2) above. Then, hypothesis 12 yields that P(A) is
true. By (2), once more, A is in S.

T«iff P(A)” is short for “iff P(A) is true”. This is a common abbreviation in mathematics
parlance and is closely related to the “= true” elimination principle. Moreover, we admit that
we have relied on our convention, that capital Latin letters stand for formulas, in order to
simplify the form of (2). In the absence of such a convention (1) would have compelled us to
write more explicitly “A € S iff A € WFF A P(A)”.

Post’s Theorem and other Tools© by George Tourlakis
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Fact3. Whenever C = D is in S, then so is E[p := C| = E[p := D], no matter
how we pick E and p.

Indeed our assumption (“Whenever...”) yields that P(C = D) holds
by (2) above. Then, hypothesis I3 yields that P(E[p := C] = E[p :=
D)) holds. By (2), once more, E[p:=C] = E[p:= D] isin S.

Look at the three Facts above (forget about the reason we gave for them—the
“Indeed. . .-part). They say that the set of formulas S satisfies ezactly the same
three conditions that the set of I'-theorems does (see p.1).

However, the set of I' theorems, let us give it the temporary name 7 for
convenience, is the smallest that satisfies Fact1-Fact3. That is,

TCS

hence if A € 7 then A € S.
Using (2) above, this translates into

If T+ A, then P(A)
(]

5.2 Lemma. If Ay,..., A, is a I'-proof, and if 1 < k < n, then A1,..., Ay is
also a I'-proof.

Proof. Refer to the definition of I'-proof on p.2. It says there “where each A;

(i=1,...,n) satisfies: ...”
But both of Prl and Pr2 continue to be valid if instead of “where each A;
(i =1,...,n) satisfies: ...” we say “where each A; (i = 1,...,k) satisfies: ...”,

since k<n. O

5.3 Lemma. If Ay,..., A, and Ba,..., B, are two I'-proofs, then so is
Ay, ..., A, By, ..., B,. (1)

Proof. As we check the sequence (1) according to the definition of I'-proof on
p.2, it is immediate that every formula A; will “pass” (since Aj,..., A, is a
proof).

How about the B;’s? Well, if a B; is in I or A we are fine. If not, Pr2—
and the fact the By,..., B, is a proof—tell us that B; is a conclusion of a rule
applied to formulas to the left of B; in the sequence B, ..., By.

But this is also true in the sequence Ai,...,Apn,B1,...,B,. So each B;
checks fine. [J

5.4 Metatheorem. I' - A iff A is the last (rightmost) formula in a T'-proof.

Proof. only-if-part. We prove by induction on I'-theorems that each such the-
orem A has the property: “A figures as the rightmost formula in some I'-proof”.
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Basis. Let A be in I' or A. But then, the one-formula sequence “A” is a
I-proof, and A is its rightmost formula.

Equanimity. Let each of B and B = A appear as the rightmost formula of
some proof, e.g.,

QlaQQa"'anaB

and
Rl,RQ,...,Rn,BEA

By 5.3, the following sequence is a I'-proof.
Q1,Q2,...,Qm,B,R1,Rs,...,Ry,B=A
But then so is
Q1,Q2,...,Qn,B,R\,Ry,...,R,,B=AA

by Equanimity and Pr2. Hence A is at the right end of a proof once more.

Leibniz. Let C' = D appear as the rightmost formula of some proof, e.g.,
Q1,Q2,...,Qm,C=D
and let A be the string F[p := C] = E[p := D]. Then
Q1,Q2,...,Qm,C=DA

is also a proof by Leibniz and Pr2. Hence A is at the right end of a proof yet
once more. Done with “only-if”.

if-part. We prove by induction on the number n (length of a proof) that if
R15R27"'7Rn

is a [-proof, then R,, is a ['-theorem, i.e., ' - R,,.

Basis. Case where n = 1. Then, since there is nothing to the left of R,,
Prl must apply, thus R,, is in " or A. Therefore I' - R,, (Th1l on p.1).

As LH., we assume that for all k < n, if
Rl,RQ,...,Rk

is a [-proof, then I' - Ry.
As a result of [.LH. and Lemma 5.2,

'R, foralli=1,...,n—1 (2)
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To conclude the induction step, we consider a I'-proof of length n
Ri,Rs,..., Ry (3)

and proceed to prove
To do: '+ R, (4)

We consider each case Prl and Pr2 for R,:

Prl: If R, isin T orin A, then (as it was the case in the “Basis”), I' - R,,.

Pr2: Subcase Equanimity, where R;, R; - R,, i <n—1,j <n—1, and
R; is the string “R; = R,,”.

By (2), T+ R; and ' -+ R; = R,,. By definition of theorems (Th2, p.1), (4)
follows.

Subcase Leibniz, where R; F R,, i < n — 1 and R; is a string “C = D”
whereas R, is a string “E[p := C] = E[p := D]”.

By (2), T' F R;. By definition of theorems (Th3, p.1), (4) follows once
more. []
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