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Some Applications of MATH 1090 Techniques

0.1 A simple problem about Nand gates in relation to And
gates and inversion (Not) Gates.

� In this subsection the notation “⊢ A” means that A is proved from the axioms of
first-order logic and also from the specific Axioms (2)–(6) of the Nand/And/Inv
theory under discussion. �

Language.
First-order with two constants, 0 and 1 and three function symbols,

• inv (arity one)

• and (arity two)

• nand (arity two)

Axioms.

(1) The first order Logical Axioms are all the partial generalisations of cer-
tain schemata (See [Tou08] and/or MATH 1090 class notes). We remind
ourselves only of the Two Equality Schemata below under (1):

•
⊢ t = t, for any term t (identity)

•

t = s→ (A[x ∶= t] ≡ A[x ∶= s]), for any terms t and s and formula A
(Leib. Axiom)

• From the equality axioms we obtain (routinely proved in MATH 1090)
the following “properties of equality” (theorems), for all terms t and
s:

Symmetry: ⊢ t = s→ s = t

Transitivity: ⊢ t = s ∧ s = t′ → t = t′ (also, if ⊢ t = s and ⊢ s = t′, then
⊢ t = t′)

(2) Axioms (2)–(6) describe the theory of Nand/And/Inv. They are nonlogical.

¬0 = 1

(3)

(∀x)(x = 1 ∨ x = 0)

(4) (Inv)

(∀x)(inv(x) = 1 ≡ x = 0)

� This can also be used (via specialisation) as

⊢ inv(t) = 1 ≡ t = 0 (4′)

for any term t. �
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(5) (And)

(∀x, y)∗
(and(x, y) = 1 ≡ x = 1 ∧ y = 1)

(6) (Nand)

(∀x, y)(nand(x, y) = 0 ≡ x = 1 ∧ y = 1)

We now prove the theorem

(∀x, y)(inv(and(x, y)) = nand(x, y)) (thm)

First a lemma:

0.1 Lemma. For any terms t and s, ⊢ t = s ≡ (t = 0 ≡ s = 0).

Proof. Ping-pong proof: (→) direction. By Leib. Equality Axiom above, taking
“x = 0” as “A”.

(←) direction. Along with the assumption (7)

t = 0 ≡ s = 0 (7)

we have
t = 1 ∨ t = 0 (8)

via specialisation on axiom (3). So we do proof by cases t = 0 and t = 1:

• Case ⊢ t = 0. (7) and tautological implication yield ⊢ s = 0. By ⊢ s = 0 →
0 = s (“symmetry” of “=”) we get ⊢ 0 = s by modus ponens; and then the
assumption of this case and transitivity yield ⊢ t = s as required.

• Case ⊢ t = 1. Thus we can prove ⊢ ¬t = 0, say, by contradiction, for
assuming also ⊢ t = 0 we get 0 = 1 by the case assumption transitivity
contradicting, axiom (2). This, (7) and tautological implication yield ⊢
¬s = 0. Since (8) holds for all terms, we have ⊢ s = 1 ∨ s = 0 and by
tautological implication ⊢ s = 1. This, the assumption for this case, and
transitivity yield once again ⊢ t = s.

Proof of the theorem. Since the prefix “(∀x, y)” can be introduced to

inv(and(x, y)) = nand(x, y) (9)

as all our nonlogical axioms are closed†, it suffices to prove (9) instead of (thm).
In fact, in view of the lemma above, and thinking of inv(and(x, y)) as t and
nand(x, y) as s, we prove instead

inv(and(x, y)) = 0 ≡ nand(x, y) = 0 (10)

here it goes
∗“(∀x, y)” is shorthand for “(∀x)(∀y)”.
†Have no free variables.

Some exercises from EECS 3342. Retold by George Tourlakis: 2018–19



3

nand(x, y) = 0

⇔ ⟨Spec. of Axiom (6) (Nand)⟩

x = 1 ∧ y = 1

⇔ ⟨Spec. of Axiom (5) (And)⟩

and(x, y) = 1

⇔ ⟨Axiom (4) (Inv) —(4′) form⟩

inv(and(x, y)) = 0

◻

0.2
√
2 is irrational

In this subsection we prove that
√

2 is irrational, that is, it is impossible to have

√

2 =
m

n
, where m > 0 and n > 0 are natural numbers (1)

� Why m > 0 and n > 0? �

We will prove this in Peano Arithmetic (for short “PA”, that is, the arith-
metic of the natural numbers N).

PA Alphabet; Nonlogical (Mathematical) Part. The Logical Part is
common to ALL first-order Theories.

The a priori Nonlogical Alphabet of PA has only the (math) symbols 0
(constant), S (stands for the successor function “ + 1”; unary function), the
binary functions “plus” +, and “times” ×, and the binary predicate <.

Of course, equality is in all first-order alphabets! The practice of mathe-
matics to introduce new functions and predicates by definitions is empowered
in first-order logic where PA belongs. One such example of a defined predicate
is the predicate O in (3) below.

� Wait a minute! If the PA symbols list above is complete, then what about
symbols for 1, 2, 101, 3333356699? Why are they not in the alphabet? Well,
it IS complete! S0 —intuitively, “0 + 1”— is denoted by “1̃” and represents
(stands for) 1; SS0 stands for 2 (formal abbreviation 2̃) and in general,

n copies of S
³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ

SS . . . S 0

stands for the informal n and has the formal abbreviation ñ.

In any case, in practice, to preserve our sanity we will drop the ̃ and simply
write 1, 2, n. �
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Below we list the PA Axioms (“nonlogical” —i.e., not needed for Logic— or
mathematical Axioms). We will quote a few (but not all) of them here. But
as I will sometimes say “original PA Axioms” it is fair to know which ones
those are. We will also use (without proof usually as it would be far to hard
and outside our means and goals) PA Theorems (and lemmata) as “Axioms”.
Which is fine as long as we do NOT misquote them!! (See MATH 1090 classes
or text [Tou08]) where it is shown that a known (proved) theorem can be used
exactly as an axiom in a proof).

0.2 Definition. (Peano Arithmetic Axioms) The axioms are the universal
closures of the formulas in the groups PA-1, PA-2 etc., below. The universal
closure of a formula A is the minimum partial generalisation (cf. MATH 1090
classes or text [Tou08]) of A that bounds all its free variables.

Thus, all Axioms are closed, that is, they have no free variables.

PA-1. (Regarding S)

S1. 0 < Sx (for any variable x; the Axiom is alternatively given as
¬0 = Sx which only causes a minor shuffle to early theorems.)

S2. Sx = Sy → x = y (for any variables x, y; as we recognise via MATH
1019, this says that S is 1-1.)

PA-2. (Regarding +)

+1. x + 0 = x (for any variable x)

+2. x + Sy = S(x + y) (for any variables x, y)

PA-3. (Regarding ×)

×1. x × 0 = 0 (for any variable x)

×2. x × Sy = (x × y) + x (for any variables x, y)

PA-4. (Regarding <)

<1. ¬x < 0 (for any variable x)

<2. x < Sy ≡ x < y ∨ x = y (for any variables x, y)

<3. x < y ∨ x = y ∨ y < z (for any variables x, y)

PA-5. (Induction.)

This is the schema A[x ∶= 0]∧(∀x)(A→A[x ∶= Sx])→(∀x)A ◻

0.3� Remark. For what follows in this subsection we note

• We use the simplified “⊢ A” for the correct “PA ⊢ A”, that is, “A is
proved from the Axioms of PA”.
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• Since all the PA axioms are closed, we have for all formulas A and variables
x,

If ⊢ A (i.e., PA ⊢ A), then ⊢ (∀x)A

◻ �

We can speak neither of square roots in PA (the symbol “
√

” is not even
in the alphabet of PA) nor can PA speak of fractions m/n.

Thus we will prove, instead of the impossibility of (1) on p.3, that the equiv-
alent statement (equivalent over the reals, that is) obtained by squaring both
sides of (1) and “distributing” the fraction —that is, (2) below— is not a PA
theorem.

2n2
=m2

(2)

We will “cheat” by taking a few standard PA theorems as additional (to the
original Axioms of 0.2) starting points —as Axioms— given that it is extremely
tedious to develop PA from scratch (if you don’t believe me see chapter 2 here:
[Tou03]).

Before we proceed let us state correctly, in a Gentzen-style format (“fraction”
like configuration), the “auxiliary variable metatheorem” (covered and used in
MATH 1090, albeit in a Hilbert style setting):

Γ,A[x ∶= y] ⊢ B
L∃ provided y is fresh for the denominator

Γ, (∃x)A ⊢ B

Here Γ is a set of formulae, and A and B are individual formulae. What the
“rule” says is that if from the hypotheses Γ ∪ {A[x ∶= y]} we can prove B, then
we can prove B also from the hypotheses Γ∪ {(∃x)A} as long as the restriction
on the new variable (Gentzen called it “eigenvariable”) holds.

The “wordy” elaboration of the “left ∃” rule above is the version (meta)
proved in MATH1090. In the course we named y the “auxiliary variable” (see
also [Tou08]). In use, this rule allows elimination of ∃, in the sense that instead
of proving Γ, (∃x)A ⊢ B we prove the stronger —and easier‡— Γ,A[x ∶= y] ⊢ B
in its place.

Let us apply the idea in proving —within PA— that “if x is odd, then so is
x2”. We assume all the normal “algebra” over N as well as the definition (3)
below, where O(x) stands, intuitively, for “x is odd”; thus O is a defined (unary)
predicate.

O(x)
Def
≡ (∃y)x = 2y + 1 (3)

� We are working formally in N arithmetic, without set theory! Thus expressions
like x ∈ N have no place.

‡Why “easier”? Because removing the leading ∃ may uncover user-friendly Boolean struc-
ture in A, and if so, we may be able to use “tautological implications” in our proof.

Some exercises from EECS 3342. Retold by George Tourlakis: 2018–19



6

The only “cheating” we allow is “knowing” a few theorems! But we will
state them explicitly, as if they were axioms! �

Our first task is to prove

⊢ O(x)→ O(x2
) (4)

As we know (MATH 1090) this is equivalent§ to proving the “easier”

O(x) ⊢ O(x2
) (4′)

In view of (3), (4′) translates into the task

(∃y)x = 2y + 1 ⊢ O(x2
)

and using our L∃ rule it suffices to prove

x = 2z + 1 ⊢ O(x2
), where z is fresh. (4′′)

We have a short equational proof

x = 2z + 1

⇒ ⟨algebra of N: squaring both sides of “=”⟩

x2
= (2z + 1)2

⇔ ⟨Leib. and algebra of N: expand⟩

x2
= 4z2 + 4z + 1

⇔ ⟨Leib. and algebra of N: factor⟩

x2
= 2(2z2 + 2z) + 1

⇒ ⟨Dual Spec. (MATH 1090 or [Tou08])⟩

(∃y)x2
= 2y + 1

⇔ ⟨Def. (3)⟩

O(x2
)

The above proves ⊢ x = 2z + 1→ O(x2
) hence also (4′′) as needed.

Next, the definition of an even natural number:

0.4 Definition.

E(x)
Def
≡ (∃y)x = 2y (6)

◻

Before our next step, which will be relating O(x) to E(x), we will also profit
from the following review:

§(4) meta implies (4′) by modus ponens; the converse meta implication is by the Deduction
Theorem.
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0.5 Definition. (Definition of “≤”)

x ≤ y
Def
≡ ¬y < x

◻

The formulas in Lemma 0.6 below are hard to prove as most require for-
malised induction within PA (see [Tou03]) but fortunately are not hard to
“believe”. All stated formulas are known to us as (informal) theorems of the
arithmetic of natural numbers, say from EECS 1019 or even from High School.

Here we take them too as Axioms since we do not offer proof (but someone
else does, so we are good; we would never take as axiom the first thing that
comes to our mind!).

0.6 Lemma.

1. ⊢ x < y ∧ y < z → x < z

2. ⊢ ¬x < x

3. ⊢ x ≤ y ≡ x = y ∨ x < y

4. ⊢ x < y → Sx < Sx

5. ⊢ x < y ≡ Sx ≤ y

� � Proof. Proofs can be found in [Tou03] but it is not recommended to look:

1. The proofs are hard.

2. This reference is incompatible with the MATH 1090 approach as it adopts
“strong generalisation” axiomatically. On the other hand in the MATH
1090 approach we prefer to “hide” generalisation in the axioms and only
take modus ponens axiomatically. Thus we can prove that we only have
weak generalisation in the MATH 1090 case! “Only”? Yes! Both in
MATH 1090 lectures and in [Tou08] we show that strong generalisation is
invalid.

Then is [Tou03] “wrong”?

No, they are two different approaches. This reference adopts strong gen-
eralisation, so to generalise is easy; unconstrained. But applying the de-
duction theorem is hard.

The [Tou08] makes generalisation hard (weak generalisation “(∀x)A” can-
not be applied if the axioms that proved A have a free x). The up side
is that applying the deduction theorem is easy!

A trade off!

◻

� �
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0.7 Lemma.

• ⊢ 0 < 1

• ⊢ 1 < 2

• ⊢ 0 < 2

Proof.

• ⊢ 0 < 1; The first PA axiom is ⊢ (∀x)0 < Sx, hence (specialization) ⊢ 0 < St
for any term t. In particular, ⊢ 0 < S0, that is, ⊢ 0 < 1

• ⊢ 1 < 2; we know that the function S (“ + 1”) is strictly increasing (4 in
0.6). Thus, from the previous bullet we get ⊢ S0 < S1. But S1 = SS0 = 2
thus we are done.

• ⊢ 0 < 2; bullets one and two and transitivity of < (1 in 0.6). ◻

0.8 Remark. We immediately have ⊢ (∀x)0 ≤ y. By Remark 0.3, it suffices to
see that ⊢ 0 ≤ y. To this end, note that Axiom PA-4 (2) states ⊢ (∀x, y)(x <

Sy ≡ x = y ∨ x < y) or, using 3 of Lemma 0.6 and rule Leibniz¶, we have
⊢ (∀x, y)(x < Sy ≡ x ≤ y). Specialising we get

⊢ 0 < Sy ≡ 0 ≤ y

Since ⊢ 0 < Sy is an Axiom, we obtain ⊢ 0 ≤ y by tautological implication. We
may add “(∀y)” in front now, by Remark 0.3. ◻

0.9 Theorem. (Euclid) For all x, y, where y > 0, there are z and w, with
0 ≤ w < y (conjunctionally), such that x = yz‖

+w. Informally, this theorem, due
to Euclid,∗∗ says that dividing x by y there will be a quotient z and a remainder
w satisfying the inequality 0 ≤ w < y.

Formally,

(∀x, y)(0 < y → (∃z,w)(w < y ∧ x = y × z +w))

One specialisation instance of the directly above is

⊢ 0 < 2→ (∃z,w)(w < 2 ∧ x = 2z +w) (7)

By Lemma 0.7 (3rd bullet) and tautological implication, we get from (7)

⊢ (∃z,w)(w < 2 ∧ x = 2z +w) (8)

¶In fact the “weak Leibniz with unrestricted substitution” —acronym WL; see [Tou08],
and/or MATH1090 class notes.

‖Proper notation in PA is x = y × z +w. However we normally employ the common argot
of “implied multiplication symbol”.

∗∗The Euclid Theorem also states that for a given x and y the quotient and the remainder
are unique, but we will not quote this fact here.
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and applying the auxiliary variable metatheorem we may “eliminate” ∃ from (8)
and add the assumption (∗) below in our subsequent reasoning, where the
variables r and q are fresh:

r < 2 ∧ x = 2q + r (∗)

� Note that we did not forget the conjunct 0 ≤ w above, from the formal theorem
onwards. In Remark 0.8 we proved ⊢ 0 ≤ y. But as we know from MATH 1090,
every such theorem can be replaced (is equivalent to)†† by ⊺, which as a member
of a conjunction is redundant ! �

Next let us ponder the question: What can we conclude from r < 2 where r
is (as it is throughout this subsection) an N-variable?

We can conclude that r = 0 or r = 1!

Let us see if we can prove this “easy” and taken for granted fact!

0.10 Lemma. ⊢ r < 2 ≡ r = 0 ∨ r = 1.

Proof.

r < 2

⇔ ⟨Def. of 2⟩

r < S1

⇔ ⟨Axiom PA-4 (2)⟩

r = 1 ∨ r < 1

⇔ ⟨Def. of 1 and Leib.⟩

r = 1 ∨ r < S0

⇔ ⟨Axiom PA-4 (2) and Leib.⟩

r = 1 ∨ r = 0 ∨ r < 0

⇔ ⟨ Leib. and ¬¬ theorem⟩

r = 1 ∨ r = 0 ∨ ¬¬r < 0

⇔ ⟨Leib. and Axiom PA-4 (1)⟩

r = 1 ∨ r = 0 ∨ ¬⊺

⇔ ⟨tautological equivalence⟩

r = 1 ∨ r = 0

◻

Is every number even or odd? Can a number be both even and odd? We
know the answers as “yes” and “no”.

††Γ ⊢ A iff Γ ⊢ A ≡ ⊺.
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How do we know?

Let x be a variable. We proceed from (∗), p.9.

As the hypothesis (∗) is equivalent to two

x = 2q + r, r < 2 (9)

we do a proof by cases, since r < 2 yields two cases by Lemma 0.10:

• Case r = 0. Then the other hypothesis yields ⊢ x = 2q and we get ⊢ (∃y)x =

2y that is ⊢ E(x).

• Case r = 1. Then the other hypothesis yields ⊢ x = 2q + 1 and we get
⊢ (∃y)x = 2y + 1 that is ⊢ O(x).

By the proof by cases metatheorem we have proved

⊢ E(x) ∨O(x) (†)

Next we show that there is no number that is both even and odd.

0.11 Theorem. ⊢ ¬(∃u)(O(u) ∧E(u)).

Proof. Arguing by contradiction‡‡

Let us assume (∃u)(O(u) ∧E(u))

We argue by the method of the auxiliary variable, that is, we now

assume O(x) ∧E(x), where x is fresh

So, by splitting the “∧” as we have learnt in MATH 1090, we have two
hypotheses: O(x), that is

(∃y)x = 2y + 1 (h1)

and E(x), that is
(∃y)x = 2y (h2)

(h1) allows us to assume
x = 2z + 1 (10)

while (h2) allows us to assume
x = 2w (11)

where z and w are fresh. So, ((10) and (11) and transitivity of =) we start with

2z + 1 = 2w

‡‡From MATH 1090: Γ ⊢ A iff Γ,¬A ⊢ �.
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or equivalently (algebra)
1 = 2(w − z)§§

(12)

We have two cases on w − z —since ⊢ 0 ≤ w − z by 0.8 and ⊢ 0 ≤ w − z ≡ 0 =

w − z ∨ 0 < w − z by 0.6 (3):

Case 0 = w − z: Then

1

= ⟨(12)⟩

2(w − z)

< ⟨algebra: multiplying two sides of < by 2⟩

2 × 0

= ⟨Axiom PA-3 (1)⟩

0

< ⟨Lemma 0.7⟩

S0

= ⟨translate⟩

1

I.e., we have ⊢ 1 < 1 contradicting 2 of 0.6.

Case 0 < w − z: This is equivalent to ⊢ 1 ≤ w − z by 5 of Lemma 0.6:
We have the calculation

1

= ⟨(12)⟩

2(w − z)

≥ ⟨algebra: multiplying two sides of ≥ by 2⟩

2 × 1

= ⟨algebra⟩

2

§§“−”? In PA?! OK, ok. This was argot. But now that you noticed, one can define in
PA x � y, which means “if x < y then 0, else x − y”. Here: Imitating the recursive definitions
PA-2 and PA-3, define first a new function “p(x)” (predecessor) by the equations

p(0) = 0

p(Sx) = x

and then

x � 0 = x

x � Sy = p(x � x)
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Thus we proved ⊢ 1 ≥ 2 under this case. By Definition 0.5 we have proved
⊢ ¬1 < 2. On the other hand, Lemma 0.7 (2) also proves ⊢ 1 < 2. We got our
contradiction!

� BTW, after all this, the proof by contradiction metatheorem establishes that

⊢ ¬(∃u)(O(u) ∧E(u))

and hence
⊢ (∀u)(¬O(u) ∨ ¬E(u))

or, using specialisation,
⊢ ¬O(u) ∨ ¬E(u)

Now, rewrite the above as the tautologically equivalent

⊢ E(u)→ ¬O(u) (13)

On the other hand, (†) on p.10 is tautologically equivalent to

⊢ ¬O(u)→ E(u) (14)

We thus have (tautological implication from (13) and (14), or ping-pong prin-
ciple)

⊢ E(u) ≡ ¬O(u) (∗∗)

�

We are ready for

0.12 Theorem.
√

2 is irrational. That is, for no integers m > 0, n > 0 can we
have

√

2 =m/n

Proof. We prove this by formal contradiction, but as already noted, the as-
sumption that we will contradict is the expressible within PA equivalent state-
ment:

2n2
=m2

(‡)

We add for free the assumption that

m and n have 1 as the only common factor. (∥)

since if we had
√

2 =m/n we could always make m/n irreducible by dividing both
numerator and denominator by gcd(m,n), that is the greatest (read “largest)”
common factor of m,n. ◻

We have the calculation
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2n2
=m2

⇒ ⟨Dual Spec.⟩

(∃y)2y =m2

⇔ ⟨Def. 0.4⟩

E(m2
) ◂

⇔ ⟨(∗∗) above⟩

¬O(m2
)

⇒ ⟨contrapositive of (4), p.0.2⟩

¬O(m)

⇔ ⟨(∗∗) above and the tautology A ≡ ¬B ≡ ¬A ≡ B⟩

E(m)

Thus, by (‡) we have proved ⊢ E(m) and hence (∃y)2y = m. Pick a fresh w
then, and add the assumption 2w =m. We now calculate as follows:

2w =m

⇒ ⟨squaring both sides of =⟩

4w2
=m2

⇒ ⟨Def. transitivity of = and (‡)⟩
4w2

= 2n2

⇔ ⟨simplify by 2⟩

2w2
= n2

⇒ ⟨Dual Spec.⟩

(∃y)2y = n2

⇔ ⟨Def. 0.4⟩

E(n2
)

⇒ ⟨by the proof segment, in the previous proof, from the mark ◂ onwards⟩

E(n)

We have just concluded that m and n have 2 as a common factor contrary to
the assumption (∥). We are done! ◻

References

[Tou03] G. Tourlakis, Lectures in Logic and Set Theory; Volume 1: Mathemat-
ical Logic, Cambridge University Press, Cambridge, 2003.

[Tou08] , Mathematical Logic, John Wiley & Sons, Hoboken, NJ, 2008.

Some exercises from EECS 3342. Retold by George Tourlakis: 2018–19


	A simple problem about Nand gates in relation to And gates and inversion (Not) Gates.
	2 is irrational

