
83

Chapter 5

(Un)Computability
via Church’s Thesis

We noted that computability is the part of logic that gives a mathematically
precise formulation to the concepts algorithm, mechanical procedure, computa-
tion, and calculable or computable function (or relation), with a view of, on one
hand, being able to mathematically study “mechanical procedures”, to deter-
mine which tasks or problems admit such procedures and which do not —and
to understand the “why”!— and, on the other hand, to classify functions and
relations into two groups, those that are computable and those that are not.

Powerful tools have been developed in such a theory of “mechanical proce-
dures” —for some of which the reader is expected to become a competent user—
to prove that many tasks, indeed uncountably† infinitely many, do not admit
mechanical procedures. We will see that one such problem is that of “program
correctness”: To determine whether an arbitrary program —say, written in C—
is faithful to its design specifications for all inputs;‡ for short it is “correct”.

The advent of computability was strongly motivated, in the 1930s, by Hilbert’s
program, in particular by his belief that the Entscheidungsproblem, or decision
problem, for axiomatic theories, that is, the problem “Is this formula a theorem
of that theory?” was solvable by a mechanical procedure —dependent on the
particular theory— that was waiting to be discovered.

Now, since antiquity, mathematicians have invented “mechanical procedures”,
e.g., Euclid’s algorithm for the “greatest common divisor”,§ and had no problem
recognising such procedures when they encountered them.

Thus, to show that a problem admits a mechanical procedure solution the

†In Cantor’s sense of uncountable sets such as the set of the reals vs. countable sets such
as the set of the natural numbers. Cantor explained the precise reason why the former set is
“more infinite” than the latter.
‡Clearly, not by running the program on all inputs! We will not live long enough to see

the answer!
§That is, the largest positive integer that is a common divisor of two given integers.

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



84

idea is straightforward: just find one.† This is a “programming” problem, and
can be handled with some patience and ingenuity —in principle.

But how can I be sure that a mechanical procedure for a particular problem
does not exist? Surely we cannot propose to try each one from the set of
infinitely many mechanical procedures on our problem until we verify that none
of them works?

Pause. Can you convince yourself that there are infinitely many syntacti-
cally correct, say, C programs? J

To prove the negation of an existential statement such as this you need
a mathematical formulation of what a “mechanical procedure” precisely is and
develop and exploit the mathematical properties of the set of all such procedures
to prove that no member of that set can possibly solve our problem, or that
any procedure that solves the problem cannot be in our set, contradicting the
qualifier “all”.

� The above paragraph will make a lot of sense later in this volume. �

Intensive activity by many pioneers of computability (Post [Pos36, Pos44],
Kleene [Kle43], Church [Chu36b], Turing [Tur37], Markov [Mar60]) led in the
1930s to several alternative formulations of computable function and relation,
each purporting to mathematically capture the concepts algorithm, mechanical
procedure, and computable function. All these formulations were quickly proved
to be pairwise equivalent; that is, the calculable functions admitted by any one
of these formulations were the same as those that were admitted by any other.
This led Alonzo Church to formulate his conjecture, widely known as “Church’s
Thesis”, that any intuitively computable function is also computable within any
of these mathematical frameworks of computability.‡

Incidentally, Church proved ([Chu36a, Chu36b]) that Hilbert’s Entschei-
dungsproblem admits no solution by functions that are calculable within any
of the known equivalent mathematical frameworks of computability. Thus, if

†. . . and prove that it does so!
‡I should be clear that even though this “thesis” has the flavour of a “completeness

theorem” in the realm of computability, it is not.
In logic a mathematical definition for the intuitive (experiential) concept of validity or uni-

versal truth is given: a formula is universally true (in a technical sense) iff it is true in all
interpretations (“interpretation” is also a technical, mathematical term). Gödel’s Complete-
ness theorem then states that every universally true formula of logic has a syntactic (also
called formal ; depending only on form) proof —which is a finite syntactic object— without
using any mathematical axioms.

But we have no mathematical definition for the intuitive (experiential) concept of “com-
putable” function a priori —we are searching for one! Thus, the best we can do here is to
speculate about the above mentioned equivalent mathematical formulations of “computable”
function —via finite programs in certain (essentially) programming formalisms— that each
(fully) captures the intuitive notion of computable function.

In other words, Church’s Thesis is an empirically formed belief rather than a provable
result. It is not surprising that some researchers in this field, for examp, Péter [P6́7] and
Kalmár [Kal57], pointed out that it is conceivable that the intuitive concept of calculability
may in the future be extended to exceed the power of the various mathematical models of
computation that we currently know.

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



85

we accept his “Thesis”, the Entscheidungsproblem admits no algorithmic solu-
tion, period!

The eventual introduction of computers further fuelled the study of and
research on the various mathematical frameworks of computation, “models of
computation” as we often say, and “computability” is nowadays a vibrant and
very extensive field.

5.1 A leap of faith: Church’s thesis

The aim of Computability is to mathematically capture (for examp, via URMs)
the informal notions of “algorithm” and “computable function” (or “computable
relation”).

Several mathematical models of computation, that were very different in
their syntactic details and semantics, have been proposed in the 1930s by several
people (Post, Church, Kleene, Turing), and, more recently, by Shepherdson and
Sturgis ([SS63]).

� They were all proved to compute exactly the same number theoretic functions
—that is, all those functions in the set of the partial recursive functions P
introduced in our earlier Notes.† �

This “empirical” evidence prompted Church to state his belief, known as
“Church’s Thesis”, that

Every informal algorithm (pseudo-program) that we propose for the
computation of a function can be implemented (made mathemati-
cally precise, in other words) in each of the known mathematical
models of computation. In particular, it can be “programmed” as a
URM.

� We note that at the present state of our understanding of the concept of “al-
gorithm” or “algorithmic process”, there is no known way to define —via a
pseudo-program of sorts— an “intuitively computable” function on the natural
numbers, which is outside of P.‡

Thus, as far as we know, P appears to formalise the largest —i.e., most
inclusive— set of “intuitively computable” functions (on the natural numbers)
known. �

†The various models, and the gory details of why they all do precisely the same job, can
be found in [Tou84].
‡In the so-called relativised computability (with partial oracles) —essentially allowing

infinite-size inputs such as functions on the natural numbers— Church’s Thesis fails [Tou86]:
an example of an intuitively computable function that is not (mathematically) computable is
one that compares the lengths of two computations. The reason is that said function is non
monotone with respect to the oracle argument, while the “standard” theories of computabil-
ity with partial oracles, e.g., [Dav58a, Mos69], compute only monotone functions. [Tou86]
introduced a mathematical model of non monotone computability where the aforementioned
counterexample to Church’s Thesis above does not apply.

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



86

Church’s Thesis is not a theorem. It cannot be, as it “connects” precise
mathematical objects (URM, P) with imprecise informal ones (“algorithm”,
“computable function”).

However, if used, it provides the operational convenience and pedagogical
advantage of concentrating on the high level of detail of why a program does
what we say it does —or why a mathematical definition produces a computable
function— without having to push too many symbols around in the process.

Another side-effect used to its fullest advantage (e.g., in [Rog67], an advanced
book) is that, if we take the leap of faith and rely on Church’s Thesis, then we
present shorter, more comprehensible arguments —we save space and time of
exposition.†

Since we are more interested in the essence of things in these Notes, and
less in detail, we will heavily rely on Church’s Thesis —to which we will refer,
for short, as “CT”— to justify that various constructions we jot down yield
computable functions.

In the literature, Rogers, as noted, heavily relies on CT. On the other hand,
[Dav58a, Tou84, Tou12] never use CT, and give all the necessary constructions
(implementations) in their full gory details —this is the price to pay, if you
avoid CT.

� Here is the template of how to use CT:

• We completely present —that is, no essential detail is missing— an al-
gorithm in pseudo-code.

IBTW, “pseudo-code” does not mean “sloppy-code”!J

• We then say: By CT, there is a URM that implements our algorithm.
Hence the function that our pseudo code computes is in P.

�

5.2 The effective list of all URMs

� For ease of reference we repeat some introductory material from Section 1.1.
The new material in this section starts with Remark 5.2.2 below. �

We recall from the definition of URM programs —introduced in Section 1.1
and in particular in 1.1.1— that these programs are strings over a finite alpha-
bet A:

A = {←,+, .−, :, X, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, if , else,goto, stop,¶}
†If you are ever in doubt about the legitimacy of a piece of “high-level pseudo code”, then

you ought to try to implement the pseudo program in detail, as a URM, or, at least, as a
“real” C-program or equivalent! E.g., is the instruction “IF the present program outputs 0
for all inputs, GOTO label L ELSE GOTO label R” legitimate? That is, is this instruction
a finitely describable “macro” that can be built using the URM instructions from 1.1.1? An
example of a legitimate macro is “GOTO L”. It abbreviates “IF x = 0 GOTO L ELSE
GOTO L”.

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



87

Just like any other high level programming language, URM manipulates the
contents of variables. All variables are of natural number type.

X and 1 finitely generate the variables of the URM programs as

X,X1, X11, . . . X1n, . . . (2)

where

1n
Def
=

n 1s︷ ︸︸ ︷
1 . . . 1 , where 10

Def
= λ, the empty string

while the symbols 0, 1, 2, . . . , 9 finitely generate natural number constants (in
decimal notation) that we generically denote by a, b, c, with or without sub-
scripts and primes, and instruction labels that we generically denote by L,R, P ,
with or without subscripts and primes.

As is customary for the sake of convenience, we will also utilise the bold
face lower case letters x,y, z,u,v,w, with or without subscripts or primes as
meta names that stand for unspecified strings of the type X1n in most of our
discussions of the URM, and in examps of specific examp programs (where yet
more, convenient metanotations for variables may be employed).

We have defined that

5.2.1 Definition. (URM Programs) A URM program is a finite (ordered)
sequence of instructions (or commands) of the following five types:

L : x← a

L : x← x + 1

L : x← x
.− 1 (3)

L : stop

L : if x = 0 goto M else goto R

where L,M,R, a, written in decimal notation, are in N, and x is some variable.
We call instructions of the last type if-statements.

Any two consecutive instructions in a syntactically correct URM program
are separated (“glued”) by the ¶ symbol that serves as an instruction separator.

� We chose ¶, the “hard return” symbol, for the role of instruction separator
in order to be consistent with the expositional practise of writing programs
vertically, one instruction per line. Thus, as in ordinary text, ¶ is invisible in
the programs that we will write in these notes, but causes us to write the next
instruction on the next line. �

Each instruction in a URM program must be numbered by its position num-
ber, L, in the program, where “:” separates the position number from the in-
struction. We call these numbers labels. Thus, the label of the first instruction
must always be “1”. The instruction stop must occur only once in a pro-
gram, as the last instruction. It is syntactically illegal for the if-statement
L : if x = 0 goto M else goto R to refer to labels M and R that are not
actually labels that occur in the program where the if-statement appears. �

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



88

5.2.2� Remark. It is obvious from 1.1.1 that we can algorithmically check the
syntactic correctness of a URM program. Further, if we assign a number to
each alphabet symbol as in the matrix below

← + .− : X 0 1 2 3 4 5 6 7 8 9 if else goto stop ¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

then we can view each URM as a string of symbols from the (or, “over the”, as
we say) set

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

which we interpret as a number base-21. Conversely, any number, which when
viewed base-21 has no zero digits, represents a string over A.†

Therefore, a question like “is the predicate URM(z) —that states ‘z is a
string over A that parses correctly as a URM’— decidable?” can be dealt with
by our computability theory despite the fact that our theory deals only with
number theoretic predicates and functions.

In fact, by CT and the opening sentence in this remark we can answer, “yes”,
viewing the string z as a number, written base-21, and the predicate URM(z)
as a number-theoretic predicate.‡ � �

Now we can show that we can algorithmically, or as we also say, effectively
enumerate all URMs.

5.2.3 Theorem. The set of all URMs can be effectively enumerated, in the
sense that there is a total computable function E of one variable such that

• For each z, we have URM(E(z))

• If URM(w) is true, then for some z, E(z) = w

Proof. Consider the pseudo program below whose computation results in a non-
ending enumeration of all URMs in a “standard” listing (sequence) List2:

(A) We can algorithmically build the list List1 of all strings over A: List by in-
creasing length and in each length-group enumerate in lexicographic order.

(B) Simultaneously to building List1, build List2 as follows: For every string w
placed in List1, copy it into List2 iff URM(w) is true (cf. Remark 5.2.2).

A modification of the above pseudo-program can ensure that E(z) is the z-th
URM in the enumeration for all z ∈ N:

proc E(z)

†If we allow digit zero then we lose the 1-1 correspondence between number “codes” and
strings. For examp, if we assigned code 0 to ← then the strings ←, ←←, ←←←, etc., all
have numerical code 0. So 0 does not decode uniquely to a string under these circumstances.
‡I.e., a subset of N in the one-variable case.

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



89

(A′) Comment. Given z ≥ 0 as argument. The procedure E(z) will output
the z-th URM from List2.

(B′) w ← 0; Comment. Keeps track of how many strings u we placed in List2.

(C′) Algorithmically build the list List1 as described above;

(D′) Simultaneously to building List1 build List2 as follows:

For every string u placed in List1

if URM(u) is true, then do{
• copy u into List2;

• if w = z + 1, then Return(u) else w ← w + 1;}
By CT, the above procedure defines a (total) computable function λz.E(z)
such that E(z) is the z-th URM. Why total? Because there are infinitely many
URMs, thus, for every z there will be a z-th URM to be listed. �

5.2.4 Corollary. The set of all partial computable functions of one variable can
be effectively enumerated using their URMs as proxies, that is, we enumerate
them as Nx

x′ , where N runs over the list of all URMs and the x and x′ run over
all choices of pairs of of input-output variables from among the variables of N .

� Every computable function f is some Nx
x′ and thus occupies at least one

position i in the listing. Why not exactly one? Because for every N we can
add at its end, but before the stop instruction, one or more instructions z← 1
where z is fresh (a new variable). Any one of the modified N , call it N ′,
satisfies Nx

x′ = N ′xx′ . Thus every function f ∈ P has infinitely many programs
that compute it. This entails that the enumeration of 5.2.4 is with infinitely
many repetitions, for each unary f ∈ P. �

Proof. This has the status of a corollary since the proof is an easy modification
of the theorem’s proof. The obvious idea is to enumerate the Nx

x′ by using
List2 as source, and for each N generated, to list all strings N00x00x′ —which
stand for Nx

x′ , for all x and x′ in N— lexicographically with respect to the “tail”
00x00x′. Incidentally, for each N we have finitely many such strings.

Thus, if the enumerating function is called F , we have the pseudo-program
below that computes F (z) for z ≥ 0. F (z) is the z-th Nx

x′ in the listing of all
computable partial functions of one argument.

proc F (z)

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



90

(A′) Comment. Given z ≥ 0 as argument. The procedure F (z) will output
the z-th unary partial computable function Nx

x′ —as N00x00x′— placed
in List3.

(B′) w ← 0; Comment. Keeps track of how many strings u we placed in List3.

(C′) Algorithmically build the list List1 as described earlier;

(D′) Simultaneously to building List1 also build List3 as follows:

For every string u placed in List1

if URM(u) is true, then do{
• for each pair of variables x and x′ in the URM u, do{

– add the string u00x00x′ in List3, arranging each of these addi-
tions in lexicographic order of the strings 00x00x′.

– if w = z + 1, then Return(u00x00x′) else w ← w + 1;}
}

By CT, the above procedure defines a (total) computable function λz.F (z) such
that F (z) is the z-th unary computable partial function. �

5.2.5 Corollary. The set of all partial computable functions of n variables can
be effectively enumerated using their URMs as proxies, that is, we enumerate
them as N~xn

x′ , where N runs over the list of all URMs and the ~xn and x′ rep-
resent all pairs of choice of input (n-vector)-output variables from among the
variables of N .

Proof. Trivial modification of the proof of 5.2.4. Here we enumerate, for each
URM N that we find (in our URM enumeration), all functions N~xn

x′ , for all

choices of ~xn and x′ in N . The symbol N~xn

x′ is rendered in one dimension as
the string N00x10x20 . . . 0xn00x′. �

5.3 The universal function theorem

The following is an extremely useful tool in the development of computability
theory. It is Kleene’s “universal function theorem”.

5.3.1 Theorem. (Universal function theorem) There is a partial comput-
able two-variable function h with this property: For any one-variable function
f ∈ P, there is a number i ∈ N such that h(i, x) = f(x) for all x. Equivalently,
λx.h(i, x) = f .

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



91

� Recall (1.1.28) that “=” for partial function calls, f(~x) and g(~y), means the
usual —equality of numbers— if both side are defined. f(~x) = g(~y) is also true
if both sides are undefined. In symbols,

f(~x) = g(~y) iff f(~x) ↑ ∧g(~y) ↑ ∨(∃z)
(
f(~x) = z ∧ g(~y) = z

)
The “universality” of h lies in the fact that it (or the URM that computes

it) acts like a “stored program” (i.e., general purpose or universal) “computer”:
To compute a function f we present both a “program” for f —coded as the
number i— and the input data (the x) to h and then we let it crank along. �

Proof. Each λx.f(x) ∈ P is a Mx
y , by definition.

In 5.2.4 we proved that we can algorithmically enumerate all λx.f(x) ∈ P,
with repetitions, by algorithmically enumerating all strings of the form Nx

x′ us-
ing the computable enumerator λi.F (i) that maps i ∈ N to the Nx

x′ —where N
runs over all URMs.

Now we have three things to do:

1. Define λix.h(i, x). Well, by the last sentence in the statement of the
corollary, for each i ∈ N, define λx.h(i, x) to be F (i) from the proof of
5.2.4; that is, some Nx

x′ .

2. Show that h ∈ P. Here is how the universal h is computed

• Given input i and x.

• Call F (i). This returns a unary computable function Nx
x′ , for some

N and variables x and x′ in N .

• Now run program N with x inputed into the input program-variable
x. If and whenN stops, then we return the value held in the program-
variable x′ of N .

By CT, h ∈ P.

3. Universality : Given λx.f(x) ∈ P. Thus, f = Nx
x′ , for some N and vari-

ables x and x′ in N . By 5.2.4, there is a z such that F (z) = Nx
x′ . By 1.

above, h fulfils λx.h(z, x) = f . �

We will next introduce a standard notation due to Rogers ([Rog67]):

5.3.2 Definition. In all that follows, φi will denote the i-ith unary function in
the algorithmic list of all Mx

y . �

5.3.3� Remark.

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



92

(1) Equipped with the above definition we can rephrase the Universal Function
Theorem 5.3.1 as

h(i, x) = φi(x), for all i and x

or even (better)

λx.f(x) ∈ P iff, for some i ∈ N, we have f = φi

It is worth “parsing” this “iff” above:

→ direction: The hypothesis means f = Nu
v for some N . If Nu

v occupies
location i in the list, then, by 5.3.2, f = φi.

← direction: The hypothesis f = φi means that f = Nu
v , where Nu

v occupies
location i in the list. But, f = Nu

v says that f is indeed computable; in P.

(2) λix.φi(x) ∈ P because λix.h(i, x) ∈ P.

(3) Intuitively, 5.3.1 says that our theory is powerful enough to allow us to
program a “compiler” for one-argument functions of P: Indeed, a URM M
with I/O convention such that h = Muv

z is such a compiler. In order to
compute φx(y) we input the “program” x in u and the “data” y in v and,
if and when the computation ends, z will hold the value φx(y).

(4) Calling x the “program” for λy.φx(y) is not exact, but is eminently apt :
x is just a number, not a set of URM instructions; but this number is the
address (location) of a URM program for λy.φx(y). Given the address, we
can retrieve this program from a list via a computational procedure, F of
5.2.4, in a finite number of steps!

(5) In the literature the address x in φx is called a φ-index. So, if f = φi then i
is one of the infinitely many addresses where we can find how to program f .

� �

5.3.4 Corollary. For each n ≥ 1, there is a partial computable (n+1)-variable
function H(n+1) with this property: For any n-variable function f ∈ P, there
is a number i ∈ N such that H(n+1)(i, ~xn) = f(~xn) for all ~xn. Equivalently,
λ~xn.H

(n+1)(i, ~xn) = f .

Proof. As that for h, but using the enumeration of theN~xn

x′ instead (cf. Corollary
5.2.5). H(2) = h. �

Correspondingly we extend Rogers’ notation:

5.3.5 Definition. In all that follows, φ
(n)
i —that is, in terms of the notation

in the preceding corollary also λ~xn.H
(n+1)(i, ~xn)— will denote the i-th n-ary

function in the algorithmic list of all M~xn
y . Thus, φ

(1)
i is φi by definition (com-

pare with 5.3.2). �

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



93

5.4 The Kleene T -predicate and the normal form
theorems

5.4.1 Definition. (The Kleene T predicate)
For any fixed n > 0, we define T (n)(z,~an, y) by

T (n)(z,~an, y)
Def
≡ the z-th URM M~xn

x1
(5.2.5) on input ~an converges in y steps

If n = 1, then we write T (z, a, y) for T (1)(z, a, y). �

5.4.2 Lemma. For each n > 0, T (n)(z,~an, y) is in PR∗.

Proof. Refer to 2.4.25, 5.3.4 and 5.3.5.

Let M
~xn+1
x1 compute the universal (n+ 1)-variable function H(n+1) of 5.3.4.

This is universal for all n-argument partial recursive functions φ
(n)
i :

H(n+1)(i,~an) = φ
(n)
i (~an), for all i and ~an

Our T (n) here is the TM of 2.4.23, for the (n+ 1)-input URM

M~xn+1
x1

= λz~an.H
(n+1)(z,~an)

thus is in PR∗.
The Kleene Normal Form theorem is a fundamental result and tool in com-

putability. It states,

5.4.3 Theorem. (Kleene Normal Form) For each fixed n > 0 we have, for
all z,~an,

(1) φ
(n)
z (~an) ↓≡ (∃y)T (n)(z,~an, y) and

(2) φ
(n)
z (~an) = out

(
(µy)T (n)(z,~an, y), z,~an

)
Proof. Refer to 2.4.25, 5.3.4, 5.3.5, and 5.4.2.

Let M
~xn+1
x1 compute the universal (n+ 1)-variable function H(n+1) of 5.3.4.

By 2.4.25, we have for all z,~an,

H(n+1)(z,~an) ↓≡ (∃y)TM (z,~an, y) (∗)

and
H(n+1)(z,~an) = outM

(
(µy)TM (z,~an, y), z,~an

)
(∗∗)

where “TM” and “outM” are those of 2.4.25.
By the last remark in the proof of Lemma 5.4.2, “T (n) here is the TM of

2.4.23” (here associated with M
~xn+1
x1 ). Replacing H(n+1)(z,~an) by φ

(n)
z (~an) in

(∗) and (∗∗) and setting

out
Def
= outM

we obtain (1) and (2) of the theorem statement. �

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



94

5.5 A number-theoretic definition of P
We know that P contains Z, S and all the Uni , for n > 0 and 1 ≤ i ≤ n, and is
closed under composition, (µy) and prim. Let us define then

5.5.1 Definition. (P-derivations) The set

I =

{
S,Z,

(
Uni

)
n≥i>0

}
is the set of Initial P-functions.†

A P-derivation is a finite (ordered!) sequence of number-theoretic functions,

f1, f2, . . . , fi, . . . , fn

where, for each i , one of the following holds

1. fi ∈ I.

2. fi = prim(fj , fk) and j < i and k < i —that is, fj , fk appear to the left
of fi.

3. fi = λ~y.g
(
r1(~y), r2(~y), . . . , rm(~y)

)
, and all of the λ~y.rq(~y) and λ~xm.g(~xm)

appear to the left of fi in the sequence.

4. fi = λ~x.(µy)fr(y, ~x), where r < i.

Any fi in a derivation is called a P-derived function. The symbol P̃, stands
for the set of P-derived functions, that is, That is,

P̃ Def
= {f : f is P-derived} �

� The aim is to show that P is the set of all P-derived functions as the terminology
in 5.5.1 ought to clearly betray. Of course, we could also have said that P̃ is the
closure of I above, under the operations composition and primitive recursion
and unbounded search (cf. ??).

We will achieve our aim by proving P = P̃. �

First a lemma:

5.5.2 Lemma. PR ⊆ P̃.

Proof. Let f ∈ PR. Then f is PR-derived. But then it is also P̃-derived —a
P̃-derivation need not necessarily use the (µy)-step 4 in 5.5.1. So, f ∈ P̃. �

5.5.3 Theorem. P = P̃.

†Same as the set of initial PR-unctions of 2.1.1.

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



95

Proof. Case P ⊇ P̃: This is by an easy induction on the length of derivation of
an f ∈ P̃. The basis (length=1) is since I ⊆ P. The induction steps 2–4 (from
Definition 5.5.1) follow from the closure properties of P.

Case P ⊆ P̃: Let λ~xn.f(~xn) ∈ P. By 5.4.3, for some i,

f = λ~xn.out
(

(µy)Tn(i, ~xn, y), ~xn

)
(1)

By the lemma, the right hand side of (1) is in P̃ (recall also 2.4.23 and 5.4.2).
So is f , then. �

� Among other things, 5.5.3 allows us to prove properties of P by induction on
P-derivation length, and to show that f ∈ P via a way other than URM-
programming: Place f is a P-derivation.

The number-theoretic characterisation of P given here was one of the foun-
dations of computability proposed in the 1930s, due to Kleene. �

5.6 The S-m-n theorem

A fundamental theorem in computability is the Parametrisation or Iteration or
also “S-m-n” theorem of Kleene. In fact, the S-m-n-theorem along with the uni-
versal function theorem and a handful of additional initial computable functions
are known to be sufficient tools towards founding computability axiomatically
—but we will not get into this matter in this volume.

5.6.1 Theorem. (Parametrisation theorem) For every λxy.g(x, y) ∈ P there
is a function λx.f(x) ∈ R such that

g(x, y) = φf(x)(y), for all x, y (1)

� Preamble. (1) above is based on these observations: Given a program M that
computes the function g as Muv

z with u receiving the input value x and v
receiving the input value y —each via an “implicit” read statement— we can,
for any fixed value x, construct a new program dependent on the value x, which
behaves exactly as M does, because it consists of all of M ’s instructions, plus one
more: The new program N(x) —the notation “(x)” conveying the dependency
of N on x— inputs x into u explicitly via an assignment statement added at the
very top of M : 1 : u← x .

Of course, if x 6= x′, the programs N(x) and N(x′) differ in their first
instruction, so they are different.

Let us denote, for each value x, the position of N(x)vz in our standard effec-
tive enumeration of all theNw

w′ by the expression f(x), to convey the dependency
on x. Clearly the correspondence x 7→ f(x) is functional (single valued), and

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



96

moreover, by the last remark in the preceding paragraph, it is a 1-1 function.

M

M

0

1

2

N

In sum, the new program, N(x), constructed from M and the value x is at
location f(x) of the standard listing —in the notation of 5.2.4, F (f(x)) =
N(x)vz . Thus N(x)vz with input y outputs g(x, y) for said x, that is, in the
notation introduced in Definition 5.3.2, we have

g(x, y) = φf(x)(y), for all y and the fixed x —that is, for all x and y (2)

�

Proof. Of the S-m-n theorem. The proof is encapsulated by the preceding fig-
ure, and much of the argument was already presented in the Preamble located
between the two � signs above (in particular, we have shown (2)).

Below we just settle the claim that we can compute the address f(x) from
x, that is, λx.f(x) ∈ R.

So, fix an input x for the variable u of program M . Next, construct N(x).
A trivial algorithm exists for the construction:

• Given M and x.

• Modify M into N(x) by adding 1 : u← x at the top of M as a new “first”
instruction. See the above figure.

• Change nothing else in the M -part of N(x), but do renumber all the
original instructions of M , from “L : . . .” to “L+ 1 : . . .”.

Of course, every original M -instruction of the type

L : if x = 0 goto P else goto R

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



97

must also change “in its action part”, namely, into

L+ 1 : if x = 0 goto P + 1 else goto R+ 1

• Now —to compute f(x)— go down the effective list of all Nw
w′ and keep

comparing to N(x)vz , until you find it in the list and return its address.

More explicitly,

proc f(x)
for z = 0, 1, 2, . . . do
if F (z) = N(x)vz then return z

• The returned value z is equal to f(x). Note that the if-test in the pseudo
code will eventually succeed and terminate the computation, since all Nx

x′

are in the range of F of 5.2.4. In particular, this means that f is total.

By Church’s thesis the informal algorithm above —described in five bullets—
can be realised as a URM. Thus, f ∈ R. �

� Worth Repeating: It must not be lost between the lines what we have already
observed: that the S-m-n function f is 1-1. �

Two important corollaries suggest themselves:

5.6.2 Corollary. For every λx~yn.g(x, ~yn) ∈ P there is a function λx.f(x) ∈ R
such that

g(x, ~yn) = φf(x)(~yn), for all x, ~yn

Proof. Imitate the proof of 5.6.1 using the fact that we have an effective enu-
meration of all n-ary computable partial functions (5.2.5). �

5.6.3 Corollary. There is a function Sm1 ∈ R of 2 variables such that

φ
(m+1)
i (x, ~ym) = φ

(m)
Sm
1 (i,x)(~ym), for all i, x, ~ym

Proof. The proof is that of 5.6.1 with a small twist: In the proof of 5.6.1 we
start with a URM M for g. Here instead we have an address i of a URM for

φ
(m+1)
i , the latter being the counterpart of g in the current case.

The program N(x) that we have built in the proof of 5.6.1 depends on the
value x that is inputed via an assignment rather a read statement. Said program
is a trivial modification of the program M for g, where the first input variable
u loses its “input status” and participates instead in the very first instruction
as “1 : u← x”.

The corresponding program here we will call N(i, x) due to its obvious de-

pendence on i that (indirectly) tells us which program “M” for φ
(m+1)
i we start

with.
So, the construction of N(i, x) is

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



98

1. Fetch the program for φ
(m+1)
i found in location i of the effective listing of

all N
~xm+1

x′ . Call it Mu,~vm
z , where we have also indicated its input/output

variables.

2. Build N(i, x) by adding 1 : u← x before the first instruction of M . Shift
all labels of M by 1, so that N(i, x) is syntactically correct (cf. 5.6.1).

3. TheN(i, x) program, with its input/output variables indicated, isN(i, x)~vm
z

and can be located in the effective list of all N(i, x)~xm

x′ (cf. 5.2.5).

The argument for the recursiveness of Sm1 has a bit more subtlety than that
of f(x) of 5.6.1 due to the dependency on i. To compute the expression Sm1 (i, x),

• Given i, x.

• Find the program at location i in the effective enumeration of all N
~xm+1

x′ .
See step 1. in the construction above.

• Build N(i, x)~vm
z as in step 2. above, and locate it in the effective list of all

N(i, x)~xm

x′ (cf. 5.2.5).

• Return the address you found in the previous step. This is Sm1 (i, x).

By CT and the 1–3 algorithm above, Sm1 ∈ R. �

5.6.4 Corollary. There is a function Smn ∈ R of n+ 1 variables such that

φ
(m+n)
i (~xn, ~ym) = φ

(m)
Sm
n (i,~xn)

(~ym), for all i, ~xn, ~ym

Proof. This is now easy! In step 1. in the previous proof fetch the program for

φ
(m+n)
i —instead of that of φ

(m+1)
i — found in location i of the effective listing

of all N
~xm+n

x′ . Call it M~un,~vm
z , where we have also indicated its input/output

variables. The counterpart of step 2. above is now to place the program segment
below before all instructions of M :

1 : u1 ← x1
2 : u2 ← x2
...

n : un ← xn
taking all the ui off input duty.

The rest is routine and entirely analogous with the preceding proof, thus is
left to the reader. �

� The notation of the symbol Smn indicates that the first n variables of φ
(m+n)
i

are taken off input duty while the last m of the original m + n input variables
have still input duty. �

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



99

5.7 Unsolvable “problems”;
the halting problem

Some of the comments below (and Definition 5.7.1) occurred already in earlier
sections (2.2.1). We revisit and introduce some additional terminology (e.g.,
“decidable”).

Recall that a number-theoretic relation Q is a subset of Nn, where n ≥ 1. A
relation’s outputs are t or f (or “yes” and “no”). However, a number-theoretic
relation must have values (“outputs”) also in N.

� Thus we re-code t and f as 0 and 1 respectively. This convention is preferred by
recursion theorists (as people who do research in computability like to call them-
selves) and is the opposite of the re-coding that, say, the C language employs
(0 for f and non-zero for t). �

5.7.1 Definition. (Computable or Decidable relations) “A relation Q(~xn)
is computable, or decidable” means that the function

cQ = λ~xn.

{
0 if Q(~xn)

1 otherwise

is in R.
The collection (set) of all computable relations we denote by R∗. Com-

putable relations are also called recursive.
By the way, we call the function λ~xn.cQ(~xn) —which does the re-coding of

the outputs of the relation— the characteristic function of the relation Q (“c”
for “characteristic”). �

� Thus, “a relation Q(~xn) is computable or decidable” means that some URM
computes cQ. But that means that some URM behaves as follows:

On input ~xn, it halts and outputs 0 iff ~xn satisfies Q (i.e., iff Q(~xn)), it halts
and outputs 1 iff ~xn does not satisfy Q (i.e., iff ¬Q(~xn)).

We say that the relation has a decider, i.e., the URM that decides member-
ship of any tuple ~xn in the relation. �

5.7.2 Definition. (Problems) A “Problem” is a formula of the type “~xn ∈ Q”
or, equivalently, “Q(~xn)”.

Thus, by definition, a “problem” is a membership question. �

5.7.3 Definition. (Unsolvable Problems) A problem “~xn ∈ Q” is called
any of the following:

Undecidable
Recursively unsolvable
or just
Unsolvable
iff Q /∈ R∗—in words, iff Q is not a computable relation. �

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



100

Here is the most famous undecidable problem:

φx(x) ↓ (1)

A different formulation of problem (1) is

x ∈ K

where
K = {x : φx(x) ↓}† (2)

that is, the set of all numbers x, such that machine Mx on input x has a (halt-
ing!) computation.

K we shall call the “halting set”, and (1) we shall the “halting problem”.

5.7.4 Theorem. The halting problem is unsolvable.

Proof. We show, by contradiction, that K /∈ R∗.

Thus we start by assuming the opposite.

Let K ∈ R∗ (3)

that is, we can decide membership in K via a URM, or, what is the same, we
can decide truth or falsehood of φx(x) ↓ for any x:

Consider then the infinite matrix below, each row of which denotes a func-
tion in P as an array of outputs, the outputs being a natural number, or the
special symbol “↑” for any undefined entry φx(y).

� By 5.3.1 each one argument function of P sits in some row (as an array of
outputs). �

φ0(0) φ0(1) φ0(2) . . . φ0(i) . . .
φ1(0) φ1(1) φ1(2) . . . φ1(i) . . .
φ2(0) φ2(1) φ2(2) . . . φ2(i) . . .

...
φi(0) φi(1) φi(2) . . . φi(i) . . .

...

We will show that under the assumption (3) that we hope to contradict, the
flipped diagonal† represents a partial recursive function as an array of outputs,

†All three [Rog67, Tou84, Tou12] use K for this set, but this notation is by no means
standard. It is unfortunate that this notation clashes with that for the first projection K of
a pairing function J . However the context will manage to fend for itself!
†Flipping all ↑ red entries to ↓ and vice versa. This flipping is a mechanical procedure

by (3).

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



101

and hence must fit the matrix along some row i since we have that all φi (as
arrays) are rows of the matrix.

On the other hand, flipping the diagonal is diagonalising, and thus the di-
agonal function constructed cannot fit. Contradiction! So, we must blame (3)
and thus we have its negation proved: K/∈R∗

In more detail, or as most texts present this, we have defined the flipped
diagonal for all x as

d(x) =

{
↓ if φx(x) ↑
↑ if φx(x) ↓

Strictly speaking, the above does not define d since the “↓” in the top case is
not a value; it is ambiguous. Easy to fix:

One way to do so is

d(x) =

{
42 if φx(x) ↑
↑ if φx(x) ↓

(4)

Here is why the function in (4) is partial computable:

Given x, do:

• Use the decider for K (for φx(x) ↓, that is) —assumed to exist by (3)—
to test which condition obtains in (4); top or bottom.

• If the top condition is true, then we return 42 and stop.

• If the bottom condition holds, then transfer to an infinite loop, for examp:

while 1 = 1 do

end

By CT, the 3-bullet program has a URM realisation, so d is computable.

Say now
d = φi (5)

What can we say about d(i) = φi(i)? Well, we have two cases:

Case 1. φi(i) ↓. Then we are in the bottom case of (4). Thus d(i) ↑. But we
also have d(i) = φi(i) by (5), thus we have just contradicted the case
hypothesis, φi(i) ↓.

Case 2. φi(i) ↑. We have d(i) = 42 in this case, thus, d(i) ↓. By (5)
d(i) = φi(i), thus again we have contradicted the case hypothesis,
φi(i) ↑.

So we reject (3). �

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



102

In terms of theoretical significance, the above is perhaps the most significant
unsolvable problem that enables the process of discovering more! How?

As a first examp we illustrate the “program correctness problem” (see below).
But how does “x ∈ K” help? Through the following technique of reduction:

� Let P be a new problem (relation!) for which we want to see whether ~y ∈ P can
be solved by a URM. We build a reduction that goes like this:

(1) Suppose that we have a URM M that decides ~y ∈ P , for all ~y.
(2) Then we show how to use M as a subroutine to also decide x ∈ K, for

all x.
(3) Since the latter problem is unsolvable, no such URM M exists! For

short, P (~y) is unsolvable too. �

The equivalence problem is

Given two programs M and N can we test to see whether they
compute the same function?

� Of course, “testing” for such a question cannot be done by experiment : We
cannot just run M and N for all inputs to see if they get the same output,
because, for one thing, “all inputs” are infinitely many, and, for another, there
may be inputs that cause one or the other program to run forever (infinite loop). �

By the way, the equivalence problem is the general case of the “program
correctness” problem which asks

Given a program P and a program specification S, does the program
fit the specification for all inputs?

since we can view a specification as just another formalism to express a function
computation. By CT, all such formalisms, programs or specifications, boil down
to URMs, and hence the above asks whether two given URMs compute the same
function —program equivalence.

Let us show now that the program equivalence problem cannot be solved by
any URM.

5.7.5 Theorem. (Equivalence problem) The equivalence problem of URMs
is the problem “given i and j; is φi = φj?”†

This problem is undecidable.

Proof. The proof is by a reduction (see above), hence by contradiction. We will
show that if we have a URM that solves it, “yes”/“no”, then we have a URM
that solves the halting problem too!

So assume we have an algorithm (URM) E for the equivalence problem. (∗)

Let us use it to answer the question “a ∈ K”—that is, “φa(a) ↓”, for any a.

†If we set P = {(i, j) : φi = φj}, then this problem is the question “(i, j) ∈ P?” or
“P (i, j)?”.

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.



103

So, fix an a that we want to test. (2)

Consider the following two computable functions given by:
For all x:

Z(x) = 0

and

Z̃(x) =

{
0 if x = 0 ∧ φa(a) ↓
0 if x 6= 0

Both functions are intuitively computable: For Z we already have shown a
URM M that computes it (first Note on URMs). For Z̃ and input x compute
as follows:

• Print 0 and stop if x 6= 0.

• On the other hand, if x = 0 then, using the universal function h start
computing h(a, a), which is the same as φa(a) (cf. 5.3.1). If this ever halts
just print 0 and halt; otherwise let it loop forever.

By CT, Z̃ is in P, that is, it has a URM program, say M̃ .
We can compute the locations i and j of M and M̃ respectively by going

down the list of all Nw
w′ . Thus Z = φi and Z̃ = φj .

By assumption (∗) above, we proceed to feed i and j to E. This machine
will halt and answer “yes” (0) precisely when φi = φj ; will halt and answer
“no” (1) otherwise. But note that φi = φj iff φa(a) ↓. We have thus solved the
halting problem since a is arbitrary! This is a contradiction to the existence of
URM E. �

Notes on Computability via URMs. c© George Tourlakis, 2011 and 2019.


