0.1. First-order Proofs and Theorems

Lecture # 15, Nov. 6

0.1. First-order Proofs and Theorems

A Hilbert-style proof from Γ (Γ -proof) is *exactly as defined in the case of Boolean Logic*. Namely:

 \diamond It is a finite sequence of wff

 $A_1, A_2, A_3, \ldots, A_i, \ldots, A_n$

such that each A_i is ONE of

1. Axiom from Λ_1 OR a member of Γ

OR

2. Is obtained by MP from $X \to Y$ and X that appear to the LEFT of A_i (A_i is the same string as Y then.)

However, here "*wff*" is *1st-order*, and Λ_1 is a <u>DIFFERENT</u> set of axioms than the old Λ . Moreover we have ONLY one rule up in front.

As in Boolean definitions, <u>a 1st-order theorem from Γ </u> (Γ -theorem) is *a formula* that occurs in a 1st-order Γ -proof.

As before we write " $\Gamma \vdash A$ " to say "A is a Γ -theorem" and write " $\vdash A$ " to say "A is an absolute theorem".

Ś

Hilbert proofs in 1st-order logic are written vertically as well, with line numbers and annotation.

The $\underline{\text{metatheorems}}$ about proofs and theorems

- proof tail removal,
- proof concatenation,
- a wff is a Γ -theorem iff it occurs at the <u>end</u> of a proof
- hypothesis strengthening,
- hypothesis splitting,
- usability of derived rules,
- usability of previously proved theorems

hold with the same metaproofs as in the Boolean case.

Basic Logic© by George Tourlakis

We trivially have Post's Theorem (the weak form that we proved for Boolean logic).

0.1.1 Theorem. (Weak Post's Theorem for 1st-order logic) If $A_1, \ldots, A_n \models_{taut} B$ then $A_1, \ldots, A_n \vdash B$

Proof. Exactly the same as in Boolean logic.

Thus We may use

•

$A_1,\ldots,A_n\vdash B$

as a DERIVED rule in any 1st-order proof, if we know that

$$A_1,\ldots,A_n\models_{taut} B$$

Basic Logic[®] by George Tourlakis

0.2. Deduction Theorem

This Metatheorem of First-Order Logic says:

0.2.1 Metatheorem. *If* Γ , $A \vdash B$, *then also* $\Gamma \vdash A \rightarrow B$

Proof. Induction on the proof length L we used for $\Gamma, A \vdash B$:

1. L = 1 (*Basis*). There is only one formula in the proof: The proof must be

В

Only two subcases apply:

• $B \in \Gamma$. Then $\Gamma \vdash B$. But $B \models_{taut} A \to B$, thus by 0.1.1 also $B \vdash A \to B$. So

$$B, A \to B$$

is a Γ -proof too. That is, $\Gamma \vdash A \rightarrow B$.

- B IS A. So, $A \to B$ is a tautology hence axiom hence $\Gamma \vdash A \to B$.
- $B \in \Lambda_1$. Then $\Gamma \vdash B$. Conclude as above.
- 2. Assume (I.H.) the claim for all proofs of lengths $L \leq n$.
- 3. I.S.: The proof has length L = n + 1:

$$\overbrace{\ldots,B}^{n+1}$$

If $B \in \Gamma \cup \Lambda_1$ then we are done by the argument in 1.

Assume instead that it is the result of MP on formulas to the left of B:

$$\underbrace{\underbrace{\ldots, X, \ldots, X \to B}_{n}, \ldots, B}^{n+1}$$

By the I.H. we have

$$\Gamma \vdash A \to X \tag{(*)}$$

0.2. Deduction Theorem

and

$$\Gamma \vdash A \to (X \to B) \tag{(**)}$$

The following Hilbert proof concludes the case and the entire proof:

1) $A \to X$ (thm by (*)) 2) $A \to (X \to B)$ (thm by (**)) 3) $A \to B$ (1 + 2 + taut. implication)

The last line proves the metatheorem.

Comment. In line 3 above, seeing that

$$A \to X, \qquad A \to (X \to B) \models_{taut} A \to B$$

is trivially verifiable, we used the "RULE"

$$A \to X, A \to (X \to B) \vdash A \to B$$

that we <u>obtain</u> from the above via 0.1.1.

The annotation said "1 + 2 + taut. implication".

It could also have said instead "1 + 2 + Post".

0.3. Generalisation and "weak" Leibniz Rule

We learn here HOW exactly to handle the quantifier \forall .

0.3.1. Adding and Removing " $(\forall x)$ "

0.3.1 Metatheorem. (Weak Generalisation) Suppose that for any wff X in Γ X has no free occurrences of \mathbf{x} .

Then if we have $\Gamma \vdash A$, we will also have $\Gamma \vdash (\forall \mathbf{x})A$.

Proof. Induction on the length L of the Γ -proof used for A.

1. L = 1 (*Basis*). There is only one formula in the proof: The proof must be

A

Only two subcases apply:

• $A \in \Gamma$. Then A has *no free* **x**. But $\vdash A \rightarrow (\forall \mathbf{x})A$ by axiom 3. Thus, we have a Hilbert proof (written horizontally for speed),

$$\overbrace{A}^{\Gamma-proved}, \overbrace{A \to (\forall \mathbf{x})A}^{axiom}, \overbrace{(\forall \mathbf{x})A}^{\text{MP on the previous two}}$$

• $A \in \Lambda_1$. Then then so is $(\forall \mathbf{x}) A \in \Lambda_1$ by partial generalisation.

Hence $\Gamma \vdash (\forall \mathbf{x}) A$ once more. (WHY?)

$$\Re$$
 AHA! So that's what "partial generalisation" does for us!

Ş

0.3. Generalisation and "weak" Leibniz Rule

- 2. Assume (I.H.) the claim for all proofs of lengths $L \leq n$.
- 3. I.S.: The proof has length L = n + 1:

$$\overbrace{\ldots,A}^{n+1}$$

If $A \in \Gamma \cup \Lambda_1$ then we are done by the argument in 1.

Assume instead that A is the result of MP on formulas to the left of it:

$X \qquad X \rightarrow A \qquad A$
$\leq n$
n

By the I.H. we have

$$\Gamma \vdash (\forall \mathbf{x})X \tag{(*)}$$

and

$$\Gamma \vdash (\forall \mathbf{x})(X \to A) \tag{**}$$

The following Hilbert proof concludes the case and the entire proof:

1) $(\forall \mathbf{x})X$ (thm by (*)) 2) $(\forall \mathbf{x})(X \to A)$ (thm by (**)) 3) $(\forall \mathbf{x})(X \to A) \to (\forall \mathbf{x})X \to (\forall \mathbf{x})A$ (axiom 4) 5) $(\forall \mathbf{x})X \to (\forall \mathbf{x})A$ (2 + 3 + MP) 6) $(\forall \mathbf{x})A$ (1 + 5 + MP)

The last line proves the metatheorem.

 $\mathit{Basic \ Logic}$ by George Tourlakis

0.3.2 Corollary. If $\vdash A$, then $\vdash (\forall \mathbf{x})A$.

Proof. The condition that no X in Γ has free **x** is met: Vacuously. Γ is empty!

0.3.3 Remark. Ś

1. So, the Metatheorem says that if A is a Γ -theorem then so is $(\forall \mathbf{x})A$ as long as the restriction of 0.3.1 is met.

But then, since I <u>can</u> invoke THEOREMS (not only axioms and hypotheses) in a proof, I <u>can</u> insert $(\forall \mathbf{x})A$ anywhere AFTER A in any Γ -proof of A where Γ obeys the restriction.

2. Why "weak"? Because I need to know how the A was obtained before I may use $(\forall \mathbf{x})A$.

Ś

8

0.3.4 Metatheorem. (Specialisation Rule) $(\forall \mathbf{x}) A \vdash A[\mathbf{x} := t]$

Goes without saying that IF the expression $A[\mathbf{x} := t]$ is undefined, then we have nothing to prove.

Proof.

(1)
$$(\forall \mathbf{x})A$$
 $\langle \text{hyp} \rangle$
(2) $(\forall \mathbf{x})A \to A[\mathbf{x} := t]$ $\langle \text{axiom } 2 \rangle$
(3) $A[\mathbf{x} := t]$ $\langle 1 + 2 + \text{MP} \rangle$

0.3.5 Corollary. $(\forall \mathbf{x}) A \vdash A$

Proof. This is the special case where t is \mathbf{x} .

Ś

10

Really Important! The metatheorems 0.3.5 and 0.3.1 (or 0.3.2) —which we nickname "spec" and "gen" respectively— are tools that make our life easy in Hilbert proofs where handling of \forall is taking place.

0.3.5 with no restrictions allows us to REMOVE a leading " $(\forall \mathbf{x})$ ".

Doing so we might uncover Boolean glue and thus benefit from applications of "Post" (0.1.1).

If we need to re-INSERT $(\forall \mathbf{x})$ before the end of proof, we employ 0.3.1 to do so.

This is a good recipe for success in 1st-order proofs!

Ś

0.3.2. Examples Ping-Pong proofs.

Hilbert proofs are not well-suited to handle equivalences.

However, trivially

and —by 0.1.1—

$$A \to B, B \to A \models_{taut} A \equiv B$$
$$A \to B, B \to A \vdash A \equiv B \tag{1}$$

Thus, to prove $\Gamma \vdash A \equiv B$ in Hilbert style it suffices —by (1)— to offer <u>TWO</u> Hilbert proofs:

 $\underline{\Gamma \vdash A \to B}$ AND $\underline{\Gamma \vdash B \to A}$

This <u>back and forth</u> motivates the nickname "ping-pong" for this proof technique. \Diamond

0.3.6 Theorem. (Distributivity of \forall over \land) \vdash $(\forall \mathbf{x})(A \land B) \equiv (\forall \mathbf{x})A \land (\forall \mathbf{x})B$ *Proof.* By Ping-Pong argument.

We will show TWO things:

1. $\vdash (\forall \mathbf{x})(A \land B) \rightarrow (\forall \mathbf{x})A \land (\forall \mathbf{x})B$ and 2. $\vdash (\forall \mathbf{x})A \land (\forall \mathbf{x})B \rightarrow (\forall \mathbf{x})(A \land B)$ (\rightarrow) ("1." above)

By DThm, it suffices to prove $(\forall \mathbf{x})(A \land B) \vdash (\forall \mathbf{x})A \land (\forall \mathbf{x})B$.

(2) $A \wedge B$ $\langle 1 + \text{spec } (0.3.5) \rangle$ (3) A $\langle 2 + \text{Post} \rangle$ (4) B $\langle 2 + \text{Post} \rangle$ (5) $(\forall \mathbf{x})A$ $\langle 3 + \text{gen; OK: hyp contains no free } \mathbf{x} \rangle$ (6) $(\forall \mathbf{x})B$ $\langle 4 + \text{gen; OK: hyp contains no free } \mathbf{x} \rangle$ (7) $(\forall \mathbf{x})A \wedge (\forall \mathbf{x})B$ $\langle (5,6) + \text{Post} \rangle$	(1)	$(\forall \mathbf{x})(A \land B)$	$\langle hyp \rangle$
(3) A $\langle 2 + \text{Post} \rangle$ (4) B $\langle 2 + \text{Post} \rangle$ (5) $(\forall \mathbf{x})A$ $\langle 3 + \text{gen; OK: hyp contains no free } \mathbf{x} \rangle$ (6) $(\forall \mathbf{x})B$ $\langle 4 + \text{gen; OK: hyp contains no free } \mathbf{x} \rangle$ (7) $(\forall \mathbf{x})A \land (\forall \mathbf{x})B$ $\langle (5,6) + \text{Post} \rangle$	(2)	$A \wedge B$	$\langle 1 + \text{spec} (0.3.5) \rangle$
(4)B $\langle 2 + \text{Post} \rangle$ (5) $(\forall \mathbf{x})A$ $\langle 3 + \text{gen; OK: hyp contains no free } \mathbf{x} \rangle$ (6) $(\forall \mathbf{x})B$ $\langle 4 + \text{gen; OK: hyp contains no free } \mathbf{x} \rangle$ (7) $(\forall \mathbf{x})A \land (\forall \mathbf{x})B$ $\langle (5,6) + \text{Post} \rangle$	(3)	A	$\langle 2 + \text{Post} \rangle$
(5) $(\forall \mathbf{x})A$ (3 + gen; OK: hyp contains no free \mathbf{x}) (6) $(\forall \mathbf{x})B$ (4 + gen; OK: hyp contains no free \mathbf{x}) (7) $(\forall \mathbf{x})A \land (\forall \mathbf{x})B$ ((5,6) + Post)	(4)	В	$\langle 2 + \text{Post} \rangle$
(6) $(\forall \mathbf{x})B$ $\langle 4 + \text{gen; OK: hyp contains no free } \mathbf{x} \rangle$ (7) $(\forall \mathbf{x})A \land (\forall \mathbf{x})B$ $\langle (5,6) + \text{Post} \rangle$	(5)	$(\forall \mathbf{x})A$	$\langle 3 + \text{gen}; \text{OK: hyp contains no free } \mathbf{x} \rangle$
(7) $(\forall \mathbf{x}) A \land (\forall \mathbf{x}) B \langle (5,6) + \text{Post} \rangle$	(6)	$(\forall \mathbf{x})B$	$\langle 4 + \text{gen}; \text{OK: hyp contains no free } \mathbf{x} \rangle$
	(7)	$(\forall \mathbf{x})A \land (\forall \mathbf{x})B$	$\langle (5,6) + \text{Post} \rangle$

NOTE. We *ABSOLUTELY MUST* acknowledge for each application of "gen" that *the restriction is met.*

Basic Logic© by George Tourlakis

Lecture #16, Nov. 11

 (\leftarrow) ("2." above)

By DThm, it suffices to prove $(\forall \mathbf{x})A \land (\forall \mathbf{x})B \vdash (\forall \mathbf{x})(A \land B)$.

(1)	$(\forall \mathbf{x})A \land (\forall \mathbf{x})B$	$\langle hyp \rangle$	
(2)	$(\forall \mathbf{x})A$	$\langle 1 + \text{Post} \rangle$	
(3)	$(\forall \mathbf{x})B$	$\langle 1 + \text{Post} \rangle$	
(4)	A	$\langle 2 + \text{spec} \rangle$	
(5)	В	$\langle 3 + \text{spec} \rangle$	
(6)	$A \wedge B$	$\langle (4,5) + \text{Post} \rangle$	
(7)	$(\forall \mathbf{x})(A \land B)$	$\langle 6 + \text{gen}; \text{OK: hyp has no free } \mathbf{x} \rangle$	

Easy and Natural! Right?

Basic Logic© by George Tourlakis

0.3.7 Theorem. $\vdash (\forall \mathbf{x})(\forall \mathbf{y})A \equiv (\forall \mathbf{y})(\forall \mathbf{x})A$

Proof. By Ping-Pong. $\vdash (\forall \mathbf{x})(\forall \mathbf{y})A_{\leftarrow}^{\rightarrow}(\forall \mathbf{y})(\forall \mathbf{x})A.$

 (\rightarrow) direction.

By DThm it suffices to prove $(\forall \mathbf{x})(\forall \mathbf{y})A \vdash (\forall \mathbf{y})(\forall \mathbf{x})A$

(1)	$(\forall \mathbf{x})(\forall \mathbf{y})A$	$\langle hyp \rangle$
(2)	$(\forall \mathbf{y})A$	$\langle 1 + \text{spec} \rangle$
(3)	A	$\langle 2 + \text{spec} \rangle$
(4)	$(\forall \mathbf{x})A$	$\langle 3 + \text{gen}; \text{ OK hyp has no free } \mathbf{x} \rangle$
(5)	$(\forall \mathbf{y})(\forall \mathbf{x})A$	$\langle 4 + \text{gen}; \text{ OK hyp has no free } \mathbf{y} \rangle$

 (\leftarrow)

Exercise! Justify that you can write the above proof backwards!

 $\mathit{Basic \ Logic}$ by George Tourlakis

0.3.8 Metatheorem. (Monotonicity of \forall) If $\Gamma \vdash A \rightarrow B$, then $\Gamma \vdash (\forall \mathbf{x})A \rightarrow (\forall \mathbf{x})B$, as long as no wff in Γ has a free \mathbf{x} .

Proof.

(1)
$$A \to B$$
 (invoking a Γ -thm)
(2) $(\forall \mathbf{x})(A \to B)$ ($\forall \mathbf{x})A \to (\forall \mathbf{x})A \to (\forall \mathbf{x})B$ (axiom 4)
(3) $(\forall \mathbf{x})(A \to B) \to (\forall \mathbf{x})A \to (\forall \mathbf{x})B$ (axiom 4)
(4) $(\forall \mathbf{x})A \to (\forall \mathbf{x})B$ ((2,3) + MP) \Box

0.3.9 Corollary. If $\vdash A \rightarrow B$, then $\vdash (\forall \mathbf{x})A \rightarrow (\forall \mathbf{x})B$.

Proof. Case of $\Gamma = \emptyset$. The restriction is vacuously satisfied.

0.3.10 Corollary. If $\Gamma \vdash A \equiv B$, then also $\Gamma \vdash (\forall \mathbf{x})A \equiv (\forall \mathbf{x})B$, as long as Γ does not contain wff with \mathbf{x} free.

Proof.

(1)	$A \equiv B$	$\langle \Gamma \text{-theorem} \rangle$	
(2)	$A \to B$	$\langle 1 + \text{Post} \rangle$	
(3)	$B \to A$	$\langle 1 + \text{Post} \rangle$	
(4)	$(\forall \mathbf{x})A \to (\forall \mathbf{x})B$	$\langle 2 + \forall - \text{mon } (0.3.8) \rangle$	
(5)	$(\forall \mathbf{x}) B \to (\forall \mathbf{x}) A$	$\langle 3 + \forall - \text{mon } (0.3.8) \rangle$	
(6)	$(\forall \mathbf{x})A \equiv (\forall \mathbf{x})B$	$\langle (4,5) + \text{Post} \rangle$	

0.3.11 Corollary. If $\vdash A \equiv B$, then also $\vdash (\forall \mathbf{x})A \equiv (\forall \mathbf{x})B$. Proof. Take $\Gamma = \emptyset$.