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Lecture # 15, Nov. 6

0.1. First-order Proofs and Theorems

A Hilbert-style proof from Γ (Γ-proof) is exactly as defined in the case of Boolean
Logic. Namely:

� It is a finite sequence of wff

A1, A2, A3, . . . , Ai, . . . , An

such that each Ai is ONE of

1. Axiom from Λ1 OR a member of Γ

OR

2. Is obtained by MP from X → Y and X that appear to the LEFT of Ai (Ai is
the same string as Y then.)

However, here “wff” is 1st-order, and Λ1 is a DIFFERENT set of axioms than
the old Λ. Moreover we have ONLY one rule up in front.

As in Boolean definitions, a 1st-order theorem from Γ (Γ-theorem) is a formula
that occurs in a 1st-order Γ-proof.

As before we write “Γ ` A” to say “A is a Γ-theorem” and write “` A” to say
“A is an absolute theorem”. �
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Hilbert proofs in 1st-order logic are written vertically as well, with line
numbers and annotation.

The metatheorems about proofs and theorems

• proof tail removal,

• proof concatenation,

• a wff is a Γ-theorem iff it occurs at the end of a proof

• hypothesis strengthening,

• hypothesis splitting,

• usability of derived rules,

• usability of previously proved theorems

hold with the same metaproofs as in the Boolean case.
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We trivially have Post’s Theorem (the weak form that we proved for Boolean
logic).

0.1.1 Theorem. (Weak Post’s Theorem for 1st-order logic)
If A1, . . . , An |=taut B then A1, . . . , An ` B

Proof. Exactly the same as in Boolean logic. �

� Thus we may use
A1, . . . , An ` B

as a DERIVED rule in any 1st-order proof, if we know that

A1, . . . , An |=taut B

. �
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0.2. Deduction Theorem

This Metatheorem of First-Order Logic says:

0.2.1 Metatheorem. If Γ, A ` B, then also Γ ` A→ B

Proof. Induction on the proof length L we used for Γ, A ` B:

1. L = 1 (Basis). There is only one formula in the proof: The proof must be

B

Only two subcases apply:

• B ∈ Γ. Then Γ ` B. But B |=taut A→ B, thus by 0.1.1 also B ` A→ B.
So

B,A→ B

is a Γ-proof too. That is, Γ ` A→ B.

• B IS A. So, A→ B is a tautology hence axiom hence Γ ` A→ B.

• B ∈ Λ1. Then Γ ` B. Conclude as above.

2. Assume (I.H.) the claim for all proofs of lengths L ≤ n.

3. I.S.: The proof has length L = n + 1:

n+1︷ ︸︸ ︷
. . . , B

If B ∈ Γ ∪ Λ1 then we are done by the argument in 1.

Assume instead that it is the result of MP on formulas to the left of B:

n+1︷ ︸︸ ︷
. . . , X, . . . , X → B︸ ︷︷ ︸

≤n

, . . . ,

︸ ︷︷ ︸
n

B

By the I.H. we have
Γ ` A→ X (∗)
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and
Γ ` A→ (X → B) (∗∗)

The following Hilbert proof concludes the case and the entire proof:

1) A→ X 〈thm by (∗)〉
2) A→ (X → B) 〈thm by (∗∗)〉
3) A→ B 〈1 + 2 + taut. implication〉

The last line proves the metatheorem. �

Comment. In line 3 above, seeing that

A→ X, A→ (X → B) |=taut A→ B

is trivially verifiable, we used the “RULE”

A→ X,A→ (X → B) ` A→ B

that we obtain from the above via 0.1.1.

The annotation said “1 + 2 + taut. implica-
tion”.

It could also have said instead “1 + 2 + Post”.
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0.3. Generalisation and “weak” Leibniz Rule

We learn here HOW exactly to handle the quantifier ∀.

0.3.1. Adding and Removing “(∀x)”

0.3.1 Metatheorem. (Weak Generalisation) Suppose that for any wff X in Γ
X has no free occurrences of x.

Then if we have Γ ` A, we will also have Γ ` (∀x)A.

Proof. Induction on the length L of the Γ-proof used for A.

1. L = 1 (Basis). There is only one formula in the proof: The proof must be

A

Only two subcases apply:

• A ∈ Γ. Then A has no free x. But ` A → (∀x)A by axiom 3. Thus, we
have a Hilbert proof (written horizontally for speed),

Γ−proved︷︸︸︷
A ,

axiom︷ ︸︸ ︷
A→ (∀x)A,

MP on the previous two︷ ︸︸ ︷
(∀x)A

• A ∈ Λ1. Then then so is (∀x)A ∈ Λ1 by partial generalisation.

Hence Γ ` (∀x)A once more. (WHY?)

� AHA! So that’s what “partial generalisation” does for
us! �
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2. Assume (I.H.) the claim for all proofs of lengths L ≤ n.

3. I.S.: The proof has length L = n + 1:

n+1︷ ︸︸ ︷
. . . , A

If A ∈ Γ ∪ Λ1 then we are done by the argument in 1.

Assume instead that A is the result of MP on formulas to the left of it:

n+1︷ ︸︸ ︷
. . . , X, . . . , X → A︸ ︷︷ ︸

≤n

, . . . ,

︸ ︷︷ ︸
n

A

By the I.H. we have
Γ ` (∀x)X (∗)

and
Γ ` (∀x)(X → A) (∗∗)

The following Hilbert proof concludes the case and the entire proof:

1) (∀x)X 〈thm by (∗)〉
2) (∀x)(X → A) 〈thm by (∗∗)〉
3) (∀x)(X → A)→ (∀x)X → (∀x)A 〈axiom 4〉
5) (∀x)X → (∀x)A 〈2 + 3 + MP〉
6) (∀x)A 〈1 + 5 + MP〉

The last line proves the metatheorem. �
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0.3.2 Corollary. If ` A, then ` (∀x)A.

Proof. The condition that no X in Γ has free x is met: Vacuously. Γ is empty! �

0.3.3� Remark.

1. So, the Metatheorem says that if A is a Γ-theorem then so is (∀x)A as long as
the restriction of 0.3.1 is met.

But then, since I can invoke THEOREMS (not only axioms and hypotheses)
in a proof, I can insert (∀x)A anywhere AFTER A in any Γ-proof of A where
Γ obeys the restriction.

2. Why “weak”? Because I need to know how the A was obtained before I may
use (∀x)A. � �

Basic Logic© by George Tourlakis



0.3. Generalisation and “weak” Leibniz Rule 9

0.3.4 Metatheorem. (Specialisation Rule) (∀x)A ` A[x := t]

� Goes without saying that IF the expression A[x := t] is undefined, then we have
nothing to prove. �

Proof.

(1) (∀x)A 〈hyp〉
(2) (∀x)A→ A[x := t] 〈axiom 2〉
(3) A[x := t] 〈1 + 2 + MP〉 �

0.3.5 Corollary. (∀x)A ` A

Proof. This is the special case where t is x. �
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� Really Important! The metatheorems 0.3.5 and 0.3.1 (or 0.3.2) —which we nick-
name “spec” and “gen” respectively— are tools that make our life easy in Hilbert
proofs where handling of ∀ is taking place.

0.3.5 with no restrictions allows us to REMOVE a leading “(∀x)”.

Doing so we might uncover Boolean glue and thus benefit from applications of
“Post” (0.1.1).

If we need to re-INSERT (∀x) before the end of proof, we employ 0.3.1 to do so.

This is a good recipe for success in 1st-order proofs! �
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0.3.2. Examples

� Ping-Pong proofs.

Hilbert proofs are not well-suited to handle equivalences.

However, trivially
A→ B,B → A |=taut A ≡ B

and —by 0.1.1—
A→ B,B → A ` A ≡ B (1)

Thus, to prove Γ ` A ≡ B in Hilbert style it suffices —by (1)— to offer TWO
Hilbert proofs:

Γ ` A→ B AND Γ ` B → A

This back and forth motivates the nickname “ping-pong” for this proof technique. �
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0.3.6 Theorem. (Distributivity of ∀ over ∧) ` (∀x)(A ∧B) ≡ (∀x)A ∧ (∀x)B

Proof. By Ping-Pong argument.

We will show TWO things:

1. ` (∀x)(A ∧B)→ (∀x)A ∧ (∀x)B

and

2. ` (∀x)A ∧ (∀x)B → (∀x)(A ∧B)

(→) (“1.” above)

By DThm, it suffices to prove (∀x)(A ∧B) ` (∀x)A ∧ (∀x)B.

(1) (∀x)(A ∧B) 〈hyp〉
(2) A ∧B 〈1 + spec (0.3.5)〉
(3) A 〈2 + Post〉
(4) B 〈2 + Post〉
(5) (∀x)A 〈3 + gen; OK: hyp contains no free x〉
(6) (∀x)B 〈4 + gen; OK: hyp contains no free x〉
(7) (∀x)A ∧ (∀x)B 〈(5,6) + Post〉

NOTE. We ABSOLUTELY MUST acknowledge for each application of “gen” that
the restriction is met.
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Lecture #16, Nov. 11

(←) (“2.” above)

By DThm, it suffices to prove (∀x)A ∧ (∀x)B ` (∀x)(A ∧B).

(1) (∀x)A ∧ (∀x)B 〈hyp〉
(2) (∀x)A 〈1 + Post〉
(3) (∀x)B 〈1 + Post〉
(4) A 〈2 + spec〉
(5) B 〈3 + spec〉
(6) A ∧B 〈(4,5) + Post〉
(7) (∀x)(A ∧B) 〈6 + gen; OK: hyp has no free x〉 �

Easy and Natural! Right?
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0.3.7 Theorem. ` (∀x)(∀y)A ≡ (∀y)(∀x)A

Proof. By Ping-Pong. ` (∀x)(∀y)A→←(∀y)(∀x)A.

(→) direction.

By DThm it suffices to prove (∀x)(∀y)A ` (∀y)(∀x)A

(1) (∀x)(∀y)A 〈hyp〉
(2) (∀y)A 〈1 + spec〉
(3) A 〈2 + spec〉
(4) (∀x)A 〈3 + gen; OK hyp has no free x〉
(5) (∀y)(∀x)A 〈4 + gen; OK hyp has no free y〉

(←)
Exercise! Justify that you can write the above proof backwards! �
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0.3.8 Metatheorem. (Monotonicity of ∀) If Γ ` A → B, then Γ ` (∀x)A →
(∀x)B, as long as no wff in Γ has a free x.

Proof.

(1) A→ B 〈invoking a Γ-thm〉
(2) (∀x)(A→ B) 〈1 + gen; OK no free x in Γ〉
(3) (∀x)(A→ B)→ (∀x)A→ (∀x)B 〈axiom 4〉
(4) (∀x)A→ (∀x)B 〈(2, 3) + MP 〉 �

0.3.9 Corollary. If ` A→ B, then ` (∀x)A→ (∀x)B.

Proof. Case of Γ = ∅. The restriction is vacuously satisfied. �
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0.3.10 Corollary. If Γ ` A ≡ B, then also Γ ` (∀x)A ≡ (∀x)B, as long as Γ does
not contain wff with x free.

Proof.

(1) A ≡ B 〈Γ-theorem〉
(2) A→ B 〈1 + Post〉
(3) B → A 〈1 + Post〉
(4) (∀x)A→ (∀x)B 〈2 + ∀-mon (0.3.8)〉
(5) (∀x)B → (∀x)A 〈3 + ∀-mon (0.3.8)〉
(6) (∀x)A ≡ (∀x)B 〈(4,5) + Post〉 �

0.3.11 Corollary. If ` A ≡ B, then also ` (∀x)A ≡ (∀x)B.

Proof. Take Γ = ∅. �
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