Worth quoting from previous lecture-PDF that we saw earlier:

0.0.1 Theorem. If $\Gamma \vdash X \equiv Y$, then also $\Gamma \vdash (\forall \mathbf{x})X \equiv (\forall \mathbf{x})Y$, as long as Γ does not contain wff with \mathbf{x} free.

0.0.2 Theorem. If $\vdash A \equiv B$, then $\vdash (\forall \mathbf{x})A \equiv (\forall \mathbf{x})B$.

0.0.3 Metatheorem. (Weak (1st-order) Leibniz — Acronym "WL") $If \vdash A \equiv B, then also \vdash C[\mathbf{p} \setminus A] \equiv C[\mathbf{p} \setminus B].$

Proof. This generalises 0.0.2 repeated above, being a part of the previous "lectures-PDF" that we saw.

The metatheorem is proved by *Induction on the wff* C.

Basis. Atomic case:

(1) C is **p**. The metatheorem boils down to "if $\vdash A \equiv B$, then $\vdash A \equiv B$ ", which trivially holds!

(2) C is **NOT** \mathbf{p} —that is, it is \mathbf{q} (other than \mathbf{p}), or is \perp or \top , or is t = s, or it is $\phi(t_1, \ldots, t_n)$.

Then our <u>Metatheorem statement</u> becomes "if $\vdash A \equiv B$, then $\vdash C \equiv C$ ".

Given that $\vdash C \equiv C$ is correct by axiom 1, the "if" part is irrelevant. Done.

The complex cases.

(i) C is $\neg D$. From the I.H. we have $\vdash D[\mathbf{p} \setminus A] \equiv D[\mathbf{p} \setminus B]$,

hence $\vdash \neg D[\mathbf{p} \setminus A] \equiv \neg D[\mathbf{p} \setminus B]$ by Post and thus

$$\vdash \overbrace{(\neg D)}^{C} [\mathbf{p} \setminus A] \equiv \overbrace{(\neg D)}^{C} [\mathbf{p} \setminus B]$$

since

 $(\neg D)[\mathbf{p} \setminus A]$ is the same wff as $\neg D[\mathbf{p} \setminus A]$

Basic Logic[®] by George Tourlakis

Ś

(ii) C is $D \circ E$, where $\circ \in \{\land, \lor, \rightarrow, \equiv\}$.

The I.H. yields $\vdash D[\mathbf{p} \setminus A] \equiv D[\mathbf{p} \setminus B]$ and $\vdash E[\mathbf{p} \setminus A] \equiv E[\mathbf{p} \setminus B]$ hence $\vdash D[\mathbf{p} \setminus A] \circ E[\mathbf{p} \setminus A] \equiv D[\mathbf{p} \setminus B] \circ E[\mathbf{p} \setminus B]$ by Post.

Thus

$$\vdash \overbrace{(D \circ E)}^{C} [\mathbf{p} \setminus A] \equiv \overbrace{(D \circ E)}^{C} [\mathbf{p} \setminus B]$$

due to the way substitution works, namely,

 $(D\circ E)[\mathbf{p}\setminus A]$ is the same wff as $D[\mathbf{p}\setminus A]\circ E[\mathbf{p}\setminus A]$

(iii) C is $(\forall \mathbf{x})D$. This is the "*interesting case*". From the I.H. follows $\vdash D[\mathbf{p} \setminus A] \equiv D[\mathbf{p} \setminus B]$.

From 0.0.2 we get $\vdash (\forall \mathbf{x}) D[\mathbf{p} \setminus A] \equiv (\forall \mathbf{x}) D[\mathbf{p} \setminus B]$, also written as

$$\vdash \underbrace{\overbrace{\left((\forall \mathbf{x})D\right)}^{C}[\mathbf{p} \setminus A]}_{(\forall \mathbf{x})D} = \underbrace{\overbrace{\left((\forall \mathbf{x})D\right)}^{C}[\mathbf{p} \setminus B]}_{(\forall \mathbf{x})D}$$

since

$$((\forall \mathbf{x})D)[\mathbf{p} \setminus A]$$
 is the same wff as $(\forall \mathbf{x})D[\mathbf{p} \setminus A]$

 $\mathit{Basic Logic}$ by George Tourlakis

Why "<u>weak</u>"? Because of the restriction on the Rule's Hypothesis: $A \equiv B$ must be an <u>absolute theorem</u>. (Recall that the Boolean Leibniz was not so restricted).

Why not IGNORE the restriction and "adopt" the strong rule (i) below?

Well, in logic you do *NOT* arbitrarily "*adopt*" <u>derived</u> rules; you prove them.

BUT, CAN I prove (i) below then?

NO, our logic <u>does not allow it</u>; <u>here</u> is why: If I can prove (i) then I can also prove STRONG generalisation (ii) from (i).

$$A \equiv B \vdash C[\mathbf{p} \setminus A] \equiv C[\mathbf{p} \setminus B] \tag{i}$$

strong generalisation: $A \vdash (\forall \mathbf{x})A$ (*ii*)

Here is why
$$(i) \Rightarrow (ii)$$
:

So, assume I have "Rule" (i). THEN

(1)	A	$\langle hyp \rangle$
(2)	$A \equiv \top$	$\langle (1) + \text{Post} \rangle$
(3)	$(\forall \mathbf{x})A \equiv (\forall \mathbf{x})\top$	$\langle (2) + (i); \text{``Denom:''} (\forall \mathbf{x}) \mathbf{p} \rangle$
(4)	$(\forall \mathbf{x})A \equiv \top$	$\langle (3) + \vdash (\forall \mathbf{x}) \top \equiv \top + \text{Post} \rangle$
(5)	$(\forall \mathbf{x})A$	$\langle (4) + \text{Post} \rangle$

So if I have (i) I have (ii) too.

Question: Why is it $\vdash (\forall \mathbf{x}) \top \equiv \top$? **Answer**: Ping-Pong, <u>Plus</u>

$$\overbrace{(\forall \mathbf{x})\top \to \top}^{\mathbf{A}\mathbf{x}\mathbf{2}} \text{ and } \overbrace{\top \to (\forall \mathbf{x})\top}^{\mathbf{A}\mathbf{x}\mathbf{3}}$$

Basic Logic[®] by George Tourlakis

Ş

BUT: Here is an informal reason I cannot have (ii).

Et is a provable fact —this is 1st-order Soundness[†]—that <u>all absolute theorems</u> of 1st-order logic are true in <u>every</u> informal <u>interpretation</u> I build for them.

So IF I have (ii), then by the DThm I also have

$$\vdash A \to (\forall \mathbf{x})A \tag{1}$$

Ì

Interpret the above over the natural numbers as

$$\vdash x = 0 \to (\forall x)x = 0 \tag{2}$$

By 1st-order Soundness, IF I have (1), then (2) is true for all values of (the free) x.

Well, try x = 0. We get $0 = 0 \rightarrow (\forall x)x = 0$. The lhs of " \rightarrow " is true but the rhs is false.

So I cannot have (ii) —nor (i), which implies it!

Basic Logic[®] by George Tourlakis

[†]For a proof wait until the near-end of the course

We *CAN* have a MODIFIED (i) where the <u>substitution</u> into **p** is <u>restricted</u>.

0.0.4 Metatheorem. (Strong Leibniz — Acronym "SL") $A \equiv B \vdash C[\mathbf{p} := A] \equiv C[\mathbf{p} := B]$

Goes without saying that if the rhs of \vdash is NOT defined, then there is nothing to prove since the expression " $C[\mathbf{p} := A] \equiv C[\mathbf{p} := B]$ " represents no wff.

Remember this comment during the proof!

Proof. As we did for WL, the proof is an induction on the definition/formation of C.

Basis. C is atomic:

$\underline{subcases}$

- C is p. We need to prove $A \equiv B \vdash A \equiv B$, which is the familiar $X \vdash X$.
- $C \text{ is not } \mathbf{p}$. The metatheorem now claims $A \equiv B \vdash C \equiv C$ which is correct since $C \equiv C$ is an axiom.

The complex cases.

(i) C is $\neg D$. By the I.H. we have $A \equiv B \vdash D[\mathbf{p} := A] \equiv D[\mathbf{p} := B]$, thus, $A \equiv B \vdash \neg D[\mathbf{p} := A] \equiv \neg D[\mathbf{p} := B]$ by Post.

We can rewrite the above as $A \equiv B \vdash (\neg D)[\mathbf{p} := A] \equiv (\neg D)[\mathbf{p} := B]$ since when substitution is allowed

$$\overbrace{(\neg D)}^{C}[\mathbf{p} := A] \text{ is the same as } \neg D[\mathbf{p} := A], \text{ etc.}$$

(ii) C is $D \circ E$. By the I.H. we get $A \equiv B \vdash D[\mathbf{p} := A] \equiv D[\mathbf{p} := B]$

and

$$A \equiv B \vdash E[\mathbf{p} := A] \equiv E[\mathbf{p} := B].$$

Basic Logic[®] by George Tourlakis

Ş

Thus, by Post,

$$A \equiv B \vdash D[\mathbf{p} := A] \circ E[\mathbf{p} := A] \equiv D[\mathbf{p} := B] \circ E[\mathbf{p} := B]$$

The way substitution works (when defined), the above says

$$A \equiv B \vdash \overbrace{(D \circ E)}^{C} [\mathbf{p} := A] \equiv \overbrace{(D \circ E)}^{C} [\mathbf{p} := B]$$

(iii) C is $(\forall \mathbf{x})D$. This is the "interesting case".

From the I.H. we get

$$A \equiv B \vdash D[\mathbf{p} := A] \equiv D[\mathbf{p} := B]$$

Now, since the expressions $C[\mathbf{p} := A]$ and $C[\mathbf{p} := B]$ *ARE* defined —else we wouldn't be doing all this— the definition of *conditional* (restricted) substitution implies that neither A nor B have any free occurrences of \mathbf{x} .

Then **x** does not occur free in $A \equiv B$ either.

From 0.0.1 we get

$$A \equiv B \vdash (\forall \mathbf{x}) D[\mathbf{p} := A] \equiv (\forall \mathbf{x}) D[\mathbf{p} := B]$$

which —the way substitution works— is the same as

$$A \equiv B \vdash \overbrace{\left((\forall \mathbf{x}) D \right)}^{C} [\mathbf{p} := A] \equiv \overbrace{\left((\forall \mathbf{x}) D \right)}^{C} [\mathbf{p} := B]$$

Basic Logic© by George Tourlakis

0.1. More Useful Tools

0.1. More Useful Tools

Since &

$$A_1 \equiv A_2, A_2 \equiv A_3, \dots, A_{n-1} \equiv A_n \models_{taut} A_1 \equiv A_n$$

holds in 1st-order logic, we also have by Post

$$A_1 \equiv A_2, A_2 \equiv A_3, \dots, A_{n-1} \equiv A_n \vdash A_1 \equiv A_n \tag{1}$$

As we know, (1) enables Equational proofs, including the <u>fundamental metatheorem</u> for such proofs

0.1.1 Metatheorem. If each " $A_i \equiv A_{i+1}$ " in (1) is a Γ -theorem, then we have $\Gamma \vdash A_1 \equiv A_n$ (this just repeats (1)) and $\Gamma \vdash A_1$ iff $\Gamma \vdash A_n$.

Trivially, we also have

$$A_1 \rightarrow \text{ or } \equiv A_2, A_2 \rightarrow \text{ or } \equiv A_3, \dots, A_{n-1} \rightarrow \text{ or } \equiv A_n \models_{taut} A_1 \rightarrow A_n$$

and thus, by Post,

$$A_1 \to \text{ or } \equiv A_2, A_2 \to \text{ or } \equiv A_3, \dots, A_{n-1} \to \text{ or } \equiv A_n \vdash A_1 \to A_n$$
 (2)

The fundamental metatheorem for (2) is:

0.1.2 Metatheorem. If each " $A_i \rightarrow or \equiv A_{i+1}$ " in (2) is a Γ -theorem, then we have $\Gamma \vdash A_1 \rightarrow A_n$ (this just repeats (2)) and IF $\Gamma \vdash A_1$ THEN $\Gamma \vdash A_n$.

This last metatheorem extends *Equational proofs* so they can have a <u>mix</u> of \rightarrow and \equiv , BUT

• ALL \rightarrow go in the same direction

and

• ALL \rightarrow are replaced by the *conjunctional implication* \Rightarrow .

That is, unlike $A \to B \to C$ that means $A \to (B \to C)$ or $A \land B \to C$, $A \Rightarrow B \Rightarrow C$ means $A \to B$ AND $B \to C$.

Basic Logic[®] by George Tourlakis

The thus <u>Extended</u> Equational Proofs are called *Calculational Proofs* ([DS90, GS94, Tou08]) and have the following layout:

```
A_{1}
\circ \langle \text{annotation} \rangle
A_{2}
\circ \langle \text{annotation} \rangle
\vdots
A_{n-1}
\circ \langle \text{annotation} \rangle
A_{n}
\circ \langle \text{annotation} \rangle
A_{n+1}
```

Ś

where " \circ " here —in each line where it occurs— is one of \Leftrightarrow or \Rightarrow .

8

0.1. More Useful Tools

More Examples and "Techniques".

0.1.3 Theorem. $\vdash (\forall \mathbf{x})(A \rightarrow B) \equiv (A \rightarrow (\forall \mathbf{x})B)$, as long as \mathbf{x} has no free occurrences in A.

Proof.

Ping-Pong using DThm.

 (\rightarrow) I want

$$\vdash (\forall \mathbf{x})(A \to B) \to (A \to (\forall \mathbf{x})B)$$

Better still, let me do (DThm)

$$(\forall \mathbf{x})(A \to B) \vdash A \to (\forall \mathbf{x})B$$

and, even better, (DThm!) I will do

$$(\forall \mathbf{x})(A \to B), A \vdash (\forall \mathbf{x})B$$

(1)	$(\forall \mathbf{x})(A \to B)$	$\langle hyp \rangle$
(2)	A	$\langle hyp \rangle$
(3)	$A \to B$	$\langle (1) + \text{spec} \rangle$
(4)	В	$\langle (2, 3) + MP \rangle$
(5)	$(\forall \mathbf{x})B$	$\langle (4) + \text{gen}; \text{OK: no free } \mathbf{x} \text{ in } (1) \text{ or } (2) \rangle$

Basic Logic© by George Tourlakis

 (\leftarrow) I want

$$\vdash (A \to (\forall \mathbf{x})B) \to (\forall \mathbf{x})(A \to B)$$

or better still (DThm)

$$A \to (\forall \mathbf{x})B \vdash (\forall \mathbf{x})(A \to B) \tag{1}$$

Seeing that $A \to (\forall \mathbf{x}) B$ has no free \mathbf{x} , I can prove the even easier

$$A \to (\forall \mathbf{x}) B \vdash A \to B \tag{2}$$

and after the proof is done I can apply gen to $A \to B$ to get $(\forall \mathbf{x})(A \to B)$.

OK! By DThm I can prove the even simpler than (2)

$$A \to (\forall \mathbf{x})B, A \vdash B \tag{3}$$

Here it is:

(1)
$$A \to (\forall \mathbf{x}) B$$
 $\langle \text{hyp} \rangle$
(2) A $\langle \text{hyp} \rangle$
(3) $(\forall \mathbf{x}) B$ $\langle (1, 2) + \text{MP} \rangle$
(4) B $\langle (3) + \text{spec} \rangle$

 $\textit{Basic Logic} \bigcirc$ by George Tourlakis

2 As a curiosity, here is a Calculational proof of the \rightarrow Direction: (\rightarrow)

$$(\forall \mathbf{x})(A \to B)$$

$$\Rightarrow \langle \mathbf{A}\mathbf{x}\mathbf{4} \rangle$$

$$(\forall \mathbf{x})A \to (\forall \mathbf{x})B$$

$$\Rightarrow \langle \mathbf{A}\mathbf{x}\mathbf{3} + \text{Post} \rangle$$

$$A \to (\forall \mathbf{x})B$$

Do you buy the second step?

Think of A as p and $(\forall \mathbf{x})A$ as q. Axiom 3 says " $p \to q$ " and I say

$$p \to q \models_{taut} (q \to (\forall \mathbf{x})B) \to (p \to (\forall \mathbf{x})B)$$

Do you believe this? *Exercise*!

Basic Logic© by George Tourlakis

Ś

Lecture # 17. Nov.13

0.1.4 Corollary. $\vdash (\forall \mathbf{x})(A \lor B) \equiv A \lor (\forall \mathbf{x})B$, as long as \mathbf{x} does not occur free in A.

Proof.

$$(\forall \mathbf{x})(A \lor B)$$

$$\Leftrightarrow \langle WL + \neg \lor (= axiom!); "Denom:" (\forall \mathbf{x})\mathbf{p} \rangle$$

$$(\forall \mathbf{x})(\neg A \to B)$$

$$\Leftrightarrow \langle "forall vs arrow" (0.1.3) \rangle$$

$$\neg A \to (\forall \mathbf{x})B$$

$$\Leftrightarrow \langle tautoloy, hence axiom \rangle$$

$$A \lor (\forall \mathbf{x})B$$

Most of the statements we prove in what follows have \underline{Dual} counterparts obtained by swapping \forall and \exists and \lor and \land .

Let us give a <u>theorem version</u> of the <u>definition</u> of \exists . This is useful in Equational/Calculational proofs.

Definition (Recall):

$$(\exists \mathbf{x})A \text{ is short for } \neg(\forall \mathbf{x})\neg A$$
 (1)

Next consider the axiom

$$\neg(\forall \mathbf{x})\neg A \equiv \neg(\forall \mathbf{x})\neg A \tag{2}$$

Let me use the *ABBREVIATION* (1) ONLY on *ONE* side of " \equiv " in (2). I get the <u>theorem</u>

$$(\exists \mathbf{x})A \equiv \neg(\forall \mathbf{x})\neg A$$

So I can write the theorem without words:

$$\vdash (\exists \mathbf{x})A \equiv \neg(\forall \mathbf{x})\neg A \tag{3}$$

I can apply (3) in Equational proofs —via WL— easily!

I will refer to (3) in proofs as " $\underline{\text{Def of } E}$ ".

Basic Logic[®] by George Tourlakis

Ş

Here's something useful AND good practise too!

0.1.5 Corollary. $\vdash (\exists \mathbf{x})(A \land B) \equiv A \land (\exists \mathbf{x})B$, as long as \mathbf{x} does not occur free in A.

Ś

$$(\exists \mathbf{x})(A \land B)$$

$$\Leftrightarrow \langle \text{Def of E} \rangle$$

$$\neg(\forall \mathbf{x}) \neg (A \land B)$$

$$\Leftrightarrow \langle \text{WL} + \text{axiom (deM)}; \text{ "Denom:" } \neg(\forall \mathbf{x})\mathbf{p} \rangle$$

$$\neg(\forall \mathbf{x})(\neg A \lor \neg B)$$

$$\Leftrightarrow \langle \text{WL} + \text{ forall over or (0.1.4)} -\text{no free } \mathbf{x} \text{ in } \neg A; \text{ "Denom:" } \neg \mathbf{p} \rangle$$

$$\neg(\neg A \lor (\forall \mathbf{x}) \neg B)$$

$$\Leftrightarrow \langle \mathbf{Ax1} \rangle$$

$$A \land \neg(\forall \mathbf{x}) \neg B$$

$$\Leftrightarrow \langle \text{WL} + \text{ Def of E}; \text{ "Denom:" } A \land \mathbf{p} \rangle$$

$$A \land (\exists \mathbf{x})B$$

 $\mathit{Basic Logic}$ by George Tourlakis

Bibliography

- [DS90] Edsger W. Dijkstra and Carel S. Scholten, *Predicate Calculus and Program Semantics*, Springer-Verlag, New York, 1990.
- [GS94] David Gries and Fred B. Schneider, A Logical Approach to Discrete Math, Springer-Verlag, New York, 1994.
- [Tou08] G. Tourlakis, Mathematical Logic, John Wiley & Sons, Hoboken, NJ, 2008.

Basic Logic© by George Tourlakis