(2) Worth quoting from previous lecture-PDF that we saw earlier:
0.0.1 Theorem. If $\Gamma \vdash X \equiv Y$, then also $\Gamma \vdash(\forall \mathbf{x}) X \equiv(\forall \mathbf{x}) Y$, as long as Γ does not contain wff with \mathbf{x} free.
0.0.2 Theorem. If $\vdash A \equiv B$, then $\vdash(\forall \mathbf{x}) A \equiv(\forall \mathbf{x}) B$.
0.0.3 Metatheorem. (Weak (1st-order) Leibniz —Acronym " W L")

If $\vdash A \equiv B$, then also $\vdash C[\mathbf{p} \backslash A] \equiv C[\mathbf{p} \backslash B]$.
Proof. This generalises 0.0.2 repeated above, being a part of the previous "lecturesPDF" that we saw.

The metatheorem is proved by Induction on the wff C.
Basis. Atomic case:
(1) C is \mathbf{p}. The metatheorem boils down to "if $\vdash A \equiv B$, then $\vdash A \equiv B$ ", which trivially holds!
(2) C is NOT \mathbf{p} - that is, it is \mathbf{q} (other than \mathbf{p}), or is \perp or T , or is $t=s$, or it is $\phi\left(t_{1}, \ldots, t_{n}\right)$.

Then our Metatheorem statement becomes "if $\vdash A \equiv B$, then $\vdash C \equiv C$ ".
Given that $\vdash C \equiv C$ is correct by axiom 1 , the "if" part is irrelevant. Done.
The complex cases.
(i) C is $\neg D$. From the I.H. we have $\vdash D[\mathbf{p} \backslash A] \equiv D[\mathbf{p} \backslash B]$,
hence $\vdash \neg D[\mathbf{p} \backslash A] \equiv \neg D[\mathbf{p} \backslash B]$ by Post and thus

$$
\vdash \overbrace{(\neg D)}^{C}[\mathbf{p} \backslash A] \equiv \overbrace{(\neg D)}^{C}[\mathbf{p} \backslash B]
$$

since

$$
(\neg D)[\mathbf{p} \backslash A] \text { is the same wff as } \neg D[\mathbf{p} \backslash A]
$$

(ii) C is $D \circ E$, where $\circ \in\{\wedge, \vee, \rightarrow, \equiv\}$.

The I.H. yields $\vdash D[\mathbf{p} \backslash A] \equiv D[\mathbf{p} \backslash B]$ and $\vdash E[\mathbf{p} \backslash A] \equiv E[\mathbf{p} \backslash B]$ hence $\vdash D[\mathbf{p} \backslash A] \circ E[\mathbf{p} \backslash A] \equiv D[\mathbf{p} \backslash B] \circ E[\mathbf{p} \backslash B]$ by Post.

Thus

$$
\vdash \overbrace{(D \circ E)}^{C}[\mathbf{p} \backslash A] \equiv \overbrace{(D \circ E)}^{C}[\mathbf{p} \backslash B]
$$

due to the way substitution works, namely,

$$
(D \circ E)[\mathbf{p} \backslash A] \text { is the same wff as } D[\mathbf{p} \backslash A] \circ E[\mathbf{p} \backslash A]
$$

(iii) C is $(\forall \mathbf{x}) D$. This is the "interesting case".

From the I.H. follows $\vdash D[\mathbf{p} \backslash A] \equiv D[\mathbf{p} \backslash B]$.

From 0.0.2 we get $\vdash(\forall \mathbf{x}) D[\mathbf{p} \backslash A] \equiv(\forall \mathbf{x}) D[\mathbf{p} \backslash B]$, also written as

$$
\vdash \overbrace{((\forall \mathbf{x}) D)}^{C}[\mathbf{p} \backslash A] \equiv \overbrace{((\forall \mathbf{x}) D)}^{C}[\mathbf{p} \backslash B]
$$

since

$$
((\forall \mathbf{x}) D)[\mathbf{p} \backslash A] \text { is the same wff as }(\forall \mathbf{x}) D[\mathbf{p} \backslash A]
$$

(2) WL is the only "Leibniz" we will need (practically) in our use of 1 st-order logic.

Why "weak"? Because of the restriction on the Rule's Hypothesis: $A \equiv B$ must be an absolute theorem. (Recall that the Boolean Leibniz was not so restricted).

Why not IGNORE the restriction and "adopt" the strong rule (i) below?
Well, in logic you do NOT arbitrarily "adopt" derived rules; you prove them.
BUT, CAN I prove (i) below then?
NO, our logic does not allow it; here is why: If I can prove (i) then I can also prove STRONG generalisation (ii) from (i).

$$
\begin{equation*}
A \equiv B \vdash C[\mathbf{p} \backslash A] \equiv C[\mathbf{p} \backslash B] \tag{i}
\end{equation*}
$$

strong generalisation: $A \vdash(\forall \mathbf{x}) A$
Here is why $(i) \Rightarrow(i i)$:
So, assume I have "Rule" (i). THEN
(1) A
〈hyp〉
(2) $A \equiv \top$
$\langle(1)+$ Post \rangle
(3) $(\forall \mathbf{x}) A \equiv(\forall \mathbf{x}) \top$
$\langle(2)+(i) ; " D e n o m: "(\forall \mathbf{x}) \mathbf{p}\rangle$
(4) $\quad(\forall \mathbf{x}) A \equiv \top \quad\langle(3)+\vdash(\forall \mathbf{x}) \top \equiv \top+$ Post \rangle
(5) $(\forall \mathbf{x}) A$
$\langle(4)+$ Post \rangle

So if I have (i) I have (ii) too.

Question: Why is it $\vdash(\forall \mathbf{x}) \top \equiv \top$? Answer: Ping-Pong, Plus

$$
\overbrace{(\forall \mathbf{x}) \top \rightarrow \top}^{\mathbf{A x 2}} \text { and } \overbrace{T \rightarrow(\forall \mathbf{x}) \top}^{\mathbf{A x 3}}
$$

$B U T$: Here is an informal reason I cannot have (ii).
(2) It is a provable fact - this is 1 st-order Soundness ${ }^{\dagger}$ - that all absolute theorems of 1st-order logic are true in every informal interpretation I build for them.

So IF I have (ii), then by the DThm I also have

$$
\begin{equation*}
\vdash A \rightarrow(\forall \mathbf{x}) A \tag{1}
\end{equation*}
$$

Interpret the above over the natural numbers as

$$
\begin{equation*}
\vdash x=0 \rightarrow(\forall x) x=0 \tag{2}
\end{equation*}
$$

By 1st-order Soundness, IF I have (1), then (2) is true for all values of (the free) x.
Well, try $x=0$. We get $0=0 \rightarrow(\forall x) x=0$. The hs of " \rightarrow " is true but the dhs is false.

$$
\text { So I cannot have }(i i) \text { — nor }(i) \text {, which implies it! }
$$

[^0]We CAN have a MODIFIED (i) where the substitution into p is restricted.
0.0.4 Metatheorem. (Strong Leibniz —Acronym " $S L$ ") $A \equiv B \vdash C[\mathbf{p}:=$ $A] \equiv C[\mathbf{p}:=B]$
(2) Goes without saying that if the rhs of \vdash is $N O T$ defined, then there is nothing to prove since the expresion " $C[\mathbf{p}:=A] \equiv C[\mathbf{p}:=B]$ " represents no wff.

Remember this comment during the proof!
Proof. As we did for WL, the proof is an induction on the definition/formation of C.

Basis. C is atomic:

subcases

- C is \mathbf{p}. We need to prove $A \equiv B \vdash A \equiv B$, which is the familiar $X \vdash X$.
- C is not \mathbf{p}. The metatheorem now claims $A \equiv B \vdash C \equiv C$ which is correct since $C \equiv C$ is an axiom.

The complex cases.
(i) C is $\neg D$. By the I.H. we have $A \equiv B \vdash D[\mathbf{p}:=A] \equiv D[\mathbf{p}:=B]$, thus, $A \equiv B \vdash \neg D[\mathbf{p}:=A] \equiv \neg D[\mathbf{p}:=B]$ by Post.
We can rewrite the above as $A \equiv B \vdash(\neg D)[\mathbf{p}:=A] \equiv(\neg D)[\mathbf{p}:=B]$ since when substitution is allowed

$$
\overbrace{(\neg D)}^{C}[\mathbf{p}:=A] \text { is the same as } \neg D[\mathbf{p}:=A] \text {, etc. }
$$

(ii) C is $D \circ E$. By the I.H. we get $A \equiv B \vdash D[\mathbf{p}:=A] \equiv D[\mathbf{p}:=B]$
and
$A \equiv B \vdash E[\mathbf{p}:=A] \equiv E[\mathbf{p}:=B]$.

Thus, by Post,

$$
A \equiv B \vdash D[\mathbf{p}:=A] \circ E[\mathbf{p}:=A] \equiv D[\mathbf{p}:=B] \circ E[\mathbf{p}:=B]
$$

The way substitution works (when defined), the above says

$$
A \equiv B \vdash \overbrace{(D \circ E)}^{C}[\mathbf{p}:=A] \equiv \overbrace{(D \circ E)}^{C}[\mathbf{p}:=B]
$$

(iii) C is $(\forall \mathbf{x}) D$. This is the "interesting case".

From the I.H. we get

$$
A \equiv B \vdash D[\mathbf{p}:=A] \equiv D[\mathbf{p}:=B]
$$

Now, since the expressions $C[\mathbf{p}:=A]$ and $C[\mathbf{p}:=B] A R E$ defined -else we wouldn't be doing all this - the definition of conditional (restricted) substitution implies that neither A nor B have any free occurrences of \mathbf{x}.

Then \mathbf{x} does not occur free in $A \equiv B$ either.

From 0.0.1 we get

$$
A \equiv B \vdash(\forall \mathbf{x}) D[\mathbf{p}:=A] \equiv(\forall \mathbf{x}) D[\mathbf{p}:=B]
$$

which - the way substitution works- is the same as

$$
A \equiv B \vdash \overbrace{((\forall \mathbf{x}) D)}^{C}[\mathbf{p}:=A] \equiv \overbrace{((\forall \mathbf{x}) D)}^{C}[\mathbf{p}:=B]
$$

0.1. More Useful Tools

Since

$$
A_{1} \equiv A_{2}, A_{2} \equiv A_{3}, \ldots, A_{n-1} \equiv A_{n} \models_{\text {taut }} A_{1} \equiv A_{n}
$$

holds in 1st-order logic, we also have by Post

$$
\begin{equation*}
A_{1} \equiv A_{2}, A_{2} \equiv A_{3}, \ldots, A_{n-1} \equiv A_{n} \vdash A_{1} \equiv A_{n} \tag{1}
\end{equation*}
$$

As we know, (1) enables Equational proofs, including the fundamental metatheorem for such proofs
0.1.1 Metatheorem. If each " $A_{i} \equiv A_{i+1}$ " in (1) is a Γ-theorem, then we have $\Gamma \vdash A_{1} \equiv A_{n}$ (this just repeats (1)) and $\Gamma \vdash A_{1}$ iff $\Gamma \vdash A_{n}$.

Trivially, we also have

$$
A_{1} \rightarrow \text { or } \equiv A_{2}, A_{2} \rightarrow \text { or } \equiv A_{3}, \ldots, A_{n-1} \rightarrow \text { or } \equiv A_{n} \models_{\text {taut }} A_{1} \rightarrow A_{n}
$$

and thus, by Post,

$$
\begin{equation*}
A_{1} \rightarrow \text { or } \equiv A_{2}, A_{2} \rightarrow \text { or } \equiv A_{3}, \ldots, A_{n-1} \rightarrow \text { or } \equiv A_{n} \vdash A_{1} \rightarrow A_{n} \tag{2}
\end{equation*}
$$

The fundamental metatheorem for (2) is:
0.1.2 Metatheorem. If each " $A_{i} \rightarrow$ or $\equiv A_{i+1}$ " in (2) is a Γ-theorem, then we have $\Gamma \vdash A_{1} \rightarrow A_{n}$ (this just repeats (2)) and IF $\Gamma \vdash A_{1}$ THEN $\Gamma \vdash A_{n}$.

This last metatheorem extends Equational proofs so they can have a mix of \rightarrow and \equiv, BUT

- ALL \rightarrow go in the same direction
and
- ALL \rightarrow are replaced by the conjunctional implication \Rightarrow.

That is, unlike $A \rightarrow B \rightarrow C$ that means $A \rightarrow(B \rightarrow C)$ or $A \wedge B \rightarrow C$, $A \Rightarrow B \Rightarrow C$ means $A \rightarrow B$ AND $B \rightarrow C$.
(2) The thus Extended Equational Proofs are called Calculational Proofs ([DS90, GS94, I. Tou08]) and have the following layout:

$$
\begin{aligned}
& A_{1} \\
\circ & \langle\text { annotation }\rangle \\
& A_{2} \\
\circ & \langle\text { annotation }\rangle \\
& \vdots \\
& A_{n-1} \\
\circ & \langle\text { annotation }\rangle \\
& A_{n} \\
\circ & \langle\text { annotation }\rangle \\
& A_{n+1}
\end{aligned}
$$

where "०" here -in each line where it occurs- is one of \Leftrightarrow or \Rightarrow.

More Examples and"Techniques".

0.1.3 Theorem. $\vdash(\forall \mathbf{x})(A \rightarrow B) \equiv(A \rightarrow(\forall \mathbf{x}) B)$, as long as \mathbf{x} has no free occurrences in A.

Proof.
Ping-Pong using DThm.
(\rightarrow) I want

$$
\vdash(\forall \mathbf{x})(A \rightarrow B) \rightarrow(A \rightarrow(\forall \mathbf{x}) B)
$$

Better still, let me do (DThm)

$$
(\forall \mathbf{x})(A \rightarrow B) \vdash A \rightarrow(\forall \mathbf{x}) B
$$

and, even better, (DThm!) I will do

$$
(\forall \mathbf{x})(A \rightarrow B), A \vdash(\forall \mathbf{x}) B
$$

(1) $\quad(\forall \mathbf{x})(A \rightarrow B) \quad\langle\mathrm{hyp}\rangle$
(2) $A \quad\langle\mathrm{hyp}\rangle$
(3) $\quad A \rightarrow B$
$\langle(1)+$ spec \rangle
(4) B
$\langle(2,3)+\mathrm{MP}\rangle$
(5) $(\forall \mathbf{x}) B$
$\langle(4)+$ gen; OK: no free \mathbf{x} in (1) or $(2)\rangle$
(\leftarrow) I want

$$
\vdash(A \rightarrow(\forall \mathbf{x}) B) \rightarrow(\forall \mathbf{x})(A \rightarrow B)
$$

or better still (DThm)

$$
\begin{equation*}
A \rightarrow(\forall \mathbf{x}) B \vdash(\forall \mathbf{x})(A \rightarrow B) \tag{1}
\end{equation*}
$$

Seeing that $A \rightarrow(\forall \mathbf{x}) B$ has no free \mathbf{x}, I can prove the even easier

$$
\begin{equation*}
A \rightarrow(\forall \mathbf{x}) B \vdash A \rightarrow B \tag{2}
\end{equation*}
$$

and after the proof is done I can apply gen to $A \rightarrow B$ to get $(\forall \mathbf{x})(A \rightarrow B)$.
OK! By DThm I can prove the even simpler than (2)

$$
\begin{equation*}
A \rightarrow(\forall \mathbf{x}) B, A \vdash B \tag{3}
\end{equation*}
$$

Here it is:

$$
\begin{array}{lll}
(1) & A \rightarrow(\forall \mathbf{x}) B & \langle\text { hyp }\rangle \\
(2) & A & \langle\text { hyp }\rangle \\
(3) & (\forall \mathbf{x}) B & \langle(1,2)+\mathrm{MP}\rangle \\
(4) & B & \langle(3)+\text { spec }\rangle
\end{array}
$$

(2) As a curiosity, here is a Calculational proof of the \rightarrow Direction:

$$
\begin{aligned}
&(\rightarrow) \\
&(\forall \mathbf{x})(A \rightarrow B) \\
& \Rightarrow\langle\mathbf{A x} \mathbf{4}\rangle \\
&(\forall \mathbf{x}) A \rightarrow(\forall \mathbf{x}) B \\
& \Rightarrow\langle\mathbf{A x} \mathbf{3}+\text { Post }\rangle \\
& A \rightarrow(\forall \mathbf{x}) B
\end{aligned}
$$

Do you buy the second step?

Think of A as p and $(\forall \mathbf{x}) A$ as q. Axiom 3 says " $p \rightarrow q$ " and I say

$$
p \rightarrow q \models_{\text {taut }}(q \rightarrow(\forall \mathbf{x}) B) \rightarrow(p \rightarrow(\forall \mathbf{x}) B)
$$

Do you believe this? Exercise!

Lecture \# 17. Nov. 13

0.1.4 Corollary. $\vdash(\forall \mathbf{x})(A \vee B) \equiv A \vee(\forall \mathbf{x}) B$, as long as \mathbf{x} does not occur free in A.

Proof.

$$
\begin{aligned}
& (\forall \mathbf{x})(A \vee B) \\
\Leftrightarrow & \langle\mathrm{WL}+\neg \vee(=\text { axiom! }) ; " D e n o m: "(\forall \mathbf{x}) \mathbf{p}\rangle \\
& (\forall \mathbf{x})(\neg A \rightarrow B) \\
\Leftrightarrow & \langle\text { "forall vs arrow" }(0.1 .3)\rangle \\
& \neg A \rightarrow(\forall \mathbf{x}) B \\
\Leftrightarrow & \langle\text { tautoloy, hence axiom }\rangle \\
& A \vee(\forall \mathbf{x}) B
\end{aligned}
$$

(2) Most of the statements we prove in what follows have Dual counterparts obtained by swapping \forall and \exists and \vee and \wedge.

Let us give a theorem version of the definition of \exists. This is useful in Equational/Calculational proofs.

Definition (Recall):

$$
\begin{equation*}
(\exists \mathbf{x}) A \text { is short for } \neg(\forall \mathbf{x}) \neg A \tag{1}
\end{equation*}
$$

Next consider the axiom

$$
\begin{equation*}
\neg(\forall \mathbf{x}) \neg A \equiv \neg(\forall \mathbf{x}) \neg A \tag{2}
\end{equation*}
$$

Let me use the $A B B R E V I A T I O N$ (1) ONLY on ONE side of " \equiv " in (2). I get the theorem

$$
(\exists \mathbf{x}) A \equiv \neg(\forall \mathbf{x}) \neg A
$$

So I can write the theorem without words:

$$
\begin{equation*}
\vdash(\exists \mathbf{x}) A \equiv \neg(\forall \mathbf{x}) \neg A \tag{3}
\end{equation*}
$$

I can apply (3) in Equational proofs - via WL- easily!

I will refer to (3) in proofs as "Def of E".

Here's something useful AND good practise too!
0.1.5 Corollary. $\vdash(\exists \mathbf{x})(A \wedge B) \equiv A \wedge(\exists \mathbf{x}) B$, as long as \mathbf{x} does not occur free in A.
(2) In annotaton we may call the above the " $\exists \wedge$ theorem".
Proof.

$$
\begin{aligned}
& (\exists \mathbf{x})(A \wedge B) \\
\Leftrightarrow & \langle\mathrm{Def} \text { of } \mathrm{E}\rangle \\
& \neg(\forall \mathbf{x}) \neg(A \wedge B) \\
\Leftrightarrow & \langle\mathrm{WL}+\text { axiom }(\mathrm{deM}) ; \text { "Denom:" } \neg(\forall \mathbf{x}) \mathbf{p}\rangle \\
& \neg(\forall \mathbf{x})(\neg A \vee \neg B) \\
\Leftrightarrow & \langle\mathrm{WL}+\text { forall over or }(0.1 .4)-\text { no free } \mathbf{x} \text { in } \neg A ; \text { "Denom:" } \neg \mathbf{p}\rangle \\
& \neg(\neg A \vee(\forall \mathbf{x}) \neg B) \\
\Leftrightarrow & \langle\mathbf{A x} \mathbf{1}\rangle \\
& A \wedge \neg(\forall \mathbf{x}) \neg B \\
\Leftrightarrow & \langle\mathrm{WL}+\mathrm{Def} \text { of } \mathrm{E} ; \text { "Denom:" } A \wedge \mathbf{p}\rangle \\
& A \wedge(\exists \mathbf{x}) B
\end{aligned}
$$

Bibliography

[DS90] Edsger W. Dijkstra and Carel S. Scholten, Predicate Calculus and Program Semantics, Springer-Verlag, New York, 1990.
[GS94] David Gries and Fred B. Schneider, A Logical Approach to Discrete Math, Springer-Verlag, New York, 1994.
[Tou08] G. Tourlakis, Mathematical Logic, John Wiley \& Sons, Hoboken, NJ, 2008.

[^0]: ${ }^{\dagger}$ For a proof wait until the near-end of the course

