1. While the following theorem —nicknamed "One-point rule" - will not play a big role in our lectures, still, on one hand it gives us a flavour of how we use the axioms of equality (Axioms 5 and 6) and on the other hand every mathematician uses it without even thinking about it, in the form, for example,

$$
A(3) \text { is the same as }(\exists x)(x=3 \wedge A(x))
$$

0.0.1 Theorem. (One point rule $-\forall$ version) On the condition that \mathbf{x} does not occur in $t,{ }^{\dagger}$ we have $\vdash(\forall \mathbf{x})(\mathbf{x}=t \rightarrow A) \equiv A[\mathbf{x}:=t]$.

Proof. By Ping-Pong.
(\rightarrow) Note that since \mathbf{x} does not occur in t, we have

$$
(\mathrm{x}=t \rightarrow A)[\mathrm{x}:=t] \quad \text { means the same thing as } \quad t=t \rightarrow A[\mathrm{x}:=t]
$$

Thus,
(1) $\quad(\forall \mathbf{x})(\mathbf{x}=t \rightarrow A) \rightarrow t=t \rightarrow A[\mathbf{x}:=t] \quad\langle\mathbf{A x} \mathbf{2}\rangle$
(2) $\quad(\forall \mathbf{x})(\mathbf{x}=\mathbf{x}) \quad\langle\mathbf{A} \mathbf{x} 5$-partial gen. of $\mathbf{x}=\mathbf{x}\rangle$
(3) $t=t$
$\langle(2)+$ spec \rangle

$$
\begin{equation*}
(\forall \mathbf{x})(\mathbf{x}=t \rightarrow A) \rightarrow A[\mathbf{x}:=t] \quad\langle(1,3)+\text { Post }\rangle \tag{4}
\end{equation*}
$$

(\leftarrow) Recall the General form of Axiom 6: $s=t \rightarrow(A[\mathbf{x}:=s] \equiv A[\mathbf{x}:=t])$
(1) $\mathbf{x}=t \rightarrow(A \equiv A[\mathbf{x}:=t])$
(2) $A[\mathrm{x}:=t] \rightarrow \mathbf{x}=t \rightarrow A$
(3) $\quad(\forall \mathbf{x}) A[\mathbf{x}:=t] \rightarrow(\forall \mathbf{x})(\mathbf{x}=t \rightarrow A) \quad\langle(2)+\forall-\mathrm{MON}-(2)$ is an absolute theorem \rangle

$$
\text { (4) } A[\mathbf{x}:=t] \rightarrow(\forall \mathbf{x})(\mathbf{x}=t \rightarrow A) \quad\langle(3)+\mathbf{A} \mathbf{x} \mathbf{3}+\text { Post }\rangle
$$

I have done the "Post" in (4) before (previous class). Note that Ax3 is applicable since \mathbf{x} is not free in $A[\mathbf{x}:=t]$

[^0]2. 0.0.2 Corollary. (One point rule - \exists version) On the condition that \mathbf{x} does not occur in t, we have $\vdash(\exists \mathbf{x})(\mathbf{x}=t \wedge A) \equiv A[\mathbf{x}:=t]$.

Proof. Exercise! (Hint. Use the \forall version and an Equational proof to prove the \exists version (use the "Def of E" Theorem).)
0.0.3 Theorem. (Bound variable renaming (\forall)) IF \mathbf{z} is fresh for A-that is, does not occur as either free or bound in A - then $\vdash(\forall \mathbf{x}) A \equiv(\forall \mathbf{z}) A[\mathbf{x}:=\mathbf{z}]$.
(2) "Everyday mathematician's" notation is $\vdash(\forall \mathbf{x}) A(\mathbf{x}) \equiv(\forall \mathbf{z}) A(\mathbf{z})$.

Proof. Ping-Pong.
(\rightarrow)
(1) $\quad(\forall \mathbf{x}) A \rightarrow A[\mathbf{x}:=\mathbf{z}] \quad\langle\mathbf{A x} \mathbf{2}$-fresh \mathbf{z}; no capture: no " $(\forall \mathbf{z})(\ldots, \mathbf{x}, \ldots)$ " in $A\rangle$
(2) $\quad(\forall \mathbf{z})(\forall \mathbf{x}) A \rightarrow(\forall \mathbf{z}) A[\mathbf{x}:=\mathbf{z}] \quad\langle(1)+\forall$-mon \rangle
(3) $(\forall \mathbf{x}) A \rightarrow(\forall \mathbf{z})(\forall \mathbf{x}) A$
$\langle\mathbf{A x} 3\rangle$
$(\forall \mathbf{x}) A \rightarrow(\forall \mathbf{z}) A[\mathbf{x}:=\mathbf{z}] \quad\langle(2,3)+$ Post \rangle
(\leftarrow) Let us first settle a useful "lemma" for the proof below:
0.0.4 Lemma. Under the assumptions about \mathbf{z}, we have that $A[\mathbf{x}:=\mathbf{z}][\mathbf{z}:=\mathbf{x}]$ is just the original A.

Proof. Now, \mathbf{z} is neither

- Bound in A. That is, there is NO " $(\forall \mathbf{z})(\ldots)$ " in A. So the substitution $A[\mathbf{x}:=\mathbf{z}]$ GOES THROUGH, AND "flags" (and replaces) all FREE \mathbf{x} in A as z.
nor is
- Free in A. So NO FREE z pre-existed in A before doing $A[\mathbf{x}:=\mathbf{z}]$. That is, ALL FREE \mathbf{z} in $A[\mathbf{x}:=\mathbf{z}]$ are EXACTLY the \mathbf{x} that became \mathbf{z}. These \mathbf{z} are PLACEHOLDERS for THE ORIGINAL FREE \mathbf{x} in A.

BUT then! Doing now $[\mathbf{z}:=\mathbf{x}]$ changes ALL \mathbf{z} in $A[\mathbf{x}:=\mathbf{z}]$ back to \mathbf{x}.

We are back to the original A !
（1）$(\forall \mathbf{z}) A[\mathrm{x}:=\mathrm{z}] \rightarrow A[\mathrm{x}:=\mathbf{z}][\mathrm{z}:=\mathbf{x}]$
（2）$(\forall \mathbf{z}) A[\mathbf{x}:=\mathbf{z}] \rightarrow A$
（3）$(\forall \mathbf{x})(\forall \mathbf{z}) A[\mathbf{x}:=\mathbf{z}] \rightarrow(\forall \mathbf{x}) A$
（4）$(\forall \mathbf{z}) A[\mathbf{x}:=\mathbf{z}] \rightarrow(\forall \mathbf{x})(\forall \mathbf{z}) A[\mathbf{x}:=\mathbf{z}]$
（5）$(\forall \mathbf{z}) A[\mathbf{x}:=\mathbf{z}] \rightarrow(\forall \mathbf{x}) A$
$\langle\mathbf{A x} \mathbf{2}-A[\mathrm{x}:=\mathbf{z}][\mathrm{z}:=\mathrm{x}]$ defined by lemma \rangle \langle same as（1）－see lemma〉
\langle abs．thm（2）$+\forall$ MON〉
〈Ax3；no free \mathbf{x} in lhs〉
$\langle(3,4)+$ Post \rangle
0.1. Adding and Removing the Quantifier" $(\exists x)$ "

First, introducing (adding) \exists is easy via the following tools:
0.1.1 Theorem. (Dual of Ax2) $\vdash A[\mathrm{x}:=t] \rightarrow(\exists \mathrm{x}) A$

Proof.

$$
\begin{aligned}
& A[\mathbf{x}:=t] \rightarrow(\exists \mathbf{x}) A \\
\Leftrightarrow & \langle\mathrm{WL}+\text { "Def of } \mathrm{E} \text { " (this is an abs. thm); "Denom:" } A[\mathbf{x}:=t] \rightarrow \mathbf{p}\rangle \\
& A[\mathbf{x}:=t] \rightarrow \neg(\forall \mathbf{x}) \neg A \\
\Leftrightarrow & \langle\text { tautology }\rangle \\
& (\forall \mathbf{x}) \neg A \rightarrow \neg A[\mathbf{x}:=t] \quad \text { Bingo! }
\end{aligned}
$$

0.1.2 Corollary. (The Dual of Specialisation) $A[\mathrm{x}:=t] \vdash(\exists \mathbf{x}) A$

Proof. 0.1.1 and MP.
0.1.3 Corollary. $A \vdash(\exists \mathrm{x}) A$

Proof. 0.1.2, taking \mathbf{x} as t.
(2) Either corollaries above we call "Dual Spec" in annotating proofs.

But how can I remove a leading (the entire formula) ヨ?

We need two preliminary results to answer this.
0.1.4 Metatheorem. (\forall Introduction) If \mathbf{x} does not occur free in Γ nor in A, then $\Gamma \vdash A \rightarrow B$ iff $\Gamma \vdash A \rightarrow(\forall \mathbf{x}) B$.

Proof. of the "iff".
(\rightarrow) direction.
Assumption gives $\Gamma \vdash(\forall \mathbf{x})(A \rightarrow B)$ by valid generalisation.
But we have

$$
\begin{aligned}
& (\forall \mathbf{x})(A \rightarrow B) \\
\Leftrightarrow & \langle\text { thm from NOTES/Class }\rangle \\
& A \rightarrow(\forall \mathbf{x}) B
\end{aligned}
$$

So the bottom formula is a Γ-theorem.
(\leftarrow) direction.
This time we know the bottom of the above short Equational proof is a Γ-theorem.
Then so is the top. But from the latter I get $\Gamma \vdash A \rightarrow B$ by spec.
0.1.5 Corollary. (\exists Introduction) IF \mathbf{x} does not occur free in Γ nor in B, then $\Gamma \vdash A \rightarrow B$ iff $\Gamma \vdash(\exists \mathbf{x}) A \rightarrow B$.
(2) Note how we shifted the condition for x from A to B.

Proof. of the "iff". Well,

$$
\Gamma \vdash A \rightarrow B \text { iff } \Gamma \vdash \neg B \rightarrow \neg A \text { Post } \text { iff }_{\text {i.1.4 }} \Gamma \vdash \neg B \rightarrow(\forall \mathbf{x}) \neg A \text { iff } \Gamma \vdash \neg(\forall \mathbf{x}) \neg A \rightarrow B
$$

[^0]: ${ }^{\dagger}$ We can also say "does not occur free in t ", but that is an overkill: A term t has NO bound variables.

