1. While the following theorem —nicknamed "<u>One-point rule</u>" — will not play a big role in our lectures, still, on one hand it gives us a flavour of how we <u>use</u> the axioms of equality (Axioms 5 and 6) and on the other hand every mathematician uses it without even thinking about it, in the form, for example,

A(3) is the same as $(\exists x)(x = 3 \land A(x))$

0.0.1 Theorem. (One point rule $\neg \forall$ **version)** On the condition that **x** does not occur in $t,^{\dagger}$ we have $\vdash (\forall \mathbf{x})(\mathbf{x} = t \rightarrow A) \equiv A[\mathbf{x} := t]$.

Proof. By Ping-Pong.

 (\rightarrow) Note that since **x** does not occur in t, we have

$$(\mathbf{x} = t \to A)[\mathbf{x} := t]$$
 means the same thing as $t = t \to A[\mathbf{x} := t]$

Thus,

(1) $(\forall \mathbf{x})(\mathbf{x} = t \to A) \to t = t \to A[\mathbf{x} := t]$ $\langle \mathbf{Ax2} \rangle$ (2) $(\forall \mathbf{x})(\mathbf{x} = \mathbf{x})$ $\langle \mathbf{Ax5} - \text{partial gen. of } \mathbf{x} = \mathbf{x} \rangle$ (3) t = t $\langle (2) + \text{spec} \rangle$ (4) $(\forall \mathbf{x})(\mathbf{x} = t \to A) \to A[\mathbf{x} := t]$ $\langle (1, 3) + \text{Post} \rangle$

(\leftarrow) Recall the **General form of Axiom 6**: $s = t \rightarrow (A[\mathbf{x} := s] \equiv A[\mathbf{x} := t])$

(1) $\mathbf{x} = t \to (A \equiv A[\mathbf{x} := t])$ $\langle \mathbf{Ax6} \rangle$ (2) $A[\mathbf{x} := t] \to \mathbf{x} = t \to A$ $\langle (1) + \text{Post} \rangle$ (3) $(\forall \mathbf{x})A[\mathbf{x} := t] \to (\forall \mathbf{x})(\mathbf{x} = t \to A)$ $\langle (2) + \forall \text{-MON} - (2) \text{ is an absolute theorem} \rangle$ (4) $A[\mathbf{x} := t] \to (\forall \mathbf{x})(\mathbf{x} = t \to A)$ $\langle (3) + \mathbf{Ax3} + \text{Post} \rangle$

I have done the "Post" in (4) before (previous class). Note that Ax3 is applicable since \mathbf{x} is not free in $A[\mathbf{x} := t]$

Basic Logic[®] by George Tourlakis

[†]We can also say "does not occur free in t", but that is an overkill: A term t has NO bound variables.

2. 0.0.2 Corollary. (One point rule $-\exists$ version) On the condition that **x** does not occur in t, we have $\vdash (\exists \mathbf{x})(\mathbf{x} = t \land A) \equiv A[\mathbf{x} := t]$.

Proof. <u>Exercise</u>! (*Hint.* Use the \forall version and an Equational proof to prove the \exists version (use the "Def of E" Theorem).)

Basic Logic© by George Tourlakis

2

0.0.3 Theorem. (Bound variable renaming (\forall)) <u>IF</u> **z** is <u>fresh</u> for A —that is, does not occur as either free or bound in A— then $\vdash (\forall \mathbf{x})A \equiv (\forall \mathbf{z})A[\mathbf{x} := \mathbf{z}].$

Proof. Ping-Pong.

 (\rightarrow)

- (1) $(\forall \mathbf{x}) A \to A[\mathbf{x} := \mathbf{z}]$ $(\mathbf{A}\mathbf{x}\mathbf{2} \text{fresh } \mathbf{z}; \text{ no capture: no } "(\forall \mathbf{z})(\dots, \mathbf{x}, \dots)" \text{ in } A)$
- (2) $(\forall \mathbf{z})(\forall \mathbf{x})A \to (\forall \mathbf{z})A[\mathbf{x} := \mathbf{z}] \quad \langle (1) + \forall \mathrm{mon} \rangle$
- $(3) \quad (\forall \mathbf{x}) A \to (\forall \mathbf{z}) (\forall \mathbf{x}) A \qquad \langle \mathbf{A} \mathbf{x} \mathbf{3} \rangle$
- (4) $(\forall \mathbf{x})A \to (\forall \mathbf{z})A[\mathbf{x}] := \mathbf{z}$ ((2, 3) + Post)

 (\leftarrow) Let us first settle a useful "lemma" for the proof below:

0.0.4 Lemma. Under the assumptions about \mathbf{z} , we have that $A[\mathbf{x} := \mathbf{z}][\mathbf{z} := \mathbf{x}]$ is just the original A.

Proof. Now, \mathbf{z} is *neither*

• **Bound** in A. That is, there is NO " $(\forall \mathbf{z})(\ldots)$ " in A. So the substitution $A[\mathbf{x} := \mathbf{z}]$ GOES THROUGH, AND "flags" (and replaces) all FREE \mathbf{x} in A as \mathbf{z} .

• Free in A. So <u>NO FREE</u> z pre-existed in A before doing A[x := z]. That is, ALL FREE z in A[x := z] are EXACTLY the x that became z. These z are PLACEHOLDERS for THE ORIGINAL FREE x in A.

<u>BUT then!</u> Doing now $[\mathbf{z} := \mathbf{x}]$ changes ALL \mathbf{z} in $A[\mathbf{x} := \mathbf{z}]$ back to \mathbf{x} .

We are back to the original A!

Basic Logic[®] by George Tourlakis

Ş

nor is

(1)
$$(\forall \mathbf{z}) A[\mathbf{x} := \mathbf{z}] \to A[\mathbf{x} := \mathbf{z}][\mathbf{z} := \mathbf{x}]$$

$$(2) \quad (\forall \mathbf{z}) A[\mathbf{x} := \mathbf{z}] \to A$$

(3) $(\forall \mathbf{x})(\forall \mathbf{z})A[\mathbf{x} := \mathbf{z}] \to (\forall \mathbf{x})A$ (4) $(\forall \mathbf{z})A[\mathbf{x} := \mathbf{z}] \to (\forall \mathbf{x})(\forall \mathbf{z})A[\mathbf{x}]$

$$(4) \quad (\forall \mathbf{z}) A[\mathbf{x} := \mathbf{z}] \to (\forall \mathbf{x}) (\forall \mathbf{z}) A[\mathbf{x} := \mathbf{z}]$$

(5)
$$(\forall \mathbf{z})A[\mathbf{x} := \mathbf{z}] \to (\forall \mathbf{x})A$$

 $\begin{array}{l} \langle \mathbf{A}\mathbf{x}\mathbf{2} - A[\mathbf{x} := \mathbf{z}][\mathbf{z} := \mathbf{x}] \text{ defined by lemma} \rangle \\ \langle \text{same as } (1) - \text{see lemma} \rangle \\ \langle \text{abs. thm } (2) + \forall \text{ MON} \rangle \\ \langle \text{A}\mathbf{x}3; \text{ no free } \mathbf{x} \text{ in lhs} \rangle \\ \langle (3, 4) + \text{Post} \rangle \end{array}$

0.1. Adding and Removing the Quantifier " $(\exists x)$ "

Lecture #18, Nov. 18

0.1. Adding and Removing the Quantifier " $(\exists x)$ "

First, introducing (adding) \exists is easy via the following tools:

0.1.1 Theorem. (Dual of Ax2) $\vdash A[\mathbf{x} := t] \rightarrow (\exists \mathbf{x})A$

Proof.

0.1.2 Corollary. (The Dual of Specialisation) $A[\mathbf{x} := t] \vdash (\exists \mathbf{x}) A$

Proof. 0.1.1 and MP.

0.1.3 Corollary. $A \vdash (\exists \mathbf{x})A$

Proof. 0.1.2, taking **x** as t.

 \bigotimes Either corollaries above we call "Dual Spec" in annotating proofs.

Ś

But how can I remove a leading (the entire formula) \exists ?

We need two preliminary results to answer this.

0.1.4 Metatheorem. (\forall Introduction) If \mathbf{x} does not occur free in Γ nor in A, then $\Gamma \vdash A \rightarrow B$ iff $\Gamma \vdash A \rightarrow (\forall \mathbf{x})B$.

Proof. of the " \underline{iff} ".

 (\rightarrow) direction.

Assumption gives $\Gamma \vdash (\forall \mathbf{x})(A \rightarrow B)$ by valid generalisation.

But we have

$$(\forall \mathbf{x})(A \to B)$$

 $\Leftrightarrow \langle \text{thm from NOTES/Class} \rangle$
 $A \to (\forall \mathbf{x})B$

So the bottom formula is a Γ -theorem.

 (\leftarrow) direction.

This time we know the bottom of the above short Equational proof is a Γ -theorem.

Then so is the top. But from the latter I get $\Gamma \vdash A \rightarrow B$ by spec. \Box

 $\mathit{Basic \ Logic}$ by George Tourlakis

0.1.5 Corollary. (\exists Introduction) *IF* **x** *does not occur free in* Γ *nor in B, then* $\Gamma \vdash A \rightarrow B$ *iff* $\Gamma \vdash (\exists \mathbf{x})A \rightarrow B$.

 $\ \, \bigotimes \ \ \, \mbox{Note how we shifted the condition for \mathbf{x} from A to B.}$

Proof. of the "iff". Well,

$$\Gamma \vdash A \to B \quad \mathbf{iff} \quad \Gamma \vdash \neg B \to \neg A \quad \mathbf{iff} \quad \Gamma \vdash \neg B \to (\forall \mathbf{x}) \neg A \quad \mathbf{iff} \quad \Gamma \vdash \neg (\forall \mathbf{x}) \neg A \to B$$

Basic Logic© by George Tourlakis

Ś