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Lecture #19, Nov 20, 2020

0.0.1� Example. Consider the wff

x = y → (∀x)x = y (1)

Here are a few interpretations:

1. D = {3}, xD = 3, yD = 3.

Since D contains one element only the above “choice” was

made for us, being unique.

Thus (1) translates as

3 = 3→ (∀x ∈ D)x = 3 (2)

Incidentally, (2) is TRUE.
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2. This time I take

D = {3, 5}, and again xD = 3 and yD = 3.

Thus (1) translates as:

3 = 3→ (∀x ∈ D)x = 3 (3)

This time (3) is FALSE since “3 = 3” is TRUE as before,

BUT

“(∀x ∈ D)x = 3” is FALSE.

� �
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0.0.2 Example. Let’s interpret the following a few different

ways:

(∀x)(x ∈ y ≡ x ∈ z)→ y = z (1)

1. First this is true if we really are talking about sets as “∈”

compels us to think, being THE predicate of set theory

that says “is a member of”.

Incidentally, (1) if interpreted in Set Theory, says that any

two sets y and z are equal if they happen to have the same

elements (x is in y iff x is in z). Hence is true, as I noted.

2. Let us now interpret in number theory (of N).

Take D = N and ∈D=<, where “<” is the relation “less

than” on N.
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� Wait a minute! Can I do that?! Can I interpret “∈” as

something OTHER than “is a member of”?

Of course you can!

Only “=, (, ),¬,∨,∧,→,≡” translate as themselves!

EVERYTHING ELSE is fair game to translate as you please! �

So (1) translates as:

(∀x ∈ N)(x < yD ≡ x < zD)→ yD = zD

which is TRUE no matter how we choose yD and zD.
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3. Next, let D = N and ∈D= |, where “|” indicates the rela-

tion “divides” (with remainder zero).

E.g., 2 | 3 and 2 | 1 are FALSE but 2 | 4 and 2 | 0 are TRUE.

Then (1) translates as:

(∀x ∈ N)(x | yD ≡ x | zD)→ yD = zD

which is also TRUE for all choices of yD, zD.

It says: “Two natural numbers, yD and zD, are EQUAL

if they have exactly the same divisors”.

4. But consider something slightly different now: Take D = Z
—the set of all integers— and ∈D= |. Take also yD = 2

and zD = −2.

Then (1) translates as

(∀x ∈ Z)(x | 2 ≡ x | − 2)→ 2 = −2

This is FALSE, for 2 and −2 have the same divisors, but

2 6= −2.

So (1) is NOT TRUE IN ALL INTERPRETATIONS.

�
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0.1. Soundness in Predicate Logic

0.1.1 Definition. (Universally Valid wff)

Suppose that AD = t for some A and D.

We say that A is true in the interpretation D or that D

is a model of A.

We write this thus:

|=D A (1)

A 1st-order wff, A, is universally valid —or just “valid”—

iff EVERY interpretation of the wff is a model of it, that

is, we have that (1) holds for every interpretation D of the

language of A.

In symbols,

A is valid iff, for all D, we have |=D A (2)

(2) has the short expression (3) below:

|= A (3)

A formula A that satisfies (3) is sometimes also called Logically

or Absolutely valid. �
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0.1.2� Remark. NOTE the absence of the subscript “taut” in

the notation (3) above.

The symbols |= and |=taut are NOT the same!

For example, x = x translates as

xD = xD (4)

in EVERY interpretation D, and is thus true in every in-

terpretation, since it is a self-evident philosophical truth that

every object is equal to itself!

Thus, we have |= x = x.

On the other hand, |=taut x = x is NOT a TRUE meta

statement.

x = x is NOT a tautology! It is a prime formula (WHY?)

hence a Boolean variable!

NO Boolean variable is a tautology as I can assign to it the

VALUE FALSE. � �
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Lecture #20, Nov. 25

Valid Axioms 1. Ax1. Every axiom here is a tautology A.

Thus |=taut A.

This means that for all values that WE assign

to all the p,q, . . . that occur in A, and for

all values that WE assign to all prime formulas

—these behave as Boolean variables— we

get the truth value of A come out TRUE.

Well, when we interpret A in some Inter-

pretation D we actually COMPUTE the

values of the prime formulas in this inter-

pretation (rather than assign them).

However, the first paragraph above

makes clear, that whether we COM-

PUTE OR ARBITRARILY ASSIGN

values to the prime formulas of A, the fi-

nal value will be TRUE.

I A tautology does NOT CARE how the

values of its variables are obtained!J

So, |=D A. As D was arbitrary, I got

|= A
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Valid Axioms 2. Ax2. (∀x)A→ A[x := t] is valid.

Indeed, take a D, for the language of A,x, t.

Now
(

(∀x)A→ A[x := t]
)D

is

(∀x ∈ D)AD
x →

(
A[x := t]

)D
(1)

To the left of→ we explained the transla-

tion of (∀x)A in Remark 0.1.4 of the pre-

vious PDF, p.23).

Let’s make the rhs of → more useable:

Claim: It is the same as AD
x [x := tD].
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Indeed, start with the wff depicted as a

box below.

A : . . . x . . . x . . .

Thus

A[x := t] : . . . t . . . t . . . (3)

Hence (
A[x := t]

)D
:

(. . .)D tD (. . .)D tD (. . .)D
(4)

But (4) is the result of applying “[x :=

tD]” to

AD
x : (. . .)D x (. . .)D x (. . .)D

that is, it is the same as

AD
x [x := tD]

With the claim verified, (1) is now TRUE:

Here is why: Assume the lhs of → in (1).

That is, suppose AD
i is true for all i ∈ D.

But then it is true IN PARTICULAR for

i = tD.

Basic Logic© by George Tourlakis



0.1. Soundness in Predicate Logic 11

Valid Axioms 3. Ax6. t = s → (A[x := t] ≡ A[x := s]).

The translation of this in D is —see the

work we did for Ax2!)

tD = sD →
(AD

x [x := tD] ≡ AD
x [x := sD])

(1)

Assume the lhs of “→” in (1). Thus tD =

sD = k ∈ D.

The rhs of (1) becomes

AD
x [x := k] ≡ AD

x [x := k]

which is trivially true.

Valid Axioms 4. For the remaining axioms there is noth-

ing new to learn; see the text for proofs

of their validity. Incidentally, the axiom

x = x has already been shown to be valid

(0.1.2).
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0.1.3 Metatheorem. (Soundness of Predicate Logic)

If ` A, then |= A.

We omit the trivial proof by induction on proof length (we

saw two such proofs).

For length one we the ONLY formula that appears in the

proof is an axiom. But that is valid!

The induction step notes that our ONLY PRIMARY† rule

preserves truth.

†Given up in front.
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0.1.4� Example. (Strong Gen; Again!) Can our logic prove

strong generalisation as a “derived rule”?

Namely, can we have

If Γ ` A, then Γ ` (∀x)A, with NO restriction on x?

If yes, take Γ = {A}.† We get

A ` (∀x)A (1)

By the DThm, (1) allows this:

` A→ (∀x)A (2)

Soundness OBJECTS to (2):

If we got (2) then, by Soundness, we get

|= A→ (∀x)A (3)

I will contradict (3) showing

6|= A→ (∀x)A (4)

The Definition of “|=” (0.1.1) dictates that I find ONE D such

that

(A→ (∀x)A)D = f (5)

� This D is called a countermodel of (2). �

†Then A ` A, hence A ` (∀x)A.
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It is hopeless to search for a D FOR A GENERAL A.

For a countermodel I ONLY need a SPECIFIC A (a coun-

termodel is a counterexample!)

I Always work with an atomic formula in place
of A.

Now then! If we have (3) IN GENERAL, THEN we also

have it for A being atomic, in fact taking A to be “x = y”

(3) should work!

DOES IT?

NO. We saw in Example 0.0.1(2.) (cf. Definition 0.1.1)

6|= x = y → (∀x)x = y

So (2) is wrong and so is (1). � �
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0.1.5� Example. (Important!) In the elimination of ∃ we

start with (∃x)A (hypothesis, or proved from some Γ).

Then we add the associated Auxiliary Hypothesis

A[x := z]

where z is fresh for (∃x)A and for some other formulas.

Hypothesis? YES! Some folks think it is a conclusion of

(∃x)A.

Are they justified?

NO

.

Suppose this is a theorem schema

(∃x)A ` A[x := z] (1)

Then so is

` (∃x)A→ A[x := z] (2)

by an application of DThm.

I will show that that the wff in (2) has a countermodel and

thus is not a theorem. So, nor is (1).
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As always start with an atomic special case of A to work

with!

So if I can prove (2) then I can also prove

` (∃x)x = y→ z = y, z fresh (3)

Take D = N and yD = 3, zD = 5.

The formula in (3) translates as

t︷ ︸︸ ︷
(∃x ∈ N)x = 3→

f︷ ︸︸ ︷
5 = 3

Thus 6|= (∃x)x = y→ z = y and a fortiori

6|= (∃x)A→ A[x := z]

By Soundness, (2) and hence ALSO (1) are false statements.

� �
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0.1.6 Example. We have proved in class/NOTES/Text

` (∃y)(∀x)A→ (∀x)(∃y)A

We hinted in class that we cannot also prove

` (∀x)(∃y)A→ (∃y)(∀x)A (1)

To show that (1) is unprovable I pick a countermodel (=an

interpretation that makes the wff in it false).

Pick A to be something simple. Atomic is best!

I take D = N and x = y for A. Translating the wff in (1) I

note

t︷ ︸︸ ︷
(∀x ∈ N)(∃y ∈ N)x = y→

f︷ ︸︸ ︷
(∃y ∈ N)(∀x ∈ N)x = y

Since the interpretation falsifies a special case of (1) the latter

is not provable (by soundness). �
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0.1.7 Example. We noted in class/NOTES/Text that we cannot

prove

` (∃x)A ∧ (∃x)B → (∃x)(A ∧B) (1)

To demonstrate this fact now we use Soundness and coun-

termodels.

So, I pick a countermodel.

Pick A and B to be something simple. Atomic is best!

I take D = N and “x is even” for A while I take “x is odd”

for B. Translating the wff in (1) I note

t︷ ︸︸ ︷
(∃x ∈ N)x is even ∧ (∃x ∈ N)x is odd→

f︷ ︸︸ ︷
(∃x ∈ N)(x is even ∧ x is odd)

Since the interpretation falsifies a special case of (1) the latter

is not provable (by soundness). �
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0.1.8 Exercise. On the other hand, do prove by ∃-elimination

the other direction: We DO have

` (∃x)(A ∧B)→ (∃x)A ∧ (∃x)B

�
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0.1.9� Example. (Important!) Why is D 6= ∅ important?

Well let us start by proving

` (∀x)A→ (∃x)A (1)

Use DThm to prove instead

(∀x)A ` (∃x)A

1) (∀x)A 〈hyp〉
2) A 〈1 + spec〉
3) (∃x)A 〈2 + Dual spec〉

However, if I took D = (D,M) with D = ∅ then look at the

transaltion of the formula in (1):

t vacuously︷ ︸︸ ︷
(∀x ∈ D)AD

x
∗ →

f︷ ︸︸ ︷
(∃x ∈ D)AD

x (2)

Soundness fails for the formula in (1). We DON’T like this!

So we NEVER allow D = ∅. � �

∗Do not forget that “(∀x ∈ D)AD
x ” means “(∀x)(x ∈ D → AD

x )”, while “(∃x ∈ D)AD
x ” means

“(∃x)(x ∈ D ∧AD
x )”.
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