Lecture \# 21, Nov. 27, 2020

We saw in the lecture NOTES at link http://www.cs.yorku.ca/~gt/papers/ lec15.pdf page 1, our first utilisation of Axioms 5 and 6 towards proving the \forall version of the "one point rule".

Here are some more uses of these axioms.
0.0.1 Example. We prove that

$$
\begin{equation*}
\vdash x=y \rightarrow y=z \rightarrow x=z \tag{1}
\end{equation*}
$$

The above is the transitivity of Equality since (by tautological implication back and forth) says the same thing as

$$
\vdash x=y \wedge y=z \rightarrow x=z
$$

We prove (1): In the application of $\mathbf{A x} \mathbf{6}$

$$
t=s \rightarrow(A[w:=t] \equiv A[w:=s])
$$

in the proof below we took

- t to be x
- s to be y
- A to be $w=z$

1) $x=y \rightarrow(x=z \equiv y=z) \quad\langle\mathbf{A x} \mathbf{6}\rangle$
2) $x=y \rightarrow(y=z \rightarrow x=z) \quad\langle 1+$ Post \rangle

I did

$$
p \rightarrow(q \equiv r) \models_{\text {taut }} p \rightarrow(r \rightarrow q)
$$

Line 2 above is (1), as we see if we omit redundant brackets.
0.0.2 Example. ("Replacing Equals by Equals") Here we prove

$$
\vdash \mathbf{x}=\mathbf{y} \rightarrow f(\mathbf{x})=f(\mathbf{y}), \text { for any unary function symbols } f
$$

which, awkwardly, ${ }^{*}$ is captured by the quoted phrase above.
Here we use Ax6

$$
t=s \rightarrow(A[\mathbf{w}:=t] \equiv A[\mathbf{w}:=s])]
$$

in the special form below:

- t to be \mathbf{x}
- s to be \mathbf{y}
- A to be $f(\mathbf{w})=f(\mathbf{y})$

1) $\mathbf{x}=\mathbf{y} \rightarrow(f(\mathbf{x})=f(\mathbf{y}) \equiv f(\mathbf{y})=f(\mathbf{y})) \quad\langle\mathbf{A x} \mathbf{6}\rangle$
2) $(\forall \mathbf{x}) \mathbf{x}=\mathbf{x}$
\langle Partial gen. of $\mathbf{A x 5}\rangle$
3) $f(\mathbf{y})=f(\mathbf{y})$
$\langle 2+$ spec \rangle
4) $\mathbf{x}=\mathbf{y} \rightarrow f(\mathbf{x})=f(\mathbf{y})$
$\langle(1,3)+$ Post \rangle
I used the general version of spec in step 3 above with " $f(\mathbf{y})$ " in place of the term " t " and " $\mathrm{x}=\mathrm{x}$ " as " B ":

$$
(\forall \mathbf{x}) B \vdash B[\mathbf{x}:=t]
$$

0.0.3 Exercise. Imitate the above proofs to prove commutativity of "=".

$$
\vdash \mathrm{x}=\mathrm{y} \rightarrow \mathrm{y}=\mathrm{x}
$$

[^0]
0.1. Miscellaneous

Lecture \# 22, Dec. 2, 2020
0.1.1 Example. Monotonicity of \exists, nickname \exists-MON or E-MON.

If $\Gamma \vdash A \rightarrow B$ and there is no free \mathbf{x} in any wff of Γ then we have also

$$
\begin{equation*}
\Gamma \vdash(\exists \mathbf{x}) A \rightarrow(\exists \mathbf{x}) B \tag{1}
\end{equation*}
$$

Here is a Hilbert proof.

1) $A \rightarrow B \quad\langle\Gamma$-thm \rangle
2) $\neg B \rightarrow \neg A \quad\langle 1+$ Post \rangle
3) $(\forall \mathbf{x}) \neg B \rightarrow(\forall \mathbf{x}) \neg A \quad\langle 2+\mathrm{A}-\mathrm{MON}$; conditions on Γ good! \rangle
4) $\neg(\forall \mathbf{x}) \neg A \rightarrow \neg(\forall \mathbf{x}) \neg B \quad\langle 3+$ Post \rangle

The last line can be abbreviated as (1)
0.1.2 Corollary. If $\vdash A \rightarrow B$, then we have also

$$
\begin{equation*}
\vdash(\exists \mathbf{x}) A \rightarrow(\exists \mathbf{x}) B \tag{2}
\end{equation*}
$$

0.1.3 Example. We have seen via a countermodel in class/Text/NOTES that we CANNOT prove from the axioms

$$
A \rightarrow(\forall \mathbf{x}) A
$$

if A contains free occurrences of \mathbf{x}.

How about

$$
\begin{equation*}
A[\mathbf{x}:=c] \rightarrow(\forall \mathbf{x}) A \tag{2}
\end{equation*}
$$

where c is an unspecified (abstract) constant? Can I prove it from the axioms?
NO, here is a countermodel for the wff in (2), where I took A to be the atomic $x=y$ (not bold; actual variables).

So (2) becomes -after the simplification of A -

$$
c=y \rightarrow(\forall x) x=y
$$

Take $D=\mathbb{N}, y^{\mathcal{D}}=42, c^{\mathcal{D}}=42$. (2) translates as

$$
c^{\mathfrak{D}}=y^{\mathfrak{D}} \rightarrow(\forall x \in \mathbb{N}) x=y^{\mathfrak{D}}
$$

or more explicitly

$$
\overbrace{\underbrace{42=42}_{\mathbf{t}} \rightarrow \underbrace{(\forall x \in \mathbb{N}) x=42}_{\mathbf{f}}}^{\mathbf{f}}
$$

[^0]: *Nothing is "Equal" in the absence of other things.

