Lecture \#7 (Sept. 30)
0.0.1 Corollary. If $\Gamma \vdash A$ and also $\Gamma \cup\{A\} \vdash B$, then $\Gamma \vdash B$.
(3) In words, the conclusion says that A drops out as a hypothesis and we get $\Gamma \vdash B$.

That is, a THEOREM A can be invoked just like an axiom in a proof!
Proof. We have two proofs:
and

$$
\overbrace{\ldots A \ldots B}^{\text {from } \Gamma \cup\{A\}}
$$

When the second box is standalone, the justification for A is "hyp".

Now concatenate the two proofs above in the order

from Γ	from $\Gamma \cup\{A\}$
$\overbrace{\ldots A}$	$\overbrace{\ldots A \ldots B}$

Now change all the justifications for that A in the right box from "hyp" to the same exact reason you gave to the A in box one.

Thus, the status of A as "hyp" is removed and B is proved from Γ alone.

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.
0.0.2 Corollary. If $\Gamma \cup\{A\} \vdash B$ and $\vdash A$, then $\Gamma \vdash B$.

Proof. By hyp strengthening, I have $\Gamma \vdash A$. Now apply the previous theorem.
0.0.3 Theorem. $A \equiv B \vdash B \equiv A$

Proof.
(1) $\quad A \equiv B \quad\langle$ hyp \rangle
(2) $\quad(A \equiv B) \equiv(B \equiv A)\langle$ axiom \rangle
(3) $B \equiv A$
$\langle(1,2)+$ Eqn \rangle

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.
0.0.4 Theorem. $\vdash(A \equiv(B \equiv C)) \equiv((A \equiv B) \equiv C)$

NOTE. This is the mirror image of Axiom (1).

Proof.
(1) $\quad((A \equiv B) \equiv C) \equiv(A \equiv(B \equiv C))\langle$ axiom \rangle
(2) $\quad(A \equiv(B \equiv C)) \equiv((A \equiv B) \equiv C)\langle(1)+0.0 .3$
(3) 0.0.5 Remark. Thus, in a chain of two "=" we can shift brackets from left to right (axiom) but also right to left (above theorem).

So it does not matter how brackets are inserted in such chain.

An induction proof on chain length (see course URL) extends this remark to any chain of " \equiv ", of any length.
0.0.6 Theorem. (The other $(E q n)$) $B, A \equiv B \vdash A$

Proof.
(1) $B \quad\langle$ hyp \rangle
(2) $A \equiv B\langle\operatorname{hyp}\rangle$
(3) $B \equiv A\langle(2)+0.0 .3$.
(4) $A \quad\langle(1,3)+(E q n)\rangle$

Lecture \#8 (Oct. 2)
0.0.7 Corollary. $\vdash \top$

Proof.
(1) $\top \equiv \perp \equiv \perp\langle$ axiom \rangle
(2) $\perp \equiv \perp \quad\langle$ theorem \rangle
(3) $\rceil \quad\langle(1,2)+(E q n)\rangle$

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.
0.0.8 Theorem. $\vdash A \equiv A \equiv B \equiv B$
(1) $\quad(A \equiv B \equiv B) \equiv A\langle$ axiom \rangle
(2) $\quad A \equiv(A \equiv B \equiv B)\langle(1)+0.0 .3$
0.0.9 Corollary. $\vdash \perp \equiv \perp \equiv B \equiv B$ and $\vdash A \equiv A \equiv \perp \equiv \perp$

NOTE absence of brackets in theorem AND corollary!
0.0.10 Corollary. (Redundant $\top) \vdash \top \equiv A \equiv A$ and $\vdash A \equiv A \equiv \top$.

Proof.

$$
\begin{array}{ll}
\text { (1) } & \top \equiv \perp \equiv \perp \quad\langle\text { axiom }\rangle \\
\text { (2) } & \perp \equiv \perp \equiv A \equiv A\langle\text { absolute theorem }\rangle \\
\text { (3) } & \top \equiv A \equiv A \quad\langle(\text { Trans })+(1,2)\rangle
\end{array}
$$

0.0.11 Metatheorem. For any Γ and A, we have $\Gamma \vdash A$ iff $\Gamma \vdash A \equiv \top$.

Proof. Say $\Gamma \vdash A$.

Thus
$\begin{array}{ll} & \Gamma \\ & \\ & \\ \text { (1) } & A \\ \text { (2) } & A \equiv A \equiv \top \quad\langle\Gamma \text {-theorem }\rangle \\ \text { (3) } & A \equiv \top \quad\langle\text { theorem }\rangle \\ & \end{array} \quad\langle(1,2)+$ Eqn \rangle

The other direction is similar.

EQUATIONAL PROOFS

Example from high school trigonometry.

Prove that $1+(\tan x)^{2}=(\sec x)^{2}$ given the identities

$$
\begin{equation*}
\tan x=\frac{\sin x}{\cos x} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\sec x=\frac{1}{\cos x} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
(\sin x)^{2}+(\cos x)^{2}=1 \text { (Pythagoras' Theorem) } \tag{iii}
\end{equation*}
$$

Equational proof with annotation

$$
\begin{align*}
& 1+(\tan x)^{2} \\
= & \langle\operatorname{by}(i)\rangle \\
& 1+(\sin x / \cos x)^{2} \\
= & \langle\operatorname{arithmetic}\rangle \\
& \frac{(\sin x)^{2}+(\cos x)^{2}}{(\cos x)^{2}} \tag{E}\\
= & \langle\operatorname{by}(i i i)\rangle \\
& \frac{1}{(\cos x)^{2}} \\
= & \langle\operatorname{by}(i i)\rangle \\
& (\sec x)^{2}
\end{align*}
$$

An equational proof looks like:

$$
\begin{equation*}
\overbrace{A_{1} \equiv A_{2}}^{\text {reason }}, \overbrace{A_{2} \equiv A_{3}}^{\text {reason }}, \ldots, \overbrace{A_{n} \equiv A_{n+1}}^{\text {reason }} \tag{1}
\end{equation*}
$$

0.0.12 Metatheorem.

$$
\begin{equation*}
A_{1} \equiv A_{2}, A_{2} \equiv A_{3}, \ldots, A_{n-1} \equiv A_{n}, A_{n} \equiv A_{n+1} \vdash A_{1} \equiv A_{n+1} \tag{2}
\end{equation*}
$$

Proof. By repeated application of (derived) rule (Trans).

For example to show the "special case"

$$
\begin{equation*}
A \equiv B, B \equiv C, C \equiv D, D \equiv E \vdash A \equiv E \tag{3}
\end{equation*}
$$

the proof is
(1) $A \equiv B \quad\langle$ hyp \rangle
(2) $B \equiv C \quad\langle$ hyp \rangle
(3) $C \equiv D \quad\langle\mathrm{hyp}\rangle$
(4) $D \equiv E \quad\langle$ hyp \rangle
(5) $A \equiv C \quad\langle 1+2+$ Trans \rangle
(6) $A \equiv D \quad\langle 3+5+$ Trans \rangle
(7) $\quad A \equiv E \quad\langle 4+6+$ Trans \rangle

For the "general case (2)" do induction on n with Basis at $n=1$ (see text; better still do it without looking!)
0.0.13 Corollary. In an Equational proof (from Γ) like the one in (1) of $p .10$ we have $\Gamma \vdash A_{1} \equiv A_{n+1}$.
Proof. So we have $n \quad \Gamma$-proofs, for $i=1, \ldots, n$,

$$
\ldots A_{i} \equiv A_{i+1}
$$

Concatenate them all to get ONE Γ-proof

$$
\ldots A_{1} \equiv A_{2} \ldots \ldots A_{i} \equiv A_{i+1} \cdots \ldots A_{n} \equiv A_{n+1}
$$

By the DERIVED RULE 0.0.12 the following is a Γ-proof of $A_{1} \equiv A_{n+1}$

$$
\ldots A_{1} \equiv A_{2} \ldots \ldots A_{i} \equiv A_{i+1} \ldots \ldots A_{n} \equiv A_{n+1} \quad A_{1} \equiv A_{n+1}
$$

0.0.14 Corollary. In an Equational proof (from Γ) like the one in (1) of $p .10$ we have $\Gamma \vdash A_{1}$ iff $\Gamma \vdash A_{n+1}$.

Proof. From the above Corollary we have

$$
\Gamma \vdash A_{1} \equiv A_{n+1}
$$

Now split the "iff" in two directions:

- IF: So we have

$$
\Gamma \vdash A_{n+1}
$$

This plus (\dagger) plus Eqn yield $\Gamma \vdash A_{1}$.

- ONLY IF: So we have

This plus (\dagger) plus Eqn yield $\Gamma \vdash A_{n+1}$.
$\Gamma \vdash A_{1} \equiv A_{n+1}$. Telei'wnoume m'esw tou (Eqn).

Lecture Notes (outline) for MATH 1090 A (Fall 2020) © George Tourlakis, 2020.

Equational Proof Layout

Successive equivalences like " $A_{i} \equiv A_{i+1}$ and $A_{i+1} \equiv A_{i+2}$ " we write vertically, without repeating the shared formula A_{i+1}.

WITH annotation in $\langle\ldots\rangle$ brackets

$$
\begin{align*}
& A_{1} \\
\equiv & \langle\text { annotation }\rangle \\
& A_{2} \\
\equiv & \langle\text { annotation }\rangle \\
& \vdots \tag{ii}\\
& A_{n-1} \\
\equiv & \langle\text { annotation }\rangle \\
& A_{n} \\
\equiv & \langle\text { annotation }\rangle \\
& A_{n+1}
\end{align*}
$$

EXCEPT FOR ONE THING!

(ii) is just ONE FORMULA, namely

$$
A_{1} \equiv A_{2} \equiv \ldots \equiv A_{n} \equiv A_{n+1}
$$

which is NOT the same as (1) of $p .10$.
For example," $\top \equiv \perp \equiv \perp$ " is NOT the same as " $\top \equiv \perp$ $A N D \perp \equiv \perp "$

The former (blue) is true but the latter (red) is false.

What do we do?

We introduce a metasymbol for an equivalence that acts ONLY on two formulas!
Cannot be chained to form ONE formula.
The symbol is " \Leftrightarrow " and thus
" $A \Leftrightarrow B \Leftrightarrow C$ " MEANS " $A \Leftrightarrow B$ AND $B \Leftrightarrow C$ ".

We say that " \Leftrightarrow " is CONJUNCTIONAL while " $\equiv "$ is associative.

So the final layout is:

$$
\begin{aligned}
& A_{1} \\
\Leftrightarrow & \langle\text { annotation }\rangle \\
& A_{2} \\
\Leftrightarrow & \langle\text { annotation }\rangle \\
& \vdots \\
& A_{n-1} \\
\Leftrightarrow & \langle\text { annotation }\rangle \\
& A_{n} \\
\Leftrightarrow & \langle\text { annotation }\rangle \\
& A_{n+1}
\end{aligned}
$$

Examples.

0.0.15 Theorem. $\vdash \neg(A \equiv B) \equiv \neg A \equiv B$

Proof. (Equational)

$$
\begin{aligned}
& \neg(A \equiv B) \\
\Leftrightarrow & \langle\text { axiom }\rangle \\
& A \equiv B \equiv \perp \\
\Leftrightarrow & \langle(\text { Leib })+\text { axiom: } B \equiv \perp \equiv \perp \equiv B ; \text { Denom: } A \equiv \mathbf{p} ; \mathbf{p} \text { fresh }\rangle \\
& A \equiv \perp \equiv B \\
\Leftrightarrow & \langle(\text { Leib })+\text { axiom: } A \equiv \perp \equiv \neg A ; \text { Denom: } \mathbf{q} \equiv B ; \mathbf{q} \text { fresh }\rangle \\
& \neg A \equiv B
\end{aligned}
$$

0.0.16 Corollary. $\vdash \neg(A \equiv B) \equiv A \equiv \neg B$

Proof. (Equational)

$$
\begin{aligned}
& \neg(A \equiv B) \\
\Leftrightarrow & \langle\text { axiom }\rangle \\
& A \equiv B \equiv \perp \\
\Leftrightarrow & \langle(\text { Leib })+\text { axiom: } B \equiv \perp \equiv \neg B ; \text { Denom: } A \equiv \mathbf{p} ; \mathbf{p} \text { fresh }\rangle \\
& A \equiv \neg B
\end{aligned}
$$

Lecture \#9, Oct. 7
0.0.17 Theorem. (Double Negation) $\vdash \neg \neg A \equiv A$

Proof. (Equational)

$$
\begin{aligned}
& \neg \neg A \\
\Leftrightarrow & \langle\text { axiom } " \neg X \equiv X \equiv \perp "\rangle \\
& \neg A \equiv \perp \\
\Leftrightarrow & \langle(\text { Leib })+\text { axiom: } \neg A \equiv A \equiv \perp ; \text { Denom: } \mathbf{p} \equiv \perp\rangle \\
& A \equiv \perp \equiv \perp \\
\Leftrightarrow & \langle(\text { Leib })+\text { axiom: } \top \equiv \perp \equiv \perp ; \text { Denom: } A \equiv \mathbf{q}\rangle \\
& A \equiv \top \\
\Leftrightarrow & \langle\text { red. } \top\rangle \\
& A
\end{aligned}
$$

