
A mini “Logic Toolbox”

Facts-List

Here I list some tools/facts from old M1090 classes I taught, which you can use
in M2090 (and beyond) “off the shelf”, without proof.

The list is long, but hopefully useful. The axioms of arithmetic and set

theory are at the end.

The following metatheorems are good for both Propositional
(Ch. 3–4) and Predicate Calculus (Ch. 8–9):

1. Redundant True. Γ ` A iff Γ ` A ≡ true

� “Redundant true” is very convenient. Make a habit of using it. But do
be careful! “true” is a “meaningless symbol”,∗ not the truth value t (also
pronounced “true”) of the metatheory. �

2. Modus Ponens (MP). A, A ⇒ B ` B

3. Cut Rule. A ∨ B,¬A ∨ C ` B ∨ C

4. Deduction Theorem. If Γ, A ` B, then Γ ` A ⇒ B

5. Proof by contradiction. Γ,¬A ` false iff Γ ` A

6. Post’s Theorem. (Also called “tautology theorem”, or even “complete-
ness of Propositional Calculus theorem”)

If |=taut A, then ` A.

Also: If B1, . . . , Bn |=taut A, then B1, . . . , Bn ` A

7. Proof by cases. A ⇒ B, C ⇒ D ` A ∨ C ⇒ B ∨ D

Also the special case: A ⇒ B, C ⇒ B ` A ∨ C ⇒ B

Recall that if A is a formula and x1, . . . xn, where n ≥ 0, are
ANY variables (occurring or not occurring free in A, we don’t care)
then (∀x1)(∀x2) . . . (∀xn)A is called a “partial generalisation” of A.
If n = 0, then the “prefix” (∀x1)(∀x2) . . . (∀xn) is empty.† Thus A

is one of the partial generalizations of A. Example: Consider x < y

(where < is some nonlogical predicate of arity 2). Here I list some
partial generalizations of that formula:

x < y

∗Yes, it is one (multiple character) symbol, just like the symbol “else” of a programming
language like Pascal. As I mentioned in class, some people go out of their way to emphasise
that true and false are just meaningless symbols—not “values”—and write instead > and ⊥

respectively. We will not use > and ⊥, but we must always remember that “Γ ` A ≡ true” is

not pronounced “A is true” but “Γ proves that A is equivalent to the formula true”.
†This is a standard convention: A sequence x1, . . . , xn, where n ≥ 0, is “x1” if n = 1,

“x1, x2, x3” if n = 3, etc. It is empty by convention, if n = 0, the thinking being that we have
stopped listing the sequence before we started. So, nothing is listed.
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(∀z)x < y

(∀x)x < y

(∀y)(∀x)x < y

(∀x)(∀y)x < y

(∀x)(∀x)(∀x)(∀x)x < y.

As far as we—i.e., this class—are concerned,
the following are the axioms for Ch.9 and 8—NOT the ones listed
in G & S:

Any partial generalization of any formula in groups
Ax1–Ax6 is an axiom for Predicate Calculus.

Groups Ax1–Ax6 contain:

Ax1. All tautologies.

Ax2. For every formula A, (∀x)A ⇒ A[x := t], for any term t.

Ax3. For every formula A and variable x not free in A, the formula A ⇒ (∀x)A.

Ax4. For every formulas A and B, (∀x)(A ⇒ B) ⇒ (∀x)A ⇒ (∀x)B.

Ax5. For each object variable x, the formula x = x.

Ax6. (Leibniz’s characterisation of equality—1st order version. “3.83”) For
any formula A, any object variable x and any terms t, s, the formula
t = s ⇒ (A[x := t] ≡ A[x := s]).

Primary rules of inference are Equanimity and PSL in both Ch.3 and
Ch.9.

A ≡ B

C[p := A] ≡ C[p := B]
, provided p is not in the scope of a quantifier.

(PSL)

Translations

(∃x)A translates to ¬(∀x)¬A

(∀x|A : B) translates to (∀x)(A ⇒ B) (Range trading with ∀)

(∃x|A : B) translates to (∃x)(A ∧ B) (Range trading with ∃)

Useful facts from Predicate Calculus (proved in
class—you may use them without proof):
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We know that SLCS, WLUS (as well as GS-Leibniz “8.12(a)” and “8.12(b)”)
are derived rules. These are the following (I am using “GS”-notation for
8.12(a–b)):

Same as PSL, without the condition: A ≡ B ` C[p := A] ≡ C[p := B] (SLCS)

if ` A ≡ B, then ` C[p \ A] ≡ C[p \ B] (WLUS)

if ` A ≡ B, then `
(

∗ x|C[p := A] : D
)

≡
(

∗ x|C[p := B] : D
)

(8.12(a))

if ` D ⇒ (A ≡ B), then `
(

∗ x|D : C[p := A]
)

≡
(

∗ x|D : C[p := B]
)

(8.12(b))

where in 8.12(a–b) “∗” stands everywhere for the symbol “∀”, or the symbol
“∃”.

I More “rules” and (meta)theorems. (Only the “∀-versions” are listed. This
should help you remember the “∃-versions” that were also covered in the M1090
class.):

(i)
` A ≡ (∀x)A, provided x is not free in A

` A ≡ (∃x)A, provided x is not free in A

(ii) Dummy renaming.

If z does not occur in (∀x)A as either free or bound, then ` (∀x)A ≡ (∀z)
(

A[x := z]
)

If z does not occur in (∃x)A as either free or bound, then ` (∃x)A ≡ (∃z)
(

A[x := z]
)

(iii) ∀ over ◦ distribution, where ◦ is “∨” or “⇒”.

` A ◦ (∀x)B ≡ (∀x)(A ◦ B), provided x is not free in A

∃ over ∧ distribution

` A ∧ (∃x)B ≡ (∃x)(A ∧ B), provided x is not free in A

(iv) ∀ over ∧ distribution.

` (∀x)A ∧ (∀x)B ≡ (∀x)(A ∧ B)

∃ over ∨ distribution.

` (∃x)A ∨ (∃x)B ≡ (∃x)(A ∨ B)

(v) ∀ commutativity (symmetry).

` (∀x)(∀y)A ≡ (∀y)(∀x)A

∃ commutativity (symmetry).

` (∃x)(∃y)A ≡ (∃y)(∃x)A
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(vi) Specialization. Follows from Ax2 and MP. (∀x)A ` A[x := t], for any
term t.

(vii) Generalization. If Γ ` A and if, moreover, the formulas in Γ have no

free x occurrences, then also Γ ` (∀x)A.

(viii) ∀ Monotonicity. If Γ ` A ⇒ B so that the formulas in Γ have no free x

occurrences, then we can infer

Γ ` (∀x)A ⇒ (∀x)B

∃ Monotonicity. If Γ ` A ⇒ B so that the formulas in Γ have no free x

occurrences, then we can infer

Γ ` (∃x)A ⇒ (∃x)B

(ix) ∀ Introduction; a special case of ∀ Monotonicity that uses (i) above. If
Γ ` A ⇒ B so that neither the formulas in Γ nor A have any free x

occurrences, then we can infer

Γ ` A ⇒ (∀x)B

∃ Introduction; a special case of ∃ Monotonicity that uses (i) above. If
Γ ` A ⇒ B so that neither the formulas in Γ nor B have any free x

occurrences, then we can infer

Γ ` (∃x)A ⇒ B

(x) Super-WLUS or sWLUS. If Γ ` A ≡ B so that the formulas in Γ have
no free variables, then we can infer

Γ ` C[p \ A] ≡ C[p \ B]

where C is any formula and p is a Boolean variable.

(xi) (Equals-for-equals in terms) For any terms t, s, t′ and variable x,

` t = t′ ⇒ s[x := t] = s[x := t′]

(xii) Finally, the Auxiliary Variable (“witness”) Metatheorem. If Γ ` (∃x)A,
and if y is a variable that does not occur as either free or bound variable
in any of A or B or the formulas of Γ, then

Γ, A[x := y] ` B implies Γ ` B

Semantics facts

Propositional Calculus Predicate Calculus
(Boolean Soundness) ` A implies |=taut A ` A does NOT imply |=taut A

(Post) |=taut A implies ` A However, (Ax1) |=taut A implies ` A

(Pred. Calc. Soundness) ` A implies |= A

(Gödel Completeness) |= A implies ` A
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� � CAUTION! The above facts/tools are only a fraction of what one should
have seen in M1090. They are very important and very useful, and that is
why I list them for your easy reference here.

You can still use without proof ALL the things one sees in M1090, such as
“one-point-rule”, “deMorgan’s laws”, etc. Subject to the follow-
ing constraints:

(1) AXIOMS for predicate calculus are those listed here, NOT those listed
in Ch.8–9 in G & S. Happily, the latter are theorems for us, and can be used.

But don’t quote them as axioms!

(2) Forget all the “facts” in Ch.8 involving “∗”, UNLESS you inter-

pret “∗” exclusively as one of ∃ or ∀. NO OTHER INTERPRETATIONS
(e.g., “+,∪,∩”) of “∗” lead to FACTS OF PURE LOGIC (because +, ∪, etc.

are non logical symbols and one needs nonlogical axioms before discussing
them!) � �

Peano Arithmetic Axioms

These are the universal closures of the following formulas ((Ind) is a
schema):

(S)1. ¬0 = Sx

(S)2. Sx = Sy ⇒ x = y (“1-1ness of S”)

(+)1. x + 0 = x

(+)2. x + Sy = S(x + y)

(·)1. x · 0 = 0

(·)2. x · Sy = x · y + x

(<)1. ¬x < 0

(<)2. x < Sy ≡ x < y ∨ x = y

(<)3. x < y ∨ x = y ∨ y < x

And the Induction Schema, one axiom for each formula A:

(Ind) A[x := 0] ∧ (∀x)(A ⇒ A[x := Sx]) ⇒ A

CVI (Course-of-Values Induction) is a derived schema, the following

(CVI) (∀x)((∀z < x)A[z] ⇒ A[x]) ⇒ (∀x)A[x]

(Ind) is applied by proving A[0] (Basis) and then A[Sx] (or informally written
A[x + 1]—this is the goto step) by assuming A[x] (the I.H.).

(CVI) is applied by assuming (∀z < x)A[z] (I.H.) and then proving A[x]
(goto). It is important to do the “boundary cases” (Basis cases) during this
step. These are cases that are not helped by the I.H.
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Set Theory

First off, for any set-type variable S formula A and typeless variable x (i.e.,
of type set or atom), S = {x|A[x]} is short for (∀x)(x ∈ S ≡ A[x]). From this
we get the provable principle of ∈-elimination:

ST ` t ∈ {x|A} ≡ A[x := t], for any term t

Formally, “{x|A} is a set” is captured by (∃y)y = {x|A} where y is of type set.
Using the above convention we can eliminate “{. . .}” and write

(∃y)(∀x)(x ∈ y ≡ A)

The axioms of set theory that we covered are the universal closures of the
formulas that express the following statements.‡ Note that, deliberately, I have
not introduced three important axioms that I consider “non-elementary”: The
axiom of choice, the axiom of replacement, and the axiom of infinity. These
three do not appear below.

Axiom1. Extensionality: For all variables S, T of type set, and all typeless
variables x,

(∀x)(x ∈ S ≡ x ∈ T ) ⇒ S = T

Axiom2. Empty Set: {x|false} is a set denoted by ∅

Axiom3. Atoms contain no members: If x is of type atom and y is typeless,
then we have ¬(∃y)y ∈ x

Axiom4. Subsets: Any subset of a set is a set.

Axiom5. Pair: For any sets or atoms x and y, {x, y} is a set

Axiom6. Union: For any sets S and T their union is a set. For any family
of sets F , its union

⋃

F is a set

Axiom7. Foundation: It is impossible to have an infinite descending chain

. . . ∈ a′′′ ∈ a′′ ∈ a ∈ a

Axiom8. Power Set: For any set S, {x|x ⊆ S} is a set

‡OK, some are already formulas
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