A Programming Formalism for $\mathcal{P} \mathcal{R}^{*}$

A brief note that assumes access to Tou12].

George Tourlakis
October 21, 2020
Lecture \#9 (continued) Oct. 7.

1 Syntax and Semantics of Loop Programs

Loop programs were introduced by D. Ritchie and A. Meyer ([MR67]) as program-theoretic counterpart to the number theoretic introduction of the set of primitive recursive functions $\mathcal{P} \mathcal{R}$.

This programming formalism among other things connected the definitional (or structural) complexity of primitive recursive functions with their (run time) computational complexity.

[^0]Loop programs are very similar to programs written in FORTRAN,
but have a number of simplifications,
notably they lack an unrestricted do-while instruction (equivalently, there is $N O$ goto instruction).

What they do have is

(1) Each program references (uses) a finite number of \mathbb{N}-valued variables that we denote metamathematically by single letter names (upper or lower case is all right) with or without subscripts or primes ?
(2) Instructions are of the following types (X, Y could be any variables below, including the case of two identical variables):
(i) $X \leftarrow 0$
(ii) $X \leftarrow Y$
(iii) $X \leftarrow X+1$
(iv) Loop $X \ldots$ end,
where ". .." represents a sequence of syntactically valid instructions (which in 1.1 will be called a "loop program"). The Loop part is matched or balanced by the end part as it will become evident by the inductive definition below (1.1).

[^1]Informally, the structure of loop programs can be defined by induction:

Definition 1.1

- Every ONE instruction of type (i)-(iii) standing by itself is a loop program.

If we already have two loop programs P and Q, then so are

- P;Q, built by superposition (concatenation)
normally written vertically, without the separator ";", like this:

$$
P
$$

Q
and,

- for any variable X (that may or may not be in P),

Loop $X ; P$; end, is a program, called the loop closure (of P), and normally written vertically without separators ";" like this:

Loop X
P
end

Lecture \#10, Oct. 19

Definition 1.2 The set of all loop programs will be denoted by L.
The informal semantics of loop programs are precisely those given in [Tou12].

They are almost identical to the semantics of the URM programs.

1. A loop program terminates "if it has nothing to do", that is, If the current instruction is EMPTY.
2. All three assignment statements behave as in any programming language,
and after execution of any such instruction, the instruction below it (if any) is the next CURRENT instruction.
3. When the instruction
"Loop X; P; end"
becomes current, its execution DOES (a) or (b) below:

- We view the Loop-end construct as an "instruction" just as a begin-end block is in, say, Pascal.
(a) NOTHING, if $X=0$ at that time and program execution moves to the first instruction below the loop.
(b) If $X=a>0$ initially, then the instruction execution has the same effect as the program

$$
a \text { copies }\left\{\begin{array}{l}
P \\
P \\
\vdots \\
P
\end{array}\right.
$$

So, the semantics of Loop-end are such that the number of times around the loop is NOT affected if the program CHANGES X by an assignment statement inside the loop!

The symbol $P_{Y}^{\vec{X}_{n}}$ has exactly the same meaning as for the $U R M s$, but here " P " is some loop program

It is the function computed by loop program P if we use $\vec{X}_{n}=X_{1}, X_{2}, \ldots, X_{n}$ as the input and Y as the output variables.

All $P_{Y}^{\vec{X}_{n}}$ are total.

This is trivial to prove by induction on the formation of P that ALL loop Programs Terminate.

Basis: Let P be a one-instruction program. By 1 and 3 of page 7, such a program terminates.
I.H. Fix and Assume for programs P and Q.

I.S.

- What about the program

$$
\begin{aligned}
& P \\
& Q
\end{aligned}
$$

By the I.H. starting at the top of program P we eventually overshoot it and make the first instruction of Q current.

By I.H. again, we eventually overshoot Q and the whole computation ends.

- What about the program

$$
\text { Loop } X ; P ; \text { end }
$$

Well, if $X=0$ initially, then this terminates (does nothing).

So suppose X has the value $a>0$ initially.
Then the program behaves like

$$
a \text { copies }\left\{\begin{array}{l}
P \\
P \\
\vdots \\
P
\end{array}\right.
$$

By the I.H. for each copy of P above when started with its first instruction, the instruction pointer of the computation will eventually overshoot the copy's last instruction.

But then starting the computation with the 1st instruction of the 1 st P, eventually the computation executes the 1 st instruction of the 2nd P,
then, eventually, that of the 3 rd $P \ldots$
and, then, eventually, that of the last (a-th) P.

We noted that each copy of P will be overshot by the computation; THUS the overall computation will be over after the LAST copy has been overshot. PROVED!

Definition 1.3 We define the set of loop programmable functions, \mathcal{L} :

The symbol \mathcal{L} stands for $\left\{P_{Y}^{\vec{X}_{n}}: P \in L\right\}$.

Two examples. Refer the computation of $\lambda x \operatorname{rem}(x, 2)$ and $\lambda x .\lfloor x / 2\rfloor$ earlier.

If we let $f=\lambda x \operatorname{rem}(x, 2)$ we saw that the following sim. recursion computes f.

$$
\begin{cases}f(0) & =0 \tag{1}\\ g(0) & =1 \\ f(x+1) & =g(x) \\ g(x+1) & =f(x)\end{cases}
$$

As a loop program this is implemented as the program P below -that is, $f=P_{F}^{X}$.
$G \leftarrow G+1$
Loop X
$T \leftarrow F$
$F \leftarrow G$
$G \leftarrow T$
end

As for $\lambda x .\lfloor x / 2\rfloor$ we saw earlier that if $f=\lambda x .\lfloor x / 2\rfloor$ then we have:

$$
\begin{cases}f(0) & =0 \tag{2}\\ g(0) & =0 \\ f(x+1) & =g(x) \\ g(x+1) & =f(x)+1\end{cases}
$$

$$
\begin{aligned}
& \text { Loop } X \\
& T \leftarrow F \\
& F \leftarrow G \\
& T \leftarrow T+1 \\
& G \leftarrow T \\
& \text { end }
\end{aligned}
$$

If P is the name of the above program, then $P_{F}^{X}=f$.

Subtracting by adding!
The program Q_{X}^{X} below computes $\lambda x . x-1$.

How?
X lags from T by one. At the end of the loop T holds the original value of X, but X is ONE behind its original value!

$$
\begin{aligned}
& T \leftarrow 0 \\
& \text { Loop } X \\
& X \leftarrow T \\
& T \leftarrow T+1 \\
& \text { end }
\end{aligned}
$$

Addition

Program P below computes $\lambda x y . x+y$ as $P_{Y}^{X Y}$.
Loop X
$Y \leftarrow Y+1$
end

Multiplication

Program Q below computes $\lambda x y . x \times y$ as $Q_{Z}^{X Y}$.
Loop X
Loop Y
$Z \leftarrow Z+1$
end
end

Why? Because we add $1-X \times Y$ times- to Z that starts as 0 .
$2 \mathcal{P} \mathcal{R} \subseteq \mathcal{L}$
Theorem 2.1 $\mathcal{P} \mathcal{R} \subseteq \mathcal{L}$.

Proof By induction over $\mathcal{P} \mathcal{R}$ and brute-force programming we are proving THIS property of ALL $f \in \mathcal{P} \mathcal{R}$:
" f is loop programmable".
Basis: $\lambda x \cdot x+1$ is P_{X}^{X} where P is $X \leftarrow X+1$.
Similarly, $\lambda \vec{x}_{n} \cdot x_{i}$ is $P_{X_{i}}^{\vec{X}_{n}}$ where P is

$$
X_{1} \leftarrow X_{1} ; X_{2} \leftarrow X_{2} ; \ldots ; X_{n} \leftarrow X_{n}
$$

The case of $\lambda x .0$ is as easy.

Propagation of the property we are proving with Grzegorczyk substitution.

Just probe the function substitution case.
How does one compute $\lambda \vec{x} \vec{y} \cdot f(g(\vec{x}), \vec{y})$ if $g=G_{Z}^{\vec{X}}$ and $f=$ $F_{W}^{Z \vec{Y}}$?

Same as with URM programs.
One uses program concatenation and minds that Z is the only variable common between F and G.

$$
\binom{G}{F}_{W}^{\vec{X} \vec{Y}}
$$

Propagation with primitive recursion.

So, say $h=H_{Z}^{\vec{Y}}$ and $g=G_{Z}^{X, \vec{Y}, Z}$ where H and G are in L.
We indicate in pseudo-code how to compute $f=\operatorname{prim}(h, g)$.
We have

$$
\begin{aligned}
f\left(0, \vec{y}_{n}\right) & =h\left(\vec{y}_{n}\right) \\
f\left(x+1, \vec{y}_{n}\right) & =g\left(x, \vec{y}_{n}, f\left(x, \vec{y}_{n}\right)\right)
\end{aligned}
$$

The pseudo-code is

$$
\begin{array}{ll}
z \leftarrow h\left(\vec{y}_{n}\right) & \text { Computed as } H_{Z}^{\vec{Y}_{n}} \\
i \leftarrow 0 & \\
& \text { Loop } x \\
& z \leftarrow g\left(i, \vec{y}_{n}, z\right) \\
& \text { Computed as } G_{Z}^{I, \overrightarrow{\vec{n}}_{n}, Z} \\
& i \leftarrow i+1 \\
& \text { end }
\end{array}
$$

See the similar more complicated programming for URMs to recall precautions needed to avoid side-effects.

$3 \mathcal{L} \subseteq \mathcal{P} \mathcal{R}$

To handle the converse of 2.1 we will simulate the computation of loop program P by an array of primitive recursive functions.

Definition 3.1 For any $P \in L$ and any variable Y in P, the symbol P_{Y} is an abbreviation of $P_{Y}^{\vec{X}_{n}}$, where \vec{X}_{n} are all the variables that occur in P.

Lemma 3.2 For any $P \in L$ and any variable Y in P, we have that $P_{Y} \in \mathcal{P} \mathcal{R}$.

Proof

(A) For the Basis, we have cases:

- P is $X \leftarrow 0$. Then $P_{X}=\lambda x .0 \in \mathcal{P} \mathcal{R}$.
- P is $X \leftarrow Y$. Then $P_{X}=\lambda x y . y \in \mathcal{P} \mathcal{R}$, while $P_{Y}=$ $\lambda x y . y \in \mathcal{P} \mathcal{R}$.
- P is $X \leftarrow X+1$. Then $P_{X}=\lambda x . x+1 \in \mathcal{P} \mathcal{R}$

Let us next do the induction step:
(B) P is Q; R.
(i) Case where NO variables are common between Q and R.

Let the Q variables be \vec{z}_{k} and the R variables be \vec{u}_{m}.

- What can we say about $(Q ; R)_{z_{i}}$?

Let $\lambda \vec{z}_{k} \cdot f\left(\vec{z}_{k}\right)=Q_{z_{i}}$.
$f \in \mathcal{P} \mathcal{R}$ by the I.H.
But then, so is $\lambda \vec{z}_{k} \vec{u}_{m} \cdot f\left(\vec{z}_{k}\right)$ by Grzegorczyk Ops.
But this is $(Q ; R)_{z_{i}}$.

- Similarly we argue for $(Q ; R)_{u_{j}}$.

Lecture \#11. Oct. 21
(ii) Case where \vec{y}_{n} are common between Q and R.
\vec{z} and \vec{u}-just as in case (i) above- are the NON -common variables.

- Thus the set of variables of $(Q ; R)$ is $\vec{y}_{n} \vec{z}_{k} \vec{u}_{m}$

Now, pick an output variable w_{i}.

- If w_{i} is among the z_{j}, then we are back to the first bullet of case (i).
$\underline{\text { Nothing that } R \text { does can change } z_{j} \text {. }}$
- So let the w_{i} be a component of the vector $\vec{y}_{n} \vec{u}_{m}$ instead. This case is fully captured by the figure below.

(C) P is Loop $x ; Q$ end.

There are two subcases: x in Q; or NOT.
(a) x not in Q :

So, let \vec{y}_{n} be all the variables of $Q ; x$ is NOT one of them.
Let

$$
\begin{equation*}
\lambda x \vec{y}_{n} \cdot f_{0}\left(x, \vec{y}_{n}\right) \text { denote } P_{x} \tag{5}
\end{equation*}
$$

and, for $i=1, \ldots, n$,

$$
\begin{equation*}
\lambda x \vec{y}_{n} \cdot f_{i}\left(x, \vec{y}_{n}\right) \text { denote } P_{y_{i}} \tag{6}
\end{equation*}
$$

where x-being an input variable- holds the initial value we give to it before the program P starts.

In what follows we will refer to this initial value of x as " k ".

Moreover, let

$$
\begin{equation*}
\lambda \vec{y}_{n} \cdot g_{i}\left(\vec{y}_{n}\right) \text { denote } Q_{y_{i}} \tag{7}
\end{equation*}
$$

- By the I.H., the g_{i} are in $\mathcal{P} \mathcal{R}$ for $i=1,2, \ldots, n$.

We want to prove that the functions in (5) and (6) are also in $\mathcal{P} \mathcal{R}$.

Since $f_{0}=\lambda x \vec{y}_{n} . x$ (Why?),
we only deal with the f_{i} for $i>0$.

The plan is to set up a simultaneous recursion that produces the f_{i} from the g_{i}.

Now imagine the computation of P with input x, y_{1}, \ldots, y_{n}.
We have two sub-subcases:

- $x=0$.

In this sub-subcase, the loop is skipped and no variables are changed by the program. In terms of (5) and (6), what I just said translates into

$$
\begin{equation*}
f_{0}\left(0, \vec{y}_{n}\right)=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i}\left(0, \vec{y}_{n}\right)=y_{i}, \text { for } i=1, \ldots, n \tag{9}
\end{equation*}
$$

- $x=k+1$, i.e., positive.

The effect of P is

$$
k \text { copies }\left\{\begin{array}{c}
Q \tag{10}\\
Q \\
Q \\
\vdots \\
Q
\end{array}\right.
$$

$$
Q
$$

What is $f_{i}\left(k+1, \vec{y}_{n}\right)$, for $i>0$?

Well, consult the picture below:

We now have a simultaneous primitive recursion that yields the f_{i} from the g_{i}. The g_{i} being in $\mathcal{P R}$ by the I.H. on Q, so are the f_{i}.
(b) x in Q :

So, let x, \vec{y}_{n} be all the variables of Q. Let

$$
\begin{equation*}
\lambda x \vec{y}_{n} \cdot f_{0}\left(x, \vec{y}_{n}\right) \text { denote } P_{x} \tag{11}
\end{equation*}
$$

and, for $i=1, \ldots, n$,

$$
\begin{equation*}
\lambda x \vec{y}_{n} . f_{i}\left(x, \vec{y}_{n}\right) \text { denote } P_{y_{i}} \tag{12}
\end{equation*}
$$

Moreover, let

$$
\begin{align*}
& \lambda x \vec{y}_{n} \cdot g_{0}\left(x, \vec{y}_{n}\right) \text { denote } Q_{x} \tag{13}\\
& \lambda x \vec{y}_{n} \cdot g_{i}\left(x, \vec{y}_{n}\right) \text { denote } Q_{y_{i}} \tag{14}
\end{align*}
$$

By the I.H., the g_{i} are in $\mathcal{P} \mathcal{R}$ for $i=1,2, \ldots, n$.
We want to prove that the functions in (11) and (12) are also in $\mathcal{P} \mathcal{R}$ by employing an appropriate simultaneous recursion. The basis equations are the same as (8) and (9).

For $x=k+1$ we simply consult the figure below, to yield the recurrence equations

$f_{j}\left(k+1, \vec{y}_{n}\right)=g_{j}\left(f_{0}\left(k, \vec{y}_{n}\right), f_{1}\left(k, \vec{y}_{n}\right), \ldots, f_{n}\left(k, \vec{y}_{n}\right)\right), j=0, \ldots, n$
As the g_{j} are in $\mathcal{P} \mathcal{R}$, so are the f_{j}.

At the end of all this we have the proof of the Lemma.

We can now prove
Theorem 3.3 $\mathcal{L} \subseteq \mathcal{P} \mathcal{R}$.
Proof We must show that if $P \in L$ then for any choice of \vec{X}_{n}, Y in P we have

$$
P_{Y}^{\vec{X}_{n}} \in \mathcal{P R}
$$

So pick a P and also \vec{X}_{n}, Y in it.
Let \vec{Z}_{m} the rest of the variables (the non-input variables) of P, and let

$$
f=P_{Y}=P_{Y}^{\vec{X}_{n}, \vec{Z}_{m}}
$$

and

$$
g=P_{Y}^{\vec{X}_{n}}
$$

By the lemma, $f \in \mathcal{P} \mathcal{R}$.

But

$$
g\left(\vec{X}_{n}\right)=f(\vec{X}_{n}, \overbrace{0, \ldots, 0}^{m \text { zeros }})
$$

By Grzegorczyk substitution, $g=P_{Y}^{\vec{X}_{n}} \in \mathcal{P} \mathcal{R}$.
All in all, we have that

$$
\mathcal{P} \mathcal{R}=\mathcal{L}
$$

4 Incompleteness of $\mathcal{P} \mathcal{R}$

We can now see that $\mathcal{P} \mathcal{R}$ cannot possibly contain all the intuitively computable total functions. We see this as follows:
(A) It is immediately believable that we can write a program that checks if a string over the alphabet

$$
\Sigma=\{X, 0,1,+, \leftarrow, ;, \text { Loop, end }\}
$$

of loop programs is a correctly formed program or not.

BTW, the symbols X and 1 above generate all the variables,

$$
X 1, X 11, X 111, X 1111, \ldots
$$

We will not ever write variables down as what they really are -" $X \underbrace{1 \ldots 1}_{k 1 s}$ "- but we will continue using metasymbols like

$$
X, Y, Z, A, B, X^{\prime \prime}, Y_{23}^{\prime \prime \prime}, x, y, z_{15}^{\prime \prime \prime}
$$

etc., for variables!
(B) We can algorithmically build the list, List $_{1}$, of ALL strings over Σ :

List by length; and in each length group lexicographically. ${ }^{2}$
(C) Simultaneously to building List $_{1}$ build List $_{2}$ as follows:

For every string α generated in List $_{1}$, copy it into List $_{2}$ iff $\alpha \in L$ (which we can test by (A)).
(D) Simultaneously to building List $_{2}$ build List $_{3}$:

For every P (program) copied in List $_{2}$ copy all the finitely many strings P_{Y}^{X} (for all choices of X and Y in P) alphabetically (think of the string P_{Y}^{X} as " $P ; X ; Y$ ").

At the end of all this we have an algorithmic list of all the functions $\lambda x . f(x)$ of $\mathcal{P} \mathcal{R}$,
listed by their aliases, the P_{Y}^{X} programs.

Let us call this list of ALL the one-argument $\mathcal{P} \mathcal{R}$ FUNCTIONS

$$
\begin{equation*}
f_{0}, f_{1}, f_{2}, \ldots, f_{x}, \ldots \tag{1}
\end{equation*}
$$

Each f_{i} is a $\lambda x . f_{i}(x)$

[^2]
4.1 A Universal function for unary $\mathcal{P} \mathcal{R}$ functions

At the end of all this we got a universal or enumerating function $U^{(P R)}$ for all the unary functions functions in $\mathcal{P} \mathcal{R}$.

That is the function of TWO arguments

$$
\begin{equation*}
U^{(P R)}=\lambda i x \cdot f_{i}(x) \tag{2}
\end{equation*}
$$

$U^{(P R)}(i, x)=f_{i}(x)$.

What do I mean by "Universal"?

Definition 4.1 $U^{(P R)}$ of (2) is universal or enumerating for all the unary functions of $\mathcal{P} \mathcal{R}$ meaning it has two properties:

1. If $g \in \mathcal{P} \mathcal{R}$ is unary, then there is an i such that

$$
g=\lambda x \cdot U^{(P R)}(i, x)
$$

and
2. Conversely, for every $i \in \mathbb{N}, \lambda x \cdot U^{(P R)}(i, x) \in \mathcal{P} \mathcal{R}$.

Theorem 4.2 The function of two variables, $\lambda i x \cdot U^{(P R)}(i, x)$ is computable informally.

Proof Here is how to calculate $U^{(P R)}(i, x)$ for each given i and a :

1. Find the i-th P_{Y}^{X} in the enumeration (1) that we have built in (D) above. That is, the f_{i} in List ${ }_{3}$.

This does NOT mean we HAVE an infinite List sitting there:
It means: build List $_{1}$ and simultaneously the lists List $_{2}$ and $L_{i s t}^{3}$ and stop once you got the i-th element of the latter List enumerated.
2. Now, run the P_{Y}^{X} you just found with input a into X. This terminates!

After termination Y holds $f_{i}(a)=U^{(P R)}(i, a)$.
(2) Important. We repeat for posterity TWO by-products of 4.1 and 4.2:

- The informally computable Enumeration function $U^{(P R)}$ is total.
- $\underline{\lambda x \cdot U^{(P R)}}(i, x)=f_{i}$ for all i.

Theorem 4.3 $U^{(P R)}$ is NOT primitive recursive.
Proof If it is, then so is $\lambda x \cdot U^{(P R)}(x, x)+1$ by Grzegorczyk operations. As this is a unary $\mathcal{P} \mathcal{R}$ function, we must have an i such that

$$
\begin{equation*}
U^{(P R)}(x, x)+1=U^{(P R)}(i, x), \text { for all } x \tag{3}
\end{equation*}
$$

Setting i into x in (3) we get the contradiction

$$
U^{(P R)}(i, i)+1=U^{(P R)}(i, i)
$$

Remark. 4.4 Thus $\lambda i x \cdot U^{(P R)}(i, x)$ acts as the COMPILER of a stored program computer:

You give it a (pointer to a) PROGRAM i and DATA x and it simulates the Program (at address) i on the Data x !

We have just learnt in the above theorem that this compiler CANNOT be programmed in the Loop-Programs Programming Language!

References

[MR67] A. R. Meyer and D. M. Ritchie, Computational complexity and program structure, Technical Report RC1817, IBM, 1967.
[Tou12] G. Tourlakis, Theory of Computation, John Wiley \& Sons, Hoboken, NJ, 2012.

[^0]: *Supplementary lecture notes for EECS2001B; Fall 2020

[^1]: ${ }^{1}$ The precise syntax of variables will be given shortly, but even after this fact we will continue using signs such as $X, A, Z^{\prime}, Y_{34}^{\prime \prime}$ for variables-i.e., we will continue using metanotation.

[^2]: ${ }^{2}$ Fix the ordering of Σ as listed above.

