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Abstract

The maximal vector problem is to identify the
maximals over a collection of vectors. This
arises in many contexts and, as such, has been
well studied. The problem recently gained re-
newed attention with skyline queries for re-
lational databases and with work to develop
skyline algorithms that are external and rela-
tionally well behaved.

While many algorithms have been proposed,
how they perform has been unclear. We study
the performance of, and design choices be-
hind, these algorithms. We prove runtime
bounds based on the number of vectors n and
the dimensionality k. Early algorithms based
on divide-and-conquer established seemingly
good average and worst-case asymptotic run-
times. In fact, the problem can be solved in
O(n) average-case (holding k as fixed). We
prove, however, that the performance is quite
bad with respect to k. We demonstrate that
the more recent skyline algorithms are better
behaved, and can also achieve O(kn) average-
case. While k matters for these, in practice,
its effect vanishes in the asymptotic. We intro-
duce a new external algorithm, LESS, that is
more efficient and better behaved. We evalu-
ate LESS’s effectiveness and improvement over
the field, and prove that its average-case run-
ning time is O(kn).

1 Introduction

The maximal vector problem is to find the subset of the
vectors such that each is not dominated by any of the
vectors from the set. One vector dominates another
if each of its components has an equal or higher value
than the other vector’s corresponding component, and

Part of this work was conducted at William & Mary where
Ryan Shipley was a student and Parke Godfrey was on faculty
while on leave of absence from York.

it has a higher value on at least one of the correspond-
ing components. One may equivalently consider points
in a k-dimensional space instead of vectors. In this con-
text, the maximals have also been called the admissible
points, and the set of maximals called the Pareto set.
The parameters of the problem are

• n, the number of points in the input set;
• k, the dimensionality of the space (that is, how

many coordinates are used for comparison); and
• m, the number of maximal points in the output

set.

This problem has been considered for many years,
as identifying the maximal vectors—or admissible
points—is useful in many applications. A number of
algorithms have been proposed for efficiently finding
the maximals.

The maximal vector problem has been rediscovered
recently in the database context with the introduction
of skyline queries. Instead of vectors or points, this
time it is to find the maximals over a set of tuples.
Certain columns with ordered domains of the input
relation are designated as the skyline criteria. Dom-
inance is then defined with respect to these criteria.
The non-dominated tuples constitute the skyline set.

The idea of skyline queries has attracted much at-
tention since its introduction in [8]. It is thought
that skyline offers a good mechanism for incorporat-
ing preferences into relational queries. Of course, its
implementation would also enable maximal vector ap-
plications to be built on relational database systems
efficiently. While the idea of maximal vectors itself
is older, much of the recent skyline work has focused
on designing good algorithms that are well-behaved in
the context of a relational query engine and are exter-
nal (that is, that work efficiently over data sets that
are too large to fit in main memory). Other skyline-
algorithm work has explored how to use indexes and
other preprocessing for more efficient runtime evalu-
ation. This renewed interest in maximal vectors via
skyline has offered tangible results in new application
areas and in providing relationally well-behaved, ex-
ternal algorithms.
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On the one hand, intuition says it should be triv-
ial to design a reasonably good algorithm for finding
the maximal vectors. We prove that many obvious
approaches have, in fact, O(n) average-case running
time.1 On the other hand, performance varies widely
for the algorithms when applied to input sets of large,
but realistic, sizes (n) and reasonable dimensionality
(k). The performance profile can be quite different
than as simply suggested by the asymptotic limits.

In truth, designing a good algorithm for the max-
imal vector problem is far from simple. There
are many subtle, but important, issues to address.
For some algorithms—namely, the divide-and-conquer
approaches—the impact of the dimensionality is pro-
found. For others—namely the skyline algorithms—
we prove that they have O(kn) average-case running
time. Even this is deceptive, however, as the “mul-
tiplicative constant” becomes reasonable only in the
extreme limit of n. Design choices that appear inno-
cent can lead to quite different performance profiles.

This paper is a direct extension of the work in [20].
In this paper, as in [20], we focus on generic maximal-
vector algorithms; that is, on algorithms for which ex-
pensive preprocessing steps or data-structures such as
indexes are not required.

In §2, we discuss the maximal vector problem.
We illustrate with an example (§2.1), discuss a gen-
eral approach to finding the maximal vectors (§2.2),
and outline criteria for a good maximal-vector algo-
rithm (§2.3). We then introduce a base set of as-
sumptions on which we can base average-case anal-
yses (§2.4). This employs an estimate of the num-
ber of maximals expected (m̂), on average, assuming
statistical independence of the dimensions and sparse-
ness (distinct values) of the vectors along each dimen-
sion. In some cases for analysis, a third assumption
of uniformity—that the values along a dimension are
uniformly distributed—is needed.

In §3, we simultaneously review the work in the
area and analyze the proposed algorithms’ runtime
performances. We summarize the generic algorithmic
approaches—both older algorithms and newer, exter-
nal skyline algorithms—for computing maximal vector
sets (§3.1). We formally analyze the runtime perfor-
mances of the existing generic algorithms, especially
with consideration of the dimensionality k’s impact, to
identify the bottlenecks and compare advantages and
disadvantages between the approaches. We address
the divide-and-conquer approaches in §3.2, and then
the external, skyline approaches in §3.3. This reca-
pitulate the results from [20] and addresses previously
unresolved issues, such as the average runtime perfor-
mance of the algorithm BNL from [8].2 We extend our
coverage of related algorithms. (We additionally ad-

1Meanwhile, that their average-case runtimes are O(n) is
anything but obvious.

2Some of the new results in this paper (not in [20]) were
presented in our talk for [20] in Trondheim at VLDB 2005.

dress the skyline algorithm Best [17, 33].) We discuss
the design choices behind the skyline algorithms, and
the ramifications of these on performance.

In §3.4, we present a new algorithm for maximal
vector computation, LESS (linear elimination sort for
skyline), that essentially combines aspects of a num-
ber of the established algorithms, and offers a substan-
tial improvement over the field. The design of LESS
is motivated by our earlier analyses and observations
(§3.4.1). We present an experimental evaluation of
LESS that demonstrates its improvement over the ex-
isting field (§3.4.2). We formally analyze its runtime
characteristics, prove it has O(kn) average runtime
performance, and demonstrate its advantages with re-
spect to the other algorithms (§3.4.3).

In §3.5, we identify the key bottlenecks for any
maximal-vector algorithm, and discuss ways that
LESS—and other skyline algorithms—could be further
improved In §3.6, discuss how the the assumptions be-
hind the average-case analyses (§2.4) can be relaxed,
and how these affect the algorithms. This strengthens
the results from [20] by showing the extent to which
the assumptions can be lifted. (We prove that FLET,
SFS, and LESS have O(kn) average-case runtime with-
out the uniformity assumption.)

In §4, we discuss other work related to maximal vec-
tors and skyline that were not discussed earlier. We
briefly discuss some of the index-based approaches to
maximal vector computation, and why index-based ap-
proaches are necessarily of limited utility.

In §5, we discuss future issues and conclude.

2 The Maximal Vector Problem

2.1 An Example

Consider a table for hotels with columns name, ad-
dress, dist (distance to the beach), stars (quality rat-
ing), and price, as data in Figure 1. This table has
three metric columns dist, stars, and price. Based on
these three metric dimensions, we could visualize the
data as points in three dimensional space.

In [8], they introduced a hypothetical extension to
the SQL query language called skyline to allow one
to query for maximals. The skyline query in Figure
2 over the hotel table asks for hotels with the most
stars, that are closest to the beach, and are the least
expensive.

name stars dist price

Aga ⋆⋆ 0.7 1,175
Fol ⋆ 1.2 1,237

Kaz ⋆ 0.2 750
Neo ⋆ ⋆ ⋆ 0.2 2,250
Tor ⋆ ⋆ ⋆ 0.5 2,550

Uma ⋆⋆ 0.5 980

Figure 1: The hotel table.
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The semantics of a skyline query is to find the max-
imals, throwing away any tuples that are dominated
by others. The rows in black in the table (Figure 1)
are the answers to the query; the rows that are grayed
out are those that were dominated. Aga can be elim-
inated, for example, by comparison with Uma. Fol is
eliminated by comparison with Aga, Kaz, or Uma. Tor
is eliminated by comparison with Neo. None of Kaz,
Neo, or Uma is dominated by any other, however, so
these are the answers.

select name, address
from Hotel
skyline of stars max,

dist min,
price min

Figure 2: The hotel query.

There may be many maximals. A maximal need not
be best on any one criterion. For example, Uma does
not have the most stars, is not the closest to the beach,
and is not the least expensive. Rather, it represents a
good balance of the criteria.

2.2 An Algorithm

To find the maximum value from an unordered list of
values can be, of course, accomplished in a single pass
over the list with n − 1 comparisons. If it is a list
of records (“vectors”) instead and one is to find each
record that has the maximum value with respect to a
given field (say, val), then the problem is complicated
only slightly. Records may share the same value on
val, so there may be ties for the maximum. In this
case, it would suffice to sweep the list twice: the first
time to find the maximum val; and the second time
to collect the records with that val. This is, of course,
just the maximum-vector problem with one dimension
(k = 1).

For the multi-dimensional maximum-vector prob-
lem (k > 1), should it be much harder? Let Ln

(~t0, . . . ,~tn−1) be the list of vectors. Let ~ti ≻ ~tj de-

note that ~ti ties or is higher than ~tj on each of the k
components, and it is strictly higher on at least one;
that is, that ~ti dominates ~tj .

Essentially, the same basic strategy can be made to
work. A paraphrase of the Best algorithm from [17, 33]
(and discussed in [32]) is shown in Figure 3. In a pass
over the list, one can find a maximal. In subsequent
passes over the list, additional maximals are found.
On each pass, any vector found to be dominated by

the current maximal-so-far (~b) is eliminated from the
list. The second foreach loop is necessary after the

final maximal for the pass was found (~b) to clean up by
removing any vector dominated by the final maximal.
(One need only check through the list up to the point

when the final maximal was stored in ~b.)

while (L is not empty)
~b = shift(L) // Get the first.

foreach ~t in L // Find a max.

if (~b ≻ ~t)
remove ~t from L

else if (~t ≻ ~b)
remove ~t from L
~b := ~t

report ~b
foreach ~t in L // Clean up.

if (~b.rank < ~t.rank and ~b ≻ ~t)
remove ~t from L

else if (~b.rank > ~t.rank)
break

Figure 3: The Best algorithm.

Given m maximals in the list, we know the while
loop will iterate exactly m times, finding a new max-
imal each time. After m iterations, the list L will be
empty.

One way to define best, average, and worst-case is
based on how many maximals (m) there are. Thus,
in best-case, there is just a single maximal (so one
maximum). Best will make at most two full passes
of L and make O(n) number of vector comparisons.
Each vector comparison involves k unit comparisons
to compare the components, so we say this is O(kn)
amount of work.

In worst-case, every vector is a maximal (m = n).
No vectors are eliminated from L; one is removed as a
maximal in each pass. Therefore, the worst-case run-
ning time for Best is O(kn2).

We know then a ceiling on the average-case running
time for Best is O(kmn), using “m” in the bound. We
could be more specific if we knew what the value m
is—that is, how many maximals are to be expected—
on average. (We do know this, and this is discussed in
§2.4.) Furthermore, this is quite likely a loose ceiling
since many vectors may be eliminated from L on each
pass. A floor on Best’s running time is O(km2), since,
in the least, each maximal is compared against every
other maximal.

To determine how good then Best is—and how good
the other maximal-vector algorithms are, as well—in
average-case, we need to define a reasonable model un-
der which to measure best, average, and worst-case.
We do this in §2.4. In the next section, we con-
sider other desired criteria, besides just runtime per-
formance, by which the algorithms might be judged.

2.3 Criteria for a Good Algorithm

Of course, runtime performance is of primary impor-
tance. A runtime of O(n2) is untenable for large
data sets. In database systems, O(nlgn) is considered
an expensive operation, such as external sort. Some
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maximal-vector algorithms have been shown to have
O(n), linear, average-case performance. This should
be our target.3

We also want an external algorithm that can handle
input sets that are too large for main memory. An ex-
ternal algorithm must be I/O conscious. That is, the
algorithm should be well behaved in how many I/O’s
are spent, in addition to the CPU (computational)
load. The latter is measured, in part, by asymptotic
runtime analyses. In this work, we focus on the com-
putational load. We do not model formally I/O expen-
diture. However, we do pay careful attention to which
strategies are amenable to good I/O performance.

There are additional criteria by which we might
judge maximal-vector algorithms. In [28], a useful cat-
egorization of existing skyline algorithms is presented
(which follows on the work in [21, 24]). They use the
criteria enumerated below to characterize the behavior
and applicability of the algorithms. These are prop-
erties that they and we would like a maximal-vector
algorithm to have.

1. progressiveness. The first results should be re-
turned almost instantly, and the output size
should gradually increase.

2. absence of false hits. The output should contain
only the skyline points (maximals).

3. absence of temporary false hits. The algorithm
should not discover temporary “skyline” points
(“maximals”) that will be later discarded.

4. fairness. The algorithm should not favor points
that are particularly good on one dimension (but
not necessarily others).

5. incorporation of preference. It should be possible
to specify an order by which the skyline points
(maximals) are reported.

6. universality. The algorithm should be applicable
to any data-set distribution and dimensionality.

Likewise, we can employ these as design criteria.

2.4 Assumptions for Analysis

Performance of maximal-vector algorithms depends
on the number of maximals (m). We shall consider
average-case performance based on the expected value
of the number of maximals (m̂). To establish an ex-
pected value of m, we shall need to make certain as-
sumptions about the input set. First, let us consider
when a set of points is normalized.
Definition 1 A set of points is normal if the values
of the points along any given dimension fall uniformly
along the open interval (0, 1). (This is visualized in
Figure 4 for k = 3.)

If a set of points is not normal, it can be normal-
ized into a normal set that is rank-equivalent (and so

3Sub-linear performance would be even better. However, this
is not possible for a generic algorithm that requires no extensive
pre-processing or data-structures. Therefore, in the least, every
vector will need to be scanned.

Figure 4: A normalized 3-d set.

has the same maximals). A procedure for this would
be as follows. For each dimension di, find the ordinal
rank—as by sorting—of each point, 0, . . . , Vi − 1. Vi

represents the number of distinct values on dimension
i (di) over the points. Rank 0 is assigned for the low-
est value on di, and so forth. For each point in the
normalized set, given its rank on di is j, assign it the
value (j + 1)/(Vi + 1).

We shall refer to the normalized set of points as the
set of points transformed in this way.

Definition 2 Consider the following properties of a
set of points.

a. independence. The values of the normalized set
of points over a single dimension are statistically
independent of the values along any other dimen-
sion.

b. sparseness (distinct values). Points (mostly) have
distinct values along any dimension (that is, there
are not many repeated values).

c. uniformity. The values of the points along any
one dimension are uniformly distributed.

Collectively, the properties of independence and
sparseness are called component independence (CI)
[6]. Let us call collectively the three properties uniform
independence (UI).

Note that for a set of points that has CI, the nor-
malized set of points has UI. Additionally, assume un-
der uniformity that any value is on the interval (0, 1).4

Thus, UI implies a normal set.

It is important to note that independence is defined
with respect to the normalized set. Rank correlation
is the measure of linear correlation between two lists
(“dimensions”) of values that have been replaced by
their ordinal ranks (as in the normalized set). Thus,
independence states that each pair of dimensions has
a rank correlation of zero. It is interesting to note that
an un-normalized set may have apparent non-zero lin-
ear correlations even when all its pair-wise rank cor-
relations are zero (and thus be independent by our
definition).

4Uniformity itself does not assure the values on a given di-
mension are on (0, 1). However, mapping the values onto (0, 1)
is inexpensive. Knowing the maximum and minimum values of
the points for each dimension is sufficient to make this mapping.
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In many cases, we only need to assume CI, as the
property of uniformity will not be necessary for the
result. In other cases, we need further to assume that
the set is normalized (thus additionally assume unifor-
mity). We must note that if the data must be actually
transformed into a normalized set, this transformation
is not computationally insignificant.

Under CI, the expected value of the number of
maximals—denote this by m̂—is known [9, 19]: m̂ =
Hk−1,n, where Hk,n is the k-th order harmonic of n. Let
H0,n = 1, for n > 0, and Hk,n be inductively defined

as Hk,n =

n∑

i=1

Hk−1,i

i
, for k > 1. Hk,n ≈ Hk

1,n/k ! ≈

((ln n) + γ)k/k !.

For best-case, assume that there is a total ordering
of the points, ~t0, . . . ,~tn−1, such that any ~ti dominates
all ~tj , for i < j. Thus, in best-case, m = 1 (the one

point being ~t0).
5

We are now equipped to review the proposed algo-
rithms for finding the maximal vectors, and to analyze
their asymptotic runtime complexities (O’s). Not all
of the O(n) average cases can be considered equivalent
without factoring in the impact of the dimensionality
k.

3 Algorithms and Analyses

In §3.1, we make our first pass over the algorithms, de-
scribe the algorithms, show their best and worst-case
runtimes, and discuss known average cases. In §3.2, we
return to the divide-and-conquer algorithms to prove
their average-case runtimes with k considered. In §3.3,
we do likewise for the skyline algorithms. In §3.4, we
introduce a new algorithm, LESS, that improves on the
previous. In §3.5, we consider issues and optimization
opportunities for LESS and the skyline algorithms. In
§3.6, we discuss the extent to which the assumptions
from §2.4 can be relaxed.

3.1 The Algorithms

The main (generic) algorithms that have been pro-
posed for maximal vectors are listed in Figure 5. We
have given our own names to the algorithms (not nec-
essarily the same names as used in the original pa-
pers) for the sake of discussion. For each, whether
the algorithm was designed to be external is indicated,
and the known best, average, and worst-case runtime
analyses—with respect to CI or UI and our model for
average case from §2.4—are shown. For each runtime
analysis, it is indicated where the analysis appears.
For each marked with ‘§’, it follows readily from the

5We consider a total order so that, for any subset of the
points, there is just one maximal with respect to that subset.
This is necessary for discussing the divide-and-conquer-based
algorithms.

discussion of the algorithm in that section. The rest
are proved in the indicated theorems.6

The first group consists of divide-and-conquer-
based algorithms. DD&C (double divide and conquer)
[25], LD&C (linear divide and conquer) [6], and FLET
(fast linear expected time) [5] are “theoretical” algo-
rithms that were proposed to establish the best bounds
possible on the maximal-vector problem. No attention
was paid in this work to making the algorithms exter-
nal. Their initial asymptotic analyses make them look
attractive, however.

DD&C does divide-and-conquer over both the data
(n) and the dimensions (k). First, the input set is
sorted in k ways, once for each dimension. Then, the
sorted set is then split in half along one of the dimen-
sions, say dk−1, with respect to the the sorted order
over dk−1. This is recursively repeated until the result-
ing set is below threshold in size (say, a single point).
At the bottom of this recursive divide, each set (one
point) consists of just maximals with respect to that
set. Next, these (locally) maximal sets are merged.
On each merge, we need to eliminate any point that
is not maximal with respect to the unioned set. Con-
sider merging sets A and B. Let all the maximals in A
have a higher value on dimension dk−1 than those in
B (given the original set was divided over the sorted
list of points with respect to dimension dk−1). The
maximals of A∪B are determined by applying DD&C,
but now over dimensions d0, . . . , dk−2, so with reduced
dimensionality.7

Once the dimensionality is three, an efficient
special-case algorithm can be applied. Thus, in worst-
case, O(nlg k−2n) steps are taken. Thus, DD&C es-
tablishes that the maximal-vector problem is, in fact,
o(n2). In the best-case, the double-divide-and-conquer
is inexpensive since each maximal set only has a single
point. (It resolves to O(n).) However, DD&C needs
to sort the data by each dimension initially, and this
costs O(knlgn). We establish DD&C’s average-case
performance in §3.2.

LD&C [6] improves on the average-case over DD&C.
Their analysis exploits the fact that they showed m to
be O(ln k−1n) average-case. LD&C does a basic divide-
and-conquer recursion first, randomly splitting the set
into two equal sets each time. (The points have not
been sorted.) Once a set is below threshold size, the
maximals are found. To merge sets, the DD&C algo-
rithm is applied. This can be modeled by the recur-
rence

T (1) = 1

T (n) = 2T (n/2) + (ln k−1n)lg k−2(ln k−1n)

Note that (ln k−1n)lg k−2(ln k−1n) is o(n). Therefore,

6Some of the theorems are relatively straightforward, but we
put them in for clarity.

7All points in A are marked so none will be thrown away.
Note that only points in B can be dominated by points in A,
since those in A are better along dimension dk−1.
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algorithm ext. best-case average-case worst-case

DD&C [25] no O(knlgn) §3.1 Ω(knlgn + (k − 1)k−3
n) Thm.11 O(nlg k−2

n) [25]

LD&C [6] no O(kn) §3.1 O(n), Ω((k − 1)k−2
n) [6], Thm. 10 O(nlg k−1

n) [6]

FLET [5] no O(kn) §3.1 O(kn) [5] O(nlg k−2
n) [5]

SD&C [8] – O(kn) Thm. 3 Ω(
√

k 22k
n) Thm. 9 O(kn2) Thm. 4

BNL [8] yes O(kn) Thm. 5 O(kn) Thm. 12 O(kn2) Thm. 6

Best [17, 33] no O(kn) §2.2 O(kn) Thm. 15 O(kn2) §2.2
SFS [15, 16] yes O(nlgn + kn) Thm. 7 O(nlg n + kn) Thm. 17, 19 O(kn2) Thm. 8

LESS – yes O(kn) Thm. 21 O(kn) Thm. 20 O(kn2) Thm. 22

Figure 5: The generic maximal vector algorithms.

LD&C is average-case linear, O(n) [6].

In best case, each time LD&C calls DD&C to merge
to maximal sets, each maximal set contains a single
point. Only one of the two points survives in the re-
sulting maximal set. This requires that DD&C recurse
to the bottom of its dimensional divide, which is k
deep, to determine the winning point. O(n) merges
are then done at a cost of O(k) steps each. Thus,
LD&C’s average-case running time is, at least, Ω(kn).
(In §3.2, we establish that, in fact, it is far worse.)
In worst case, the set has been recursively divided an
extra time, so LD&C is lgn times worse than DD&C.

FLET [5] takes a rather different approach to im-
proving on DD&C’s average-case. Under UI,8 a virtual
point x—not necessarily an actual point in the set—is
determined so that the probability that no point from
the set dominates it is less than 1/n. The set of points
is then scanned, and any point that is dominated by x
is eliminated. It is shown that the number of points x
will dominate, on average, converges on n in the limit,
and the number it does not is o(n). It is also tracked
while scanning the set whether any point is found that
dominates x. If some point did dominate x, it does not
matter that the points that x dominates were thrown
away. Those eliminated points are dominated by a real
point from the set anyway. DD&C is then applied to
the o(n) remaining points, for a O(kn) average-case
running time. This happens at least (n − 1)/n frac-
tion of trials. In the case no point was seen to dom-
inate x, which should occur less than 1/n fraction of
trials, DD&C is applied to the whole set. However,
DD&C’s O(nlg k−2n) running time in this case is amor-

tized by 1/n, and so contributes O(lg k−2n), which is
o(n). Thus, the amortized, average-case running time
of FLET is O(kn). FLET is no worse asymptotically
than DD&C in worst case.

FLET’s average-case runtime is O(kn) because FLET
compares O(n) number of points against point x. Each
comparison involves comparing all k components of the
two points, and so is k steps. DD&C and LD&C never
compare two points directly on all k dimensions since

8For the analysis of FLET, we need to make the additional
assumption of uniformity from Def. 2.

they do divide-and-conquer also over the dimensions.
In [6] and [25], DD&C and LD&C were analyzed with
respect to a fixed k. We are interested in how k affects
their performance, though.

The second group—the skyline group—consists of
external algorithms designed for skyline queries. Sky-
line queries were introduced in [8], along with two gen-
eral algorithms proposed for computing the skyline in
the context of a relational query engine.

The first general algorithm in [8] is SD&C, single
divide-and-conquer. It is a divide-and-conquer algo-
rithm similar to DD&C and LD&C. It recursively di-
vides the data set. Unlike LD&C, DD&C is not called
to merge the resulting maximal sets. A divide-and-
conquer is not performed over the dimensions. Con-
sider two maximal sets A and B. SD&C merges them
by comparing each point in A against each point in B,
and vice versa, to eliminate any point in A dominated
by a point in B, and vice versa, to result in just the
maximals with respect to A∪ B.
Theorem 3 Under CI (Def. 2) and the model in §2.4,
SD&C has a best-case runtime of O(kn). [20]
Proof 3 Let mA denote the number of points in A
(which are maximal with respect to A). Let mA\B de-
note the number of points in A that are maximal with
respect to A∪B. Likewise, define mB and mB\A in the
same way with respect to B. An upper bound on the
cost of merging A and B is kmAmB and a lower bound
is kmA\BmB\A. In best case, SD&C is O(kn). 2

For a fixed k, average case is O(n). (We shall con-
sider more closely the impact of k on the average case
in §3.2.)
Theorem 4 Under CI (Def. 2), SD&C has a worst-
case runtime of O(kn2). [20]
Proof 4 The recurrence for SD&C under worst case
is

T (1) = 1
T (n) = 2T (n/2) + (n/2)2

This is O(n2) number of comparisons. Each com-
parison under SD&C costs k steps, so the runtime is
O(kn2). 2

No provisions were made to make SD&C particu-
larly well behaved relationally, although it is clearly
more amenable to use as an external algorithm than
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DD&C (and hence, LD&C and, to an extent, FLET too,
as they rely on DD&C). The divide stage of SD&C is
accomplished trivially by bookkeeping. In the merge
stage, two files, say A and B, are read into main mem-
ory, and their points pairwise compared. The result
is written out. As long as the two input files fit in
main memory, this works well. At the point at which
the two files are too large, it is much less efficient. A
block-nested loops strategy is employed to compare all
A’s points against all of B’s, and vice versa.

The second algorithm proposed in [8] is BNL, block
nested loops. This is essentially a generalization of the
intuitive approach, Best, discussed in §2.2, and works
remarkably well.9 A window is allocated in main mem-
ory for collecting points (tuples). The input file is
scanned. Each point from the input stream is com-
pared against the window’s points. If it is dominated
by any of them, it is eliminated. Otherwise, any win-
dow points dominated by the new point are removed,
and the new point itself is added to the window. Best
is essentially BNL then with a window size of one tuple.

At some stage, the window may become full. Once
this happens, the rest of the input file is processed dif-
ferently. As before, if a new point is dominated by a
window point, it is eliminated. Otherwise, dominated
window points are still eliminated as before. If the
new point is not dominated and no space was freed
in the window, it is written to an overflow file. The
creation of an overflow file means that another pass
will be needed to process the overflow points. Thus,
BNL is a multi-pass algorithm. On a subsequent pass,
the previous overflow file is read as the input. Appro-
priate bookkeeping tracks when a window point has
gone “full cycle”; that is, it has been compared against
all currently surviving points.10 Such window points
can be removed from the window and written out, or
pipelined along, as maximals.

BNL differs substantially from the divide-and-
conquer algorithms. As points are continuously re-
placed in the window, those in the window are a sub-
set of the maximals with respect to the points seen
so far (modulo those written to overflow). These
“maximals”—maximal with respect to the list seen
so far—are much more effective at eliminating other
points than are the local maximals computed at each
recursive stage in divide-and-conquer.
Theorem 5 Under CI (Def. 2) and the model in §2.4,
BNL has a best-case runtime of O(kn). [20]
Proof 5 BNL’s window will only ever contain one
point. Each new point off the stream will either re-
place it or be eliminated by it. Thus BNL will only
require one pass. 2

Let w be the size limit of the window in number of
points.

9However, BNL [8] precedes Best [17, 33] in the literature.
10This can be done as we did in the Best algorithm in Figure 3

by assigning initially each point (tuple) a rank, its initial position
in the list.

Theorem 6 Under CI (Def. 2), BNL has a worst-case
runtime of O(kn2). [20]
Proof 6 In worst case, every point will need to be
compared against every other point for O(kn2). This
requires ⌈n/w⌉ passes. Each subsequent overflow file
is smaller by w points. So this requires writing n2/2w
points and reading n2/2w points. The size of w is fixed.
In addition to requiring O(n2) I/O’s, every record will
need to be compared against every other record. Every
record is added to the window; none is ever removed.
Each comparison costs k steps. So the work of the
comparisons is O(kn2). 2

In [15], SFS, sort filter skyline, is presented. It dif-
fers from BNL in that the data set is topologically
sorted initially. A common nested sort over the di-
mensions d0, . . . , dk−1, for instance, would suffice. In
[16], the utility of sorting for finding maximals and
SFS are considered in greater depth. Processing the
sorted data stream has the advantage that no point in
the stream can be dominated by any point that comes
after it. In [15, 16], sorting the records by volume

descending,
∏k

i=1
~t [i];11 (or, equivalently, by entropy

descending,
∑

k

i=1 ln~t [i],12 with the guarantee that the

values ~t [i] > 0 for all records t and dimensions i) is
advocated. This has the advantage of tending to push
records that dominate many records towards the be-
ginning of the stream.

Under UI, the number of records a given record
dominates is proportional to its volume. Thus, by
placing records with higher volumes earlier in the
stream, non-maximal records are eliminated in fewer
comparisons, on average. The importance of this effect
is emphasized in the discussion of LESS in §3.4 and in
the proof that LESS is O(kn) (Thm. 20).

SFS maintains a main-memory window as does
BNL. However, in SFS, it is impossible for a point off
the stream to dominate any of the points already in the
window. Any point is known to be maximal at the time
it is placed in the window. The window’s points are
used to eliminate stream points. Any stream point not
eliminated is itself added to the window. As in BNL,
once the window becomes full, surviving stream points
must be written to an overflow file. At the end of the
input stream, if an overflow file was opened, another
pass is required. Unlike BNL, the window can be emp-
tied at the beginning of each pass, since all points have
been compared against those maximals. The overflow
file is then used as the input stream. Therefore, SFS
has less bookkeeping overhead than BNL since, when
a point is added to the window, it is already known
that the point is maximal. This also means that SFS
is progressive: at the time a point is added to the win-

11In this case, as in the discussion about FLET, we are assum-
ing a normalized set (Def. 1, and so, additionally, the uniformity
assumption (Def. 2.

12Keeping entropy instead of volume helps to avoid register
overflow or underflow.



August 2006 Maximal Vector—Godfrey, Shipley, & Gryz—Submission: VLDB Journal 2006 p. 8 of 22

dow, it can also be shipped as a maximal to the next
operation.
Theorem 7 Under CI (Def. 2) and the model in §2.4,
SFS has a best-case runtime of O(kn + nlgn). [20]
Proof 7 Under our best-case scenario, there is one
maximal point. This point must have the largest vol-
ume. Thus it will be the first point in SFS’s sorted
stream, and the only point to be ever added to the win-
dow. This point will eliminate all others in one pass.
So SFS is sorting plus O(kn) in best-case, and works
in one filtering pass. 2

Theorem 8 Under CI (Def. 2), SFS has a worst-case
runtime of O(kn2). [20]
Proof 8 In the worst-case, all records are maximal.
Each record will be placed in the skyline window af-
ter being compared against the records currently there.
This results in n(n − 1)/2 comparisons, each taking k
steps. The sorting phase is O(nlgn) again. 2

In the experiments in [15], SFS—including SFS’s
necessary sorting step—performed better I/O-wise,
and ran in better time, than BNL. The experiments
in [15] were run over million-tuple data sets and with
dimensions of five to seven. In truth, however, we
and others have found that it is quite difficult to com-
pare SFS, BNL, and other maximal vector algorithms
reliably, either experimentally or analytically. Their
performance depends greatly on the implementation
details of the algorithms, on the size of the input (the
number of records, n, and the dimensionality, k), on
the nature of the data-set (data distributions, stream
order, and so forth), and on runtime parameters (for
instance, buffer pool allocation).

In this paper, BNL fares much better experimentally
(shown in §3.4.2), as the data-sets used were larger
and, we believe, we have a more efficient implementa-
tion. In this case, the sort step dominates SFS’s cost.
In §3.3, however, we demonstrate analytically that SFS
algorithm has significant advantages over BNL in re-
ducing the number of comparisons needed. So, on
the one hand, SFS may make much fewer comparisons
than BNL, since SFS compares only against maximals
but BNL often compares against non-maximals. On
the other hand, SFS does require sorting, and this cost
can dominate its performance.

3.2 The Case against Divide and Conquer

Divide-and-conquer algorithms for maximal vectors
face two problems:

1. it is not evident how to make an efficient external
version; and,

2. although the asymptotic complexity with respect
to n is good, the multiplicative “constant”—and
the effect of the dimensionality k—may be bad.

Since there are algorithms with better average-case
runtimes, we would not consider DD&C. Furthermore,
devising an effective external version for it seems im-
possible. In DD&C, the data set is sorted first in

k ways, once for each dimension. The sorted orders
could be implemented in main memory with one node
per point and a linked list through the nodes for each
dimension. During the merge phase, DD&C does not
re-sort the data points; rather, the sorted orders are
maintained. In a linked-list implementation, it is easy
to see how this could be done. It does not look possible
to do this efficiently as an external algorithm, however.

LD&C calls DD&C repeatedly. Thus, for the same
reasons, it does not seem possible to make an effec-
tive external version of LD&C. FLET calls DD&C just
once. Still, since the number of points that remain
after FLET’s initial scan and elimination could be sig-
nificant, FLET would also be hard to externalize.

SD&C was introduced in [8] as a viable external
divide-and-conquer for computing maximal vectors.
As we argued above, and as is argued in [27], SD&C is
still far from ideal as an external algorithm. Further-
more, its runtime performance is far from what one
might expect.

Each merge that SD&C performs of sets, say, A
and B, every maximal with respect to A∪B that sur-
vives from A must have been compared against every
maximal that survives from B, and vice-versa. This
is a floor on the number of comparisons done by the
merge. We know the number of maximals in aver-
age case under CI. Thus we can model SD&C’s cost
via a recurrence. The expected number of maximals
out of n points of k dimensions under CI is Hk−1,n;

(ln k−1n)/(k − 1)! converges on this from below, so we
can use this in a floor analysis.

Theorem 9 Under CI (Def. 2), SD&C has average-

case runtime of Ω(
√

k 22kn). [20]

Proof 9 Let n = 2q for some positive integer q, with-
out loss of generality. Consider the function T as fol-
lows.

T (1) = 1

T (n) = 2T (n/2) + (1
2 (ln k−1n)/(k − 1)!)2

c1 = 1/(4(k− 1)!2) D = 2k − 2

= 2T (n/2) + c1ln
Dn

= c1

q∑

i=1

2i(ln n − ln 2i)D

c2 = c1/(lg 2e)
D

= c2

q∑

i=1

2i(lg 2n − lg 22
i)D

= c2

q∑

i=1

2i(q − i)D = c2

q−1∑

i=0

2q−iiD

j∑

i=0

2j−iiD ≈ (lg 2e)
D−1D! 2j+1

≈ c2(lg 2e)
D−1D! 2q = 1

4 (ln 2)
(
2k−2
k−1

)
n(

2j
j

)
≈ 22j/

√
πj (by Stirling’s approximation)

≈ ln 2√
π(k−1)

22k−4n



August 2006 Maximal Vector—Godfrey, Shipley, & Gryz—Submission: VLDB Journal 2006 p. 9 of 22

0 2 4 6 8 10 12 14 16 18#dimensions 0
10

20
30

40
50

60
70

80
90

100

lg2(#vectors)

1
100000
1e+10
1e+15
1e+20
1e+25
1e+30

ratio

Figure 6: Behavior of LD&C.

This counts the number of comparisons. Each compar-
ison costs k steps.

For each merge step, we assume that the expected
value of maximals survive, and that exactly half came
from each of the two input sets. In truth, fewer might
come from A and more from B sometimes. So the
square of an even split is an over-estimate, given vari-
ance of resulting set sizes. In [4], it is established that
the variance of the number of maximals under CI con-
verges on Hk−1,n. Thus in the limit of n, runtime of
SD&C will converge up to an asymptotic above the re-
currence. 2

This is bad news. SFS requires n comparisons in the
limit of n, for any fixed dimensionality k. SD&C, how-
ever, requires on the order of (22k/

√
k)×n comparisons

in n’s limit!

In [8], it was advocated that SD&C is more appro-
priate for larger k (say, for k > 7) than BNL, and is
the preferred solution for data sets with large k. Our
analysis conclusively shows the opposite: SD&C will
perform increasingly worse for larger k and with larger
n. We believe their observation was an artifact of the
experiments in [8]. The data sets they used were only
100,000 points, and up to 10 dimensions. Even if the
data sets used were a million points instead (and 10
dimensions), SD&C would have performed proportion-
ally significantly much worse.

We can model LD&C’s behavior similarly. For a
merge (of A and B) in LD&C, it calls DD&C. Since
A and B are maximal sets, most point will survive
the merge. The cost of the call to DD&C is bounded
below by its worst-case runtime over the number of
points that survive. The double recursion must run
to complete depth for these. So if m points sur-
vive the merge, the cost is mlg k−2

2 m steps. As in
the proof of Thm. 9 for SD&C, we can approximate
the expected number of maximals from below. Let
mk,n = (ln k−1(n + γ))/(k − 1)!. The recurrence is

T (1) = 1

T (n) = 2T (n/2) + max(mk,nlg k−2
2 mk,n, 1)

We plot this in Figure 6.13 This shows the ratio
of the number of comparisons over n. The recurrence
asymptotically converges to a constant value for any
given k. It is startling to observe that the k-overhead of
LD&C appears to be worse than that of SD&C! The ex-
planation is that mk,ilg

k−2
2 mk,i is larger initially than

is m2
k,i, for the small i sizes of data sets encountered

near the bottom of the divide-and-conquer. (Of course

m2
k,i ≫ mk,ilg

k−2
2 mk,i in i’s limit; or, in other words,

as i approaches n each subsequent merge level, for very
large n.) However, it is those initial merges near the
bottom of the divide-and-conquer that contribute most
to the cost overall, since there are many more pairs of
sets to merge at those levels. Next, we prove a lower
bound on LD&C’s average case.
Theorem 10 Under CI (Def. 2), LD&C has average-
case runtime of Ω((k − 1)k−2n). [20]
Proof 10 Let n = 2q for some positive integer q, with-
out loss of generality.
mk,nlg k−2

2 mk,n

≈ ((ln k−1n)/(k − 1)!)lg 2(((ln
k−1n)/(k − 1)!))k−2

c1 = 1/(k − 1)!

= c1(ln 2)k−1(lg 2n)k−1

· (lg 2((ln 2)k−1(lg 2n)k−1) − lg 2(k − 1)!)k−2

c2 = ln k−12

> c1c2(lg
k−1
2 n)

· ((k − 1)((lg 2q) + (ln 2) − (lg 2(k − 1)))k−2

when lg 2q > lg 2(k − 1)

> c1c2(lg
k−1
2 n)(k − 1)k−2

when lg 2q − lg 2(k − 1) ≥ 1
thus q ≥ 2(k − 1)

Let l = 2(k − 1). Consider the function T as follows.
T (n) = 2T (n/2) + max(mk,nlg k−2

2 mk,n, 1)

> c1c2(k − 1)k−2

q∑

i=l

2q−iik−1

for n ≥ 2l

= c1c2(k − 1)k−22l

(q−l)∑

i=0

2(q−l)−iik−1

≈ c1c2(k − 1)k−22l(lg k−1
2 e)(k − 1)!2(q−l)

= (k − 1)k−22q

= (k − 1)k−2n
T (n) is a strict lower bound on the number of com-
parisons that LD&C makes, in average case. We only
sum T (n) for n ≥ 2l and show T (n) > (k − 1)k−2n. 2

We can use the same reasoning to obtain an asymp-
totic lower bound on DD&C’s average-case runtime.
Theorem 11 Under CI (Def. 2), DD&C has an
average-case runtime of Ω(knlgn + (k − 1)k−3n). [20]
Proof 10 DD&C first does a divide and conquer over
the data on the first dimension. During a merge step

13The behavior near the dimensions axis is an artifact of our
log approximation of Hk−1,i, the expected number of maximals.

In computing the graph, mk,ilg
k−2

2
mk,i is rounded up to one

whenever it evaluates to less than one.
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of this divide-and-conquer, it recursively calls DD&C
to do the merge, but considering one dimension fewer.
The following recurrence provides a lower bound.

T (n) = 1

T (n) = 2T (n/2) + max(mk,nlg k−3
2 mk,n, 1)

By the same proof steps as in the proof for Thm. 10,
we can show T (n) > (k − 1)k−3n. Of course,
DD&C sorts the data along each dimension before
it commences divide-and-conquer. The sorting costs
Θ(knlgn). Thus, DD&C considered under CI has
average-case runtime of Ω(knlgn + (k − 1)k−3n). 2

Should one even attempt to adapt a divide-and-
conquer approach to a high-performance, external al-
gorithm for maximal vectors? Divide-and-conquer is
quite elegant and efficient in other contexts. We have
already noted, however, that it is quite unclear how
one could externalize a divide-and-conquer approach
for maximal vectors effectively. Furthermore, we be-
lieve their average-case runtimes are so bad, in light of
the dimensionality k, that it would not be worthwhile.

Divide-and-conquer has high overhead with respect
to k because the ratio of the number of maximals to
the size of the set for a small set is much greater than
for a large set. Vectors are not eliminated quickly as
they are compared against local maximals. The scan-
based approaches such as BNL and SFS find global
maximals—maximals with respect to the entire set—
early, and so eliminate non-maximals more quickly.

3.3 The Skyline Algorithms

In some respects, the skyline algorithms are simpler
than previous maximal-vector algorithms. They are
scan-based and so are more amenable to externaliz-
ing. Their worst-case runtimes are worse than most
of the divide-and-conquer algorithms; however, they
are no worse in any practical sense. (For example,
DD&C’s worst-case of knlg n + (k − 1)k−3n steps is
asymptotically better than, say, BNL’s kn2, but these
two functions only cross for a reasonable k at extreme
n.) How do the skyline algorithms perform in aver-
age case, though? Surprisingly, we have learned that
the skyline algorithms are significantly better than the
previous algorithms. We prove that here.

In other respects, the skyline algorithms are more
complex than their earlier counterparts. There are
more design choices involved, and these choices can
have dramatic effects on runtime performance. Fur-
thermore, it has been—and, in many cases, remains—
quite opaque as to why these lead to the behaviors
they do.

For BNL and SFS (and later, LESS), the following
policies must be determined.

• window management policy: How should window
points (tuples) be organized in the window? In
what order are they to be compared against a can-
didate from the stream?

• window size (w): This is likely a runtime param-
eter that a query processor would set. How does
window size affect the runtime performance?

For SFS (and later, LESS), there is an additional policy
to decide.
• stream order: How should the stream be sorted

prior to processing? How does the choice of
stream order affect performance?

To consider BNL’s average-case runtime, let us sim-
plify these parameters. For now, we consider that the
window size is effectively unbounded; that is, it is suffi-
ciently big (w ≫ m) that a second pass is not required.
For BNL’s window management policy, when a tuple
is added to the window, it is appended at the end of
the window list. When a candidate tuple is compared
against the window, it is compared one-by-one against
the window list in order. Call this window policy ap-
pend.

Let the input stream—or likewise called list or
table—Ln consist of ~t0, . . .~tn−1 so ordered. Define the
partial list Li as ~t0, . . .~ti−1. Define ∇i, the interme-
diate skyline set i, as the the set of maximals with
respect to Li. Note that not all tuples in ∇i are max-
imals with respect to Ln; some tuple ~tj for j ≥ i may

dominate some of the tuples in ∇i. In BNL, each ~ti is
considered, in turn. Let us call the time at which ~ti is
considered stage i.

At the beginning of stage i, the window must hold
exactly the tuples from ∇i.

14 By the append window
policy, these will be ordered in the window in the same
order that they appeared in the stream. Thus, ~ti is
compared against the tuples in ∇i. The expected value
of the size of ∇i is m̂k,i = Hk−1,i. The number of ∇i

tuples that BNL will compare ~ti against depends upon
how many of the ∇i tuples dominate ~ti. If all do, then
the first comparison suffices to eliminate ~ti. If none
does, ~ti will be compared against all the ∇i tuples (and
then itself be appended to the window, and be thus
in ∇i+1). If only one ∇i tuple dominates ~ti, during

the walk through the window, BNL would compare ~ti
against (|∇i| + 1)/2 tuples, on average. (The window
is randomly ordered because the stream is randomly
ordered.) And so forth.

How many of the (local) maximals from ∇i dom-

inate ~ti depends on ~ti’s coordinates. Let function
mttfk—for mean time to failure—measure how many
comparisons are made for some ~ti against ∇i. We want

to determine the expected value of this, m̂ttfk. The
function mttfk takes as arguments the k coordinates
of a tuple (e.g., ~ti) and an argument j for how many
points have been previously seen (e.g., i).

For the argument’s sake, assume the point set Ln is
normalized. Under CI, ~ti has a uniform probability of
falling anywhere in (0, 1)k, the k-cube. Therefore, the
expected value of the number of comparisons made at

14For the first stage, let ∇0 = {}.
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Figure 7: The dominating box of ~ti.

stage i is

∫ 1

xk−1=0

. . .

∫ 1

x0=0

m̂ttfk(x0, . . . , xk−1, i)dx0 . . . dxk−1

We can estimate a ceiling on m̂ttfk(x0, . . . , xk−1, i).

Given ~ti’s coordinates as x0, . . . , xk−1, we know that
of the preceding i points, (1 − x0) · . . . · (1 − xk−1) · i
of them are expected to fall into the “box” (the k-sub-

cube) of space that dominates ~ti. (This is visualized
in Figure 7 for k = 2.) The maximals of these points
will be found in ∇i, of course, but ∇i contains addi-
tionally other maximals that do not dominate ~ti. By
CI, we expect there to be Hk−1,(1−x0)·...·(1−xk−1)·(i) of
these. The ratio Hk−1,(1−x0)·...·(1−xk−1)·i/Hk−1,i then is
the expected portion of maximals in ∇i that dominate
~ti (of known coordinates).

The inverse ratio then

Hk−1,i

Hk−1,(1−x0)·...·(1−xk−1)·i

is the expected value of how many ∇i BNL would com-
pare ~ti against, if it selected tuples randomly from ∇i

with replacement (and, in this case, with the proviso
that some ∇i tuple dominates ~ti). This then is a strict
upper-bound on the expected value without replace-
ment. BNL under the append window policy will walk
over the window tuples in order. However, since the
(local) maximals in ∇i are randomly ordered, this is
the same as random selection without replacement.

We can approximate H by ln . Let us define lh
though as

lhx =

{
γ if x < 1
(lnx) + γ otherwise

This is better behaved for 0 ≤ x < 1, and adds in γ
to approximate more closely H. We now can approxi-
mate Hk−1,i/Hk−1,(1−x0)·...·(1−xk−1)·i by the strict ceil-

ing lh k−1i/lh k−1(1 − x0) · . . . · (1 − xk−1) · i. A ceiling
on the expected value of the number of comparisons
for ~ti of unknown coordinates is thus

∫ 1

xk−1=0

. . .

∫ 1

x0=0

lh k−1i

lh k−1x0 . . . xk−1i
dx0 . . . dxk−1

Summing this for each stage provides a bound on the
average number of comparisons made by BNL:

n∑

i=1

∫ 1

xk−1=0

. . .

∫ 1

x0=0

lh k−1i

lh k−1x0 . . . xk−1i
dx0 . . . dxk−1

Thus, a ceiling on the number of comparisons made
per vector, on average, is

∫ 1

z=0

∫ 1

xk−1=0

. . .

∫ 1

x0=0

lh k−1zn

lh k−1x0 . . . xk−1zn
dx0 . . . dxk−1dz

Theorem 12 Under CI, BNL with an unbounded win-
dow and a window policy of append, in average-case, in
the limit of n, makes one comparison per input vector.
This is an average-case runtime of O(kn).
Proof 12 It is easy to show that

lim
n→∞

∫ 1

z=0

∫ 1

xk−1=0

. . .

∫ 1

x0=0

lh k−1zn

lh k−1x0 . . . xk−1zn
dx0 . . . dxk−1dz

= 1 2

This is a remarkable result. No maximal-vector al-
gorithm could do better than one comparison per vec-
tor! It may seem, at this point, there is no possibil-
ity to improve on this. However, there is. BNL does
not converge quickly on this ideal, so this asymptotic
result is somewhat misleading. The dimensionality k
does play a role, as it did with the divide-and-conquer
algorithms, even though, in this case, any effect of k
asymptotically vanishes in the extreme limit. For data
sets of realistic size and dimensionality, BNL has an
appreciable “multiplicative constant”, which we shall
discuss.

First though, we made assumptions for the above
analysis of BNL: append as the window management
policy; an unbounded window size; and that the in-
put stream is randomly ordered. Since append works
here, we could certainly choose it to be BNL’s window
policy. However, BNL would not be a useful external
algorithm if its main-memory requirement is dictated
by the size of its input. Is BNL still efficient if the
window size is not unbounded? Is BNL still efficient if
the input stream is ordered?

Let us consider BNL at the opposite extreme with
a window size of one (w = 1). This is effectively the
Best algorithm.15 First, we must recognize that Best
will not find the maximals in a random order, even
though the input list is randomly ordered.

15There is a small difference between Best as described in
Figure 3 and BNL with w = 1. BNL, once a maximal has gone
full cycle, will add the next tuple from the stream into the empty
window. Best, however, would commence at the beginning of the
stream (list) again.

This difference is unimportant, however, for analysis since we
assume that the stream is randomly ordered. The same tuples
are eliminated by both algorithms in a pass, so where in the
stream the next pass commences is immaterial for the average-
case analysis.
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Lemma 13 Under CI, in each pass, it is more prob-
able that Best finds a maximal with a higher volume
than one with a lower volume.
Proof 13 It can be shown that Best’s procedure will
arrive at a maximal with higher volume with higher
probability. (Rather, the chance that Best’s window
slot accrues a vector outside a smaller volumed maxi-
mal is greater, thus ruling it out as the ultimate selec-
tion.) 2

Lemma 14 A vector drawn randomly from a normal-
ized set of vectors is eliminated in fewer comparisons
against a list of the maximals that is correlated by vol-
ume descending—but not more strongly correlated with
the volume for any subset of r dimensions than with
any other subset of r dimensions, for r < k—on av-
erage, than against a list of the maximals randomly
ordered.
Proof 14 This can be shown to follow since the prob-
ability that the vector is eliminated in comparison to
a given maximal is proportional to the maximal’s vol-
ume. 2

Now we prove that Best has average-case runtime
of O(kn) under CI.
Theorem 15 Under CI, BNL with a window size of
one, and hence, Best, have an average-case runtime of
O(kn).
Proof 15 We prove this by induction.
property. Best—BNL with a window size of one—
makes the same number or fewer comparisons than
BNL-open—BNL with an unbounded window with the
append window policy—makes, on average.
base case. Consider an input of size one.
hypothesis. For some r > 1, assume the property for
lists of vectors randomly ordered under CI of length r
or fewer.
induction. Consider a randomly ordered list of size
r + 1 under CI, ~t0, . . . ,~tr. Consider ~tr. ∇r contains
all the maximals, excepting ~tr if it is a maximal.

BNL-open will compare against the maximals in
∇r in order—the same order as they appeared in the
stream, so random—until ~tr is eliminated, or is com-
pared against them all and found to be maximal.

Best compares ~tr against maximals (and only max-

imals, since ~tr is the last tuple) until ~tr is eliminated,
or ~tr is the selected maximal in some pass. The or-
der of comparisons is the order in which Best finds the
maximals, one per pass. This order is not random, but
correlated by volume descending, by Lem. 13.

By Lem. 14, Best then makes fewer comparisons
for ~tr, on average, than does BNL-open. By Thm. 12,
BNL-open is O(kn). Thus so is Best. 2

Given that BNL is well behaved if its window is
unbounded and if its window is bounded to just one,
does BNL remain well behaved for fixed window sizes
in between? We do not know, although we conjecture
it would still be O(kn) in average case for any window
size.

Conjecture 16 Under CI, BNL with any fixed win-
dow size (w ≥ 1) and using the append window policy
has an average-case runtime of O(kn).

The difficulty behind proving this is that it is now
quite hard to characterize what is in the window at
any given stage. Once the window becomes full, any
stream tuple that is incomparable with all the win-
dow tuples is written to an overflow file, since there
is no space to append it to the window. A stream tu-
ple that dominates some some window tuples, however,
will be added to the window, since its eliminations cre-
ate room. Furthermore, this means the window may
no longer be full (as the stream tuple may have elimi-
nated several window tuples), so the next incomparable
stream tuples can be added.

In fact, BNL is observed to be badly behaved with
respect to window size. One would expect that the
more resources that the algorithm is allocated—in this
case, more main memory—the better it would per-
form. However, the opposite is true. It has been shown
experimentally in [17] that Best makes far fewer com-
parisons than BNL (with an unbounded window). Dur-
ing our development of SFS [15],16 we found that BNL’s
performance worsened significantly as we increased its
window allocation. Of course, we know now that BNL
with an unbounded window (under the append pol-
icy) is O(kn), by Thm. 12. So while BNL with an un-
bounded window performs worse than Best, it can only
be worse by some constant factor. It would be inter-
esting to observe experimentally whether BNL under
certain fixed window sizes are seen to perform signifi-
cantly worse than BNL with an unbounded window.

While BNL does not need the input set to be sorted,
its good performance relies on the input set being ran-
domly ordered. Unfortunately, data is often ordered.
For instance, data in a database system is often or-
dered as it is usually indexed in various ways. It was
shown in [15] that, if the data set is already ordered in
some way, but not for the benefit of finding the maxi-
mals as in SFS, BNL can perform very badly. In fact, it
is easy to prove that under certain stream orders and
for a fixed window size, BNL would have O(knlgn)
average-case performance, or potentially worse.

Let us next consider SFS. The SFS algorithm con-
sists of two phases: in phase one, the input set is
sorted; and, in phase two, the sorted stream is fil-
tered for the maximals. Of course, SFS is immune
to any original ordering on the input since it sorts the
data itself. Let us sort the data as a nested sort on
dk−1, . . . , d0 descending. This is equivalent to what the
SQL statement order by dk−1 desc, . . ., d0 desc would
provide. Of course, since we are assuming sparseness—
and so there are no repeated values on dk−1—this is
equivalent to just order by dk−1 desc. We assume that

16The authors of this paper and of the SFS work [15]—Jan
Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang—
overlap.
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the window management strategy compares against
window tuples in a random order (random walk), and
we assume for now an unbounded window.

The bounds on mttf introduced for BNL are the
same here. When considering ~ti, we need to consider
the ratio of the number of maximals in the dominat-
ing space above ~ti over the number of maximals in the
window collected so far, ∇i. However, we note that
all the tuples that precede ~ti have a higher dk−1 value.
This reduces the degrees of freedom by one in the es-
timation formula for how many comparisons for ~ti are
expected:

∫ 1

xk−2=0

. . .

∫ 1

x0=0

lh k−1i

lh k−1x0 . . . xk−2i
dx0 . . . dxk−2

So the overall number of comparisons per vector SFS
is expected to make is bounded by

∫ 1

z=0

∫ 1

xk−2=0

. . .

∫ 1

x0=0

lh k−1zn

lh k−1x0 . . . xk−2zn
dx0 . . . dxk−2dz

We could not safely choose append as a window pol-
icy for this version of SFS as we did for BNL. It would
not perform well. The list of maximals (in the or-
der they are found) is not independent with respect
to the sort order of the stream. As the value on dk−1

decreases, the average of d0, . . . , dk−2 of the maximals
increases. The dimensions with respect to the maxi-
mal set are anti-correlated. This maximal list would
be correlated with that from least dominating to most.
(So a prepend policy in this case would, in fact, work
well.) Generally, an analysis of average-case perfor-
mance is made significantly more complex when we
must consider an “intelligent” window policy. Thus,
consider a random-walk policy: a candidate is com-
pared against window tuples in a random order. Then
it does not matter whether the tuples in the window
have an inherent order or not. In the case of BNL, the
append policy we used with it is effectively the same
as using a random-walk policy with it. In either case,
BNL would compare the candidate against window tu-
ples in a random order.

While SFS with the stream sorted by one of the di-
mensions reduces the degrees of freedom by one, the
estimated number of comparisons per vector is still
based on a dimensionality of k. An improvement on
the SFS algorithm in this case is to change the win-
dow strategy to eliminate tuples. Since we sorted on
dk−1, we only need to maintain the maximals with
respect to d0, . . . , dk−2 of the tuples added to the win-
dow. Thus, if a new maximal ~ti is added to the win-
dow, any maximals in the window that it dominates
with respect to d0, . . . , dk−2—so not considering dk−1—
can be removed. The expected number of compar-
isons made against stream tuple ~ti and the window is
now bounded by lh k−2zn/lh k−2x0 . . . xk−2zn instead

of lh k−1zn/lh k−1x0 . . . xk−2zn. So the expected num-
ber of comparisons per vector is bounded by

∫ 1

z=0

∫ 1

xk−1=0

. . .

∫ 1

x0=0

lh k−2zn

lh k−2x0 . . . xk−2zn
dx0 . . . dxk−2dz

This is precisely one dimension better than BNL. This
version of SFS can be considered as a variation of BNL
which sorts the data first along one dimension. The
advantages are a reduction of one in degrees of freedom
(k) and that whenever a tuple is added to the window,
it is already known to be maximal and can be reported.

We can safely choose append as the window pol-
icy this time for SFS with an elimination policy, as
we did for BNL. Under the assumptions of CI, the lo-
cal maximals with respect to d0, . . . , dk−2, up to any
given stage, are distributed randomly and uniformly
over the stream sorted on dk−1. Therefore, the order
they collect in the window is random.
Theorem 17 Under CI, SFS with an unbounded win-
dow size, sorting by one dimension descending, and
with append with elimination as the window policy,
has an average-case runtime of O(kn).
Proof 17 This follows from the proof for Thm. 12.
2

If we change the window policy for either BNL or
SFS, or we change the sort order for SFS, then a new
analysis may be needed. It is not guaranteed that
any variant of BNL or SFS will have O(kn) average-
case runtime performance. We must be careful in our
design choices.17

For SFS, consider ordering on a volume (or entropy)
measure as in [15, 16]. For the window policy, consider
the append policy, so the window is ordered by volume
also. The proof of Thm. 17 does not apply to this ver-
sion of SFS. For average-case analysis of SFS under
these assumptions, we need to know how many of the
maximal points dominate any given non-maximal. For
any maximal point, it is compared against every maxi-
mal point before it in stream. There are m(m−1)/2 of
these comparisons. For any non-maximal point, how
many maximals (points in the window) will it need to
be compared against before being eliminated?
Lemma 18 Under UI (Def. 2), in the limit of n, the
probability a non-maximal point is dominated by the
maximal point with the highest volume converges on
one. [20]
Proof 18 Assume UI. Let the values of the points be
distributed uniformly on (0, 1) on each dimension.

We draw on the proof of FLET’s average case run-
time in [5]. Consider the (virtual) point ~v with coor-
dinates ~v [i] = 1 − ((lnn)/n)1/k, for each i ∈ k. The
probability that no point from the data set dominates ~v
then is (1 − (ln n)/n)n, which is at most e−lnn = 1/n.

17Note that best-case and worst-case for SFS as discussed in
§3.1 are unaffected by the sort order (as long as the sort is a
valid topological sort).
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Figure 8: Number of comparisons per vector (k = 7).

The expected number of points dominated by ~v (and
hence, dominated by any point that dominates ~v) is
(1 − ((ln n)/n)1/k)k.

lim
n→∞

(1 − ((ln n)/n)1/k)k = 1

Thus any maximal with a volume greater than ~v’s
(which would include any points that dominate ~v) will
dominate all points in the limit of n. The probabil-
ity there is such a maximal is greater than (n − 1)/n,
which converges to one in the limit of n. 2

Theorem 19 Under UI (Def. 2), SFS sorting the
stream by volume descending and using the append
window policy, for any fixed window size, has an
average-case runtime of O(kn + nlgn). [20]
Proof 19 The sort phase for SFS is O(nlgn). On the
initial pass, the volume of each point can be computed
at O(kn) expense. During the filter phase, m(m−1)/2
maximal-to-maximal comparisons are made. Expected
m is Θ((ln k−1n)/(k − 1)!), so this is o(n). Number
of comparisons of non-maximal to maximal is O(n).
Thus the comparison cost is O(kn).

We use the append window policy. This means that
the window contains maximals in volume descending
order, the same order from the stream. No tuples are
eliminated from the window, except when the window
is cleared between passes. Any stream tuple written
to overflow will be compared against the next batch of
maximals in the next pass. Thus, the window size can-
not affect the number of comparisons. 2

By simulation, performances for two variants of
BNL and three variants of SFS are shown in Figure 8.
Data sets of ten vectors to one million vectors (by pow-
ers of ten) were generated, and the variants were sim-
ulated to count the number of comparisons per vector
made. At least thirty trials were run in each bracket.
The data was normalized and the order random.
• BNL1: BNL with the append window policy as for

Thm. 12.
• BNL2: BNL with a window policy that keeps the

window tuples sorted by volume descending, with
respect to d0, . . . , dk−2.

• SFS1: SFS sorting the input on one dimension de-
scending and with the random-walk window pol-
icy without elimination.

• SFS2: SFS sorting the input on one dimension
descending and with the append window policy
with elimination as for Thm. 17.

• SFS3: SFS sorting the input on one dimension de-
scending and with a window policy that keeps the
window sorted by volume descending. (No elimi-
nation is done in the window, but the comparison
against the window can terminate early.)

The variants BNL1, SFS1, and SFS3 are the idealized
versions we used for analyses. The variants BNL2 and
SFS2 are realistic versions of the algorithms with seem-
ingly good choices made for sort order and window pol-
icy to improve performance. For BNL2, we keep the
window sorted by the local maximals’s volume mea-
sure. A candidate is then compared against window
tuples in order. Tuples near the beginning of win-
dow are more likely to dominate. In [8], they keep a
counter with each window tuple. Any time a candidate
is dominated by a given window tuple, the correspond-
ing counter is incremented. The window is then kept
sorted by the counters’s values. Thus, they attempt
to measure dynamically a tuple’s dominance capacity.

SFS2’s performance is precisely what we would see
for BNL for data sets of dimensionality six (k = 6).
SFS3 represents one of the more effective variants of
SFS we have found: the data is sorted on one dimen-
sion (as by order by); the window is kept sorted by tu-
ples’s volume measures; and a candidate is compared
against the window tuples in order. As an extra op-
timization, once the candidate’s volume measure ex-
ceeds the next window tuple’s, we stop the compar-
isons. The candidate is clearly a maximal. None of
the rest of the window tuples could dominate it, since
each has a lower volume measure. This effectively cur-
tails many maximal-to-maximal comparisons to well
below m(m − 1)/2. Thus SFS3 performs remarkably
well in comparison with the others.

The graph in Figure 8 does not reflect SFS’s sort
phase. Even so, note that even adding the sorting ex-
pense for SFS, it outperforms BNL in number of com-
parisons. For a million records, SFS would need to do
roughly 20 comparisons extra per vector in the sort.18

Adding this, SFS still does far less comparison work
than BNL. Of course, in the extreme limit, SFS must
do more comparison than BNL, on average. Further-
more, SFS could lose to BNL in implementation; there
are other expenses besides CPU-load to consider, such
as I/O-load. (In fact, for the experiments in this paper
in §3.4.2, this is the case.)

One must note that all of these are still quite ex-
pensive algorithms, in practice. It is surprising that
each would only make one comparison per vector, on

18Note that lg 210
6 ≈ 20 and that merge-sort is close to ideal

on the concrete number of comparisons made.
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average, in the extreme limit of n.19 However, for real-
istic input sizes (n), the number of comparisons made
per vector is appreciably high. (Note that the graph
in Figure 8 is in log-scale along the x-axis.)

Runtime for these algorithms is quite affected by
the dimensionality. Each extra dimension added is,
after all, an additional degree of freedom, thus the
problem becomes correspondingly more complex and
more expensive to solve. This should only be expected.

BNL is a remarkable algorithm. Still, we have
seen that there are issues with its performance, and
improvements can be made. By sorting, SFS effec-
tively reduces the dimensionality of the problem by
one (which can be a substantial improvement on its
own), and addresses many of the weaknesses of BNL.
However, the sort step gives SFS too high an average-
case runtime. We would like to have the best of both:
SFS’s improvements, but still O(kn) overall average-
case runtime performance.

3.4 The LESS Algorithm

3.4.1 Description

We devise an external, maximal-vector algorithm that
we call LESS (linear elimination sort for skyline) that
combines aspects of SFS, BNL, and FLET, but that
does not contain any aspects of divide-and-conquer.
LESS filters the records via a skyline-filter (SF) win-
dow, as does SFS. The record stream must be in sorted
order by this point. Thus LESS must sort the records
initially too, as does SFS. LESS makes two major
changes:

1. it uses an elimination-filter (EF) window in pass
zero of the external sort routine to eliminate
records quickly; and

2. it combines the final pass of the external sort with
the first skyline-filter (SF) pass.

The external sort routine used to sort the records is
integrated into LESS. Let b be the number of buffer-
pool frames allocated to LESS. Pass zero of the stan-
dard external sort routine reads in b pages of the data,
sorts the records across those b pages (say, using quick-
sort), and writes the b sorted pages out as a b-length
sorted run. All subsequent passes of external sort are
merge passes. During a merge pass, external sort does
a number of (b − 1)-way merges, consuming all the
runs created by the previous pass. For each merge,
(up to) b − 1 of the runs created by the previous pass
are read in one page at a time, and written out as a
single sorted run.

LESS sorts the records by their entropy (volume)
scores, as discussed in §3.1 with regards to SFS. LESS
additionally eliminates records during pass zero of its
external-sort phase. It does this by maintaining a

19Note that we do not actually know this for the realistic
variations BNL2 and SFS3 here, but one would assume so for
them also.
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Figure 9: Buffer pool for LESS.

small elimination-filter window. Copies of the records
with the best entropy scores seen so far are kept in the
EF window (Figure 9(a)). When a block of records
is read in, the records are compared against those in
the EF window. Any input record that is dominated
by any EF record is dropped. Of the surviving input
records, the one with the highest entropy is found. Any
records in the EF window that are dominated by this
highest entropy record are dropped. If the EF win-
dow has room, (a copy of) the input record is added.
Else, if the EF window is full but there is a record in
it with a lower entropy than this input record, the in-
put record replaces it in the window. Otherwise, the
window is not modified.20

The EF window acts then similarly to the elimina-
tion window used by BNL. The records in the EF win-
dow are accumulated from the entire input stream.
They are not guaranteed to be maximals, of course,
but as records are replaced in the EF window, the col-
lection has records with increasingly higher entropy
scores. Thus the collection performs well to eliminate
other records.

LESS’s merge passes of its external-sort phase are
the same as for standard external sort, except for the
last merge pass. Let pass f be the last merge pass. The
final merge pass is combined with the initial skyline-
filter pass. Thus LESS creates a skyline-filter window
(like SFS’s window) for this pass. Of course, there
must be room in the buffer pool to perform a multi-
way merge over all the runs from pass f − 1 and for a
SF window (Figure 9(b)). As long as there are fewer
than B − 2 runs, this can be done: one frame per run
for input, one frame for accumulating maximal records
as found, and the rest for the SF window. (If not,
another merge pass has to be done before commencing
the SF passes.) This is the same optimization done in
the standard two-pass sort-merge join, implemented
by many database systems. This saves a pass over the
data by combining the last merge pass of external sort
with join-merge pass. For LESS, this typically saves a
pass by combining the last merge pass of the external
sort with the first SF pass.

20We use a practical variation on this EF policy in the version
ran in the experimental evaluation in the next section. There,
the EF window keeps the maximals of what has been seen so
far, just as BNL does in its filtering for the skyline.
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As with SFS, multiple SF passes may be needed. If
the SF window becomes full, then an overflow file will
be created. Another pass then is needed to process the
overflow file. After pass f—if there is an overflow file
and thus more passes are required—LESS can allocate
b − 2 frames of its buffer-pool allocation to the SF
window for the subsequent passes.

In effect, LESS has all of SFS’s benefits with no ad-
ditional disadvantages. LESS should consistently per-
form better than SFS. Some buffer-pool space is allo-
cated to the EF window in pass zero for LESS which
is not for SFS. Consequently, the initial runs produced
by LESS’s pass zero are smaller than SFS’s; this may
occasionally force that LESS will require an additional
pass to complete the sort. Of course LESS saves a
pass since it combines the last sort pass with the first
skyline pass.

LESS also has BNL’s advantages, but effectively
none of its disadvantages. BNL has the overhead of
tracking when window records can be promoted as
known maximals. LESS does not need this. Maxi-
mals are identified more efficiently once the input is
effectively sorted. Thus LESS has the same advan-
tages as does SFS in comparison to BNL. LESS will
drop many records in pass zero via use of the EF win-
dow. The EF window works to the same advantage
as BNL’s window. All subsequent passes of LESS then
are over much smaller runs. Indeed, LESS’s efficiency
rests on how effective the EF window is at eliminat-
ing records early. In §3.4.3, we show this elimination
is very effective—as it is for FLET and much for the
same reason—enough to reduce the sort time to O(n).

3.4.2 Experimental Evaluation

To implement LESS and other skyline algorithms for
benchmarking, we implemented a code base that we
nicknamed Shiprec.21 An implementation of LESS re-
quires integration with an external sort routine which,
in turn, requires at least simplified buffer pool and
diskspace managers. Shiprec is implemented to use
page-based, nonblocking reads and writes, and double-
buffering. It is implemented in C for the gcc compiler.
It uses the pthreads library. A thread “watchdog” is
attached to each active buffer pair to implement non-
blocking I/O. A large file is allocated via the operation
system (Linux) via dd in advance to serve as the pro-
gram’s diskspace.

The experiments were run on an Intel-based com-
puter running Linux with a 2.4.32 kernel. The machine
has a single CPU, an Intel Pentium 4 (with 8k L1 and
512k L2 cache) clocked at 3.20GHz. It has one GB
main memory. The disk controller and bus are IDE-
SCSI, and the machine has two standard ATA disks.

21The initial Shiprec package was part of the work that Ryan
Shipley (one of the authors) did for his undergraduate honors
thesis at the College of William and Mary in 2003 under the
supervision of Parke Godfrey (another of the authors).

The experiments are run on 5,000,000 record sets
with respect to 5 through 9 dimensions.22 Each record
is 100 bytes, so the total size of a record set is 500 mil-
lion bytes. This size helps defeat page caching by the
operating system—as the machine has one giga-byte
of main memory—to ensure the I/O cost is accurately
reflected.

The record sets are generated by Shiprec. Column
values are chosen randomly, and the record sets obey
the UI criteria from Def. 2. Each column used as a
skyline criterion has an integer value on 1 . . . 215. The
disk-page size in Shiprec was set to 8,192 bytes.

There are many parameters that can be adjusted
for these algorithms within Shiprec, each of which can
affect performance. A key parameter, of course, is the
buffer pool allocation made to the algorithm. LESS
also uses an EF window during its quicksort pass. Its
size needs to be set.

If the EF window is too large, it will take more time
simply as management of the EF window starts to have
an impact. On the other hand, if the EF window is
too small, the algorithm might become less effective at
eliminating records early. As more records survive the
sort to the SF-phase, LESS’s performance degrades.
We experimented with varying the size of the EF win-
dow from one to thirty pages. Its size made little differ-
ence to LESS’s overall performance, with some small
trade-offs in comparisons and I/O usage. (We make
clear why this should be the case in §3.4.3.) We set
the EF window at a single page (80 records) for what
we report here.

We experimented with various buffer pool alloca-
tions, from 10 to 500 pages. The size affects primarily
the efficiency of the sorting phase, as expected. BNL
is also quite sensitive, and ill behaved, with respect to
buffer pool allocation. In many cases, it is slowed down
with a larger allocation, due to a large increase in the
number of comparisons the algorithm performs. We
set the allocation at 100 pages as a reasonable choice
for what we report here. (As double buffering is used,
this accommodates up to a 50-way merge or a 50-page
block operation, such as quicksort. With a 8,192 byte
page size, this is 819,200 bytes of main memory avail-
able to the program for data operations.

Figures 10 and 11 report timing and I/O results, re-
spectively. All experiments were run using our Shiprec
code as described above. ExtSort represents just run-
ning the external sort procedure on the record set; the
maximals are not computed. The records are sorted
descending on an entropy field that is generated when
the records are initially read. SFS is an implemen-

22These are not the same experiments that are reported in
[20]. Each input set there had 500,000 records for a size of 50
million bytes. We were asked to run these over larger record
sets. The machine used for these experiments is also different
than before. We also made minor improvements to our experi-
mental platform, Shiprec, including implementing BNL within it
for comparison.
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tation of the SFS algorithm as described in §3.1. For
SFS, the records are initially sorted descending by their
entropy values (as by ExtSort). The skyline window
policy used is append. SFS′ makes one of the two ma-
jor changes from SFS to LESS: the last merge pass of
the sort is combined with the first skyline pass. This
saves I/O’s but does not reduce any of the compar-
ison load. LESS is an implementation of the LESS
algorithm within Shiprec as described in the previous
sub-section. Again, the records are sorted by entropy
descending. The skyline window policy used is append.

BNL is an implementation of the BNL algorithm
within Shiprec as described in §3.1. The window pol-
icy used is a variation on append. The window list is
walked in order for each stream record. If the stream
record is found to dominate a window record, it re-
places that record in that list location within the win-
dow; otherwise, it is appended to the window list (if
there is room). This has a better profile for BNL than
simple append, similar to that of BNL2 discussed in
§3.3. No sorting is done for BNL, of course; the input
stream is randomly ordered.

In each case, the results are written back to disk
and this cost is reflected in the measures. The record
set is already generated and on disk before the clock is
started, so this cost is not reflected (nor should it be).

For these settings and the Shiprec implementation,
the external sort takes 67 seconds, on average. This is
regardless of the number of dimensions considered as
the sort is with respect to a single field (entropy). This
is a lower bound then on SFS’s performance. For 5 and
6 dimensions, one can see the improvement of SFS′ as it
does better than the external sort. This is because the
skyline filtering has started during the last merge pass
and many records are eliminated. This results in I/O
savings. In all the experiments, the I/O cost for SFS′

is better than for ExtSort, which, in turn, is necessarily
better than for SFS. The number of comparisons for
SFS and SFS′ are the same, however.

LESS shows a large performance improvement over
SFS and SFS′. The filtering by the EF window during
the quicksort pass of the external sort is not only theo-
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retically beneficial—this renders LESS to be O(kn) as
proved in the next sub-section—it is also practically
beneficial. This reduces LESS’s I/O load significantly
compared with SFS. Shiprec’s LESS computes the sky-
line for the 5,000,000 records on 7 dimensions in 30
seconds.

Shiprec’s BNL performs quite well under these pa-
rameters, particularly for lower dimensionality. On the
data set on 5 dimensions, it computes the skyline in
2 seconds while LESS takes 6 seconds. The two tie at
around 10 seconds for the skyline on 6 dimensions. On
7 dimensions, BNL has fallen behind to 48 seconds with
LESS taking 30 seconds. On 8 dimensions, it performs
no better than SFS′. On 9 dimensions, it performs
significantly worse than the rest. It has the best I/O
cost of all the algorithms. Its computational load (how
many comparisons are performed), however, is worse
than the rest. This profile fits well with our analytic
understanding of the algorithms.

BNL is also ill-behaved. If the buffer pool alloca-
tion is increased here, BNL’s performance worsens as
it comparison load goes up. For the other algorithms,
their performance improves step-wise, as expected, as
the buffer pool allocation is increased. Mainly, at some
point, the external sorting can be done in fewer passes,
reducing the I/O load. SFS and LESS do not experi-
ence an increase in comparison load as the allocation is
increased. BNL is also sensitive to the order of the in-
put stream. If the input stream is sorted (or correlated
with) a topological order that is opposite the skyline
order, BNL will thrash. (This was demonstrated in
[15].) For instance, Shiprec’s BNL run for 5 dimensions
from Figure 10 for which the data is randomly ordered
took 2 seconds. When run on a 5 million record set
that has been ordered by one of the dimension fields
from lowest to highest—the skyline criteria here are
for highest—BNL takes 418 seconds. Of course, SFS
and LESS are immune to input order.

All the processes show signs of being CPU-bound
even for computing the 7 dimensional skyline. Al-
though SFS′, BNL, and LESS have I/O costs below
ExtSort, by 8 dimensions, all have much worse times
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than ExtSort, meaning that the computational load is
out-stripping the I/O load. BNL and LESS have pro-
portionally much less I/O cost than ExtSort, but their
times approach ExtSort for 7 dimensions, demonstrat-
ing CPU-boundedness.

The results also demonstrate just how expensive
each additional dimension to the skyline problem truly
is in practice. This primarily arises due to the fact that
the final skyline set is larger for higher dimensionality.
For instance, for the data sets used here, the final sky-
line sets were 2,840, 9,126, 25,715, 59,171, and 128,058
records for 5 through 9 dimensions, respectively.23 All
the algorithms effectively must compare each skyline
record against every other one to verify it.

There are many improvements that could be made
to our Shiprec code base that would improve perfor-
mance of the algorithms. Shiprec does not exploit se-
quential reads and writes. Doing so could improve on
the cost of the external sort operations significantly.
We have seen that Shiprec pays a fair overhead in
thread management. In part, this is due to inefficien-
cies in thread management by the Linux 2.4 kernel.
(The 2.6 kernel reportedly improves greatly on this.)
It is also due to our design: Shiprec maintains a thread
for each active buffer pair. If a 200-way merge is being
performed, that means 200 watchdog threads. In ret-
rospect, this is wasteful and not needed. One could use
a small pool of threads and semaphore for this purpose.
This design also limits Shiprec’s buffer pool manage-
ment. Linux 2.4 has a limit of around 250 threads al-
lowed per process. This effectively meant we could not
test with over 500 buffer frames. A number of process-
ing steps in Shiprec are näıve and could be improved.
(For example, when performing a multi-merge, it polls
for the next record rather than using a priority queue.)
Lastly, Shiprec can only address up to two gigabytes in
diskspace as limited by a 32-bit integer. This limited
us to testing on up to half a gigabyte data sets, as in
these experiments. (For some of the algorithms, it can
handle up to a gigabyte data set.) We would like to
test on much larger record sets.

A commercial caliber implementation of these al-
gorithms, and the next generation of our Shiprec plat-
form, could improve performance of LESS and SFS fur-
ther significantly. Some improvements could no doubt
benefit BNL also, but likely to a lesser degree. For in-
stance, Shiprec’s thread overhead did not affect BNL
much; it does not use multi-way merges.

3.4.3 Analysis

LESS also incorporates implicitly aspects of FLET. Un-
like FLET, we do not want to guess a virtual point
to use for elimination. In the rare occasion that the
virtual point was not found to be dominated, FLET
must process the entire data set by calling DD&C.

23These sizes match well with the analytically predicted values
for a five million record set under CI.
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Figure 12: Choosing point v.

Such hit-or-miss algorithms are not amenable to re-
lational systems. Instead, LESS uses real points accu-
mulated in the EF window for eliminating. We shall
show that these collected points ultimately do as good
a job of elimination as does FLET’s virtual point. Fur-
thermore, the EF points are points from the data set,
so there is no danger of failing in the first pass, as there
is with FLET.

To prove that the EF points are effective at elimi-
nating most points, we can construct an argument sim-
ilar to that used in [5] to prove FLET’s O(n) average-
case runtime performance and in Lemma 18.
Theorem 20 Under UI (Def. 2), LESS has an
average-case runtime of O(kn). [20]
Proof 20 Let the data set be distributed on (0, 1)k

under UI.
Consider a virtual point v with coordinate x ∈ (0, 1)

on each dimension. Call the “box” of space that dom-
inates v A, and the “box” of space dominated by v
B. (This is shown in Figure 12 for k = 2.) The
size of B is then xk, and the size of A is (1 − x)k.
Let x = (1 − n−1/2k). Thus the size of B, xk, is
(1 − n−1/2k)k. In the limit of n, the size of B is 1.

lim
n→∞

(1 − n−1/2k)k = 1

If a point exists in A, it dominates all points in B.
The expected number of points that occupy A is pro-
portional to A’s volume, which is 1/

√
n by our con-

struction. There are n points, thus
√

n is the expected
number of points occupying A.

If points are drawn at random with replacement
from the data set, how many must be explored, on av-
erage, before finding one belonging to A? 24 If there
were exactly

√
n points in A, the expected number of

draws would be n/
√

n =
√

n.
Of course,

√
n is only the expected number of points

occupying A. Sometimes fewer than
√

n points fall in
A; sometimes, more. The actual number is distributed
around

√
n via a binomial distribution. Taking the re-

ciprocal of this distribution, the number of draws, on
average, to finding a point in A (or to find no point is
in A) is bound above by (lnn)

√
n.

So during LESS’s pass zero, in average case, the
number of points that will be processed before finding

24This is simpler to consider than without replacement, and
is an upper bound with respect to the number of draws needed
without replacement.
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an A point is bounded above by (ln n)
√

n. Once found,
that A point will be added to the EF window; else, there
is a point in the EF window already that has a better
volume score than this A point. After this happens,
every subsequent B point will be eliminated.

The number of points that remain, on average, after
pass zero then is at most 1− (1− n−1/2k)k +(ln n)

√
n.

This is o(n). Thus, the surviving set is bound above by
nf , for some f < 1. Effectively, LESS only spends ef-
fort to sort these surviving points, and nf lgnf is O(n).

Thus the sort phase of LESS is O(kn). The skyline
phase of LESS is clearly bound above by SFS’s average-
case, minus the sorting cost. SFS average-case cost
after sorting is O(kn) (Thm. 17). In this case, only nf

points survived the sorting phase, so LESS’s SF phase
is bounded above by O(kn). 2

Proving LESS’s best-case performance directly is
not as straightforward. Of course, it follows directly
from the average-case analysis.
Theorem 21 Under CI (Def. 2) and the model in
§2.4, LESS has a best-case runtime of O(kn). [20]
Proof 21 The records have a linear ordering. Thus,
this is like considering the average-case runtime for
skyline problem with dimensionality one. 2

Worst-case analysis is straightforward.
Theorem 22 Under CI (Def. 2), LESS has a worst-
case runtime of O(kn2). [20]
Proof 22 Nothing is eliminated in the sort phase,
which costs O(nlg n). The SF phase costs the same
as the worst-case of SFS, O(kn2) (Thm. 8). 2

3.5 Issues and Improvements

Since our experiments in §3.4.2, we have been focus-
ing on how to decrease the CPU load of LESS, and
of maximal-vector algorithms generally. LESS and
SFS must make m(m − 1)/2 comparisons just to ver-
ify that the maximals are, indeed, maximals. BNL
faces this same computational load, and does cumu-
latively more comparisons as records are compared
against non-maximal records in its window.

There are two ways to address the comparison load:
reduce further somehow the number of comparisons
that must be made; and improve the efficiency of the
comparison operation itself. The divide-and-conquer
algorithms have a seeming advantage here. DD&C,
LD&C, and FLET have a o(n2) worst-case performance.
They need not compare every maximal against ev-
ery maximal. Of course, §3.2 demonstrates that the
divide-and-conquer algorithms have their own limita-
tions.

The sorted order of the input stream need not be the
same as that in which the records are kept in the EF
and the SF windows. Indeed, we have learned that us-
ing two different orderings can be advantageous. (Like-
wise, this is true for SFS also. SFS3 in Figure 8 and
discussed in §3.3 does this.) Say that we sort the data
in a nested sort with respect to skyline columns, and

keep the EF and SF windows sorted by entropy as be-
fore. This has the additional benefit that the data can
be sorted in a natural way, perhaps useful to other
parts of a query plan. Now when a stream record is
compared against the SF records, the comparison can
be stopped early, as soon as the stream record’s en-
tropy is greater than the next SF record’s. At this
point, we know the stream record is maximal. We
have observed this change to reduce the maximal-to-
maximal comparisons needed by roughly a quarter.

The dual-order versions of LESS—one order for the
input stream and one for the skyline window—that
we are investigating have given us insight into how we
can handle better sets with anti-correlation. This rep-
resents the worst-case scenario for maximal-vector al-
gorithms (§2.4). We are able to handle reasonably well
some cases of anti-correlation, for instance, when one
dimension is highly anti-correlated with another one.
We may be able to extend this to handle most anti-
correlation effects in the input to still achieve good
running time. Furthermore, this may lead to ways to
improve on LESS-like algorithms worst-case running
time to better than O(kn2).

There may be other ways to reduce the computa-
tional load of the comparisons themselves. Clearly,
there is much to gain by making the comparison op-
eration that the maximal-vector algorithm must do so
often more efficient. We are exploring these techniques
further, both experimentally and analytically, to see
how much improvement we can accomplish. We antic-
ipate improving upon the algorithm significantly more.

3.6 Lifting the Assumptions

The example in §2.1 violates the assumptions made in
§2.4 that we used for average-case analyses. The prices
of the hotels do not seem uniformly distributed, and
likely they are not. The number of stars (quality) of
hotels is not sparse. There are only several possible
values. It is likely that number of stars and price are
correlated, and price and distance to the beach are
quite possibly anti-correlated, thus the dimensions are
not independent. Most real-world data—and skyline
queries over that data—will violate those assumptions.
How important in truth are they?

In many cases, we did not need to assume unifor-
mity. The assumption seemed necessary in other cases.
The algorithms FLET and LESS relied on it, and SFS
benefits from it. We can actually remove the assump-
tion for these.

FLET needs to choose a virtual point that it will use
to eliminate points on the initial pass. The coordinates
of this virtual point can be trivially determined if the
data set is normal. Note that we simply need to know a
rank-value along each dimension: that so many vectors
rank above that given value. This selection problem is
known to be linear, however. One can find the element
of a given rank from an unordered list in O(n) steps [7].
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We could determine therefore the value corresponding
to the target rank along each dimension in O(kn) work.
(This could be accomplished in fewer than six passes
over the data.) Thus, with O(kn) preprocessing, we
remove the need for uniformity for FLET and LESS.25

In a database system, one often has statistics about
the data available. In many cases, these can be used to
approximate the normalization mapping for the data.

When the sparseness (distinct-value) assumption
is violated—so there are repeated values along a
dimension—the expected value of m goes down, up to
the point at which the set is dominated by duplicate
points (that is, points that are equivalent on all the
dimensions) [19]. We can prove that if there are few
duplicates over the vectors, but repeated values along
the dimensions, the expected number of maximals de-
creases. Since our average-case for maximal-vector al-
gorithms is predicated on m̂, all will perform at least
as well when the data is dense.

The case when there are many duplicates in the
input is different. Then the number of maximals may
be much greater than m̂ under CI: the same maximal is
repeated many times. For an industrial-caliber skyline
algorithm, it would be possible to address this case.
LESS, for instance, does not need to keep the tuples in
the window. It only needs to keep a projection of the
tuple on the skyline columns. Furthermore, there is no
need to maintain duplicates in the window. Thus, if an
optimizer predicts a duplicate flood, LESS could first
find all the distinct maximal projections, hash these in
main memory, and on a subsequent pass of the data,
select the maximal tuples.

The only intrinsically difficult assumption is inde-
pendence. Maximal-vector algorithms perform poorly
when there are many maximals, and this occurs when
the dimensions have anti-correlations among them.
Whether better algorithmic approaches exist to handle
maximal-vector computation for highly anti-correlated
cases remains open.

4 Related Work

In recent years, there has been much interest in max-
imal vector computation in the database community.
In this paper, we have focused on generic algorithms
to find the maximal vectors. However, research in this
area also covers index-based algorithms, and exten-
sions to the standard maximal vector problem.

The goals of index-based algorithms are to be able
to evaluate the skyline without needing to scan the
entire dataset—so for sub-linear performance, o(n)—
and to produce skyline points progressively, to return
initial answers as quickly as possible.

The shooting-stars algorithm [24] exploits R-trees
and modifies nearest-neighbors approaches for finding

25We would not want to do this in practice. This does show,
however, that FLET and LESS theoretically have O(kn) average-
case runtime under CI.

skyline points progressively. This work is extended
upon in [27, 28] in which they apply branch-and-bound
techniques to reduce significantly the I/O overhead. In
fact, the algorithm in [27] is shown to deliver better
performance than any previous (prior to 2003) index-
based algorithms. In [18, 30], bitmaps are explored
for skyline evaluation, appropriate when the number
of values possible along a dimension is small. In [1],
an algorithm is presented as instance-optimal when
the input data is available for scanning in k sorted
ways, sorted along each dimension. If a tree index
were available for each dimension, this approach could
be applied. No performance comparison with other
algorithms is provided, however.

We note that the generic SFS algorithm can be mod-
ified to become an index-based algorithm. The result
of the first phase of the algorithm, the nest-sorted list
of tuples, can be maintained using a B+ tree index.
The second phase of the algorithm, the actual Sky-
line computation, can then be performed against that
index.

Index-based algorithms for computing the skyline
(the maximal vectors) have serious limitations. The
performance of indexes—such as R-trees as used in
[24, 27]—does not scale well with the number of dimen-
sions. Although the dimensionality of a given skyline
query will be typically small, the range of the dimen-
sions over which queries can be composed can be quite
large, often exceeding the performance limit of the in-
dexes. For an index to be of practical use, it would
need to cover most of the dimensions used in queries.

We also note that building several indexes on small
subsets of dimensions (so that the union covers all the
dimensions) does not suffice, as the skyline of a set
of dimensions cannot be computed from the skylines
of the subsets of its dimensions. It is possible, and
probable, that

maxes{d0,...,di−1}(T) ∪ maxes{di,...,dk−1}(T)
( maxes{d0,...,dk−1}(T)

Furthermore, if the sparseness (distinct-values) as-
sumption from §2.4 is lifted, the union is no longer
even guaranteed to be a subset. (This is due to the
possibility of ties over, say, d0, . . . , di−1.)

Another difficulty with the use of indexes for com-
puting skyline queries is the fact that the skyline op-
erator is holistic, in the sense of holistic aggregation
operators. The skyline operator is not, in general,
commutative with selections. (In [13], cases of commu-
tativity of skyline with other relational operators are
shown.) For any skyline query that involves a select
condition on an attribute which is not a skyline at-
tribute, an index that would have applied to the query
without the select will not be applicable.

Recall the criteria for good skyline algorithms [28]
discussed in §2.3. To satisfy criterion one, progressive-
ness, some preprocessing is required: index creation
for index-based algorithms, or sorting for SFS or LESS.
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This preprocessing is a one-time effort and can be used
in subsequent queries, provided that the maintained
structure is easily updateable. All of the discussed al-
gorithms satisfy the second criterion, absence of false
hits, as they compute the exact, not an approximate,
skyline. Also, all algorithms, except BNL, satisfy cri-
terion three, absence of temporary false hits. The
nearest-neighbor algorithm of [24] violates the fourth
criterion, fairness, as it returns skyline points accord-
ing to their minimum coordinates in some dimension.
The algorithms in [1, 24, 28] and the LESS algorithm
described in this paper are the only algorithms that
can incorporate user preferences (criterion five) to or-
der skyline points. As discussed above, none of the
index-based algorithms scales well with respect to the
number of dimensions, and thus violate the sixth cri-
terion, universality.

There has been much work recently devoted to ex-
tending research in skyline computation to new prob-
lems and domains. Some of this work includes:
• semantics and computation of skyline in sub-

spaces [29, 31];
• computation of skyline cubes [34];
• skyline computation over partially ordered do-

mains [3, 10, 11];
• skyline computation over sliding windows [26];
• skyline computation in mobile environment [22];
• skyline of categorical data [2];
• approximate skyline [23]; and
• estimation of skyline cardinality [12, 19].

5 Conclusions

We have reviewed extensively the existing field of algo-
rithms for maximal vector computation and analyzed
their runtime performances. We show that the divide-
and-conquer based algorithms are flawed in that the
dimensionality k results in very large “multiplicative-
constants” over their O(n) average-case performance.
We proved that the scan-based skyline algorithms,
while seemingly more näıve, are much better behaved.
We introduced a new algorithm, LESS, which improves
over the existing skyline algorithms, and we prove that
its average-case performance is O(kn).

There remains room for improvement, and there are
clear directions for future work. While we can con-
struct algorithms that are asymptotically good with-
out the uniformity assumption, with it we can improve
performance. We want to understand how to improve
performance in similar ways without needing to as-
sume uniformity. We want to reduce the comparison
load of maximal-to-maximal comparisons necessary in
LESS-like algorithms. While the divide-and-conquer
algorithms do not work well, their worst-case running
times are o(n2), while LESS’s is O(n2). It is a ques-
tion whether the O(n2) worst-case of scan-based al-
gorithms can be improved. Even if not, we want an
algorithm to avoid worst-case scenarios as much as

possible. For maximal vectors, anti-correlation in the
data-set causes m to approach n. We want to be able
to handle sets with anti-correlation much better. We
are presently working on promising ideas for this, as
discussed in §3.5.

We have found it fascinating that a problem as
seemingly simple as maximal vector computation is,
in fact, fairly complex to accomplish well. While there
have been a number of efforts to develop good algo-
rithms for finding the maximals, there has not been
a clear understanding of the performance issues in-
volved. This work should help to clarify these issues,
and lead to better understanding of maximal-vector
computation and related problems.
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