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Preface to Original German Edition

In the summer semester of 1993 at Universitit Ulm, I tried out a new type
of course, which I called Theory lab, as part of the computer science major
program. As in an experimental laboratory — with written preparatory ma-
terials (including exercises), as well as materials for the actual meeting, in
which an isolated research result is represented with its complete proof and
all of its facets and false leads — the students were supposed to prove por-
tions of the results themselves, or at least to attempt their own solutions. The
goal was that the students understand and sense “how theoretical research is
done.” To this end I assembled a number of outstanding results (“highlights,”
“pearls,” “gems”) from theoretical computer science and related fields, in par-
ticular those for which some surprising or creative new method of proof was
employed. Furthermore, I chose several topics which don’t represent a solu-
tion to an open problem, but which seem in themselves to be surprising or
unexpected, or place a well-known problem in a new, unusual context.

This book is based primarily on the preparatory materials and worksheets
which were prepared at that time for the students of my course and has
been subsequently augmented with additional topics. This book is not a text
book in the usual sense. In a textbook one pays attention to breadth and
completeness within certain bounds. This comes, however, at the cost of
depth. Therefore, in a textbook one finds too often following the statement of
a theorem the phrase: “The proof of this theorem would go beyond the scope
of this book and must therefore be omitted.” It is precisely this that we do
not do here; on the contrary, we want to “dig in” to the proofs — and hopefully
enjoy it. The goal of this book is not to reach an encyclopedic completeness
but to pursue the pleasure of completely understanding a complex proof
with all of its clever insights. It is obvious that in such a pursuit complete
treatment of the topics cannot possibly be guaranteed and that the selection
of topics must necessarily be subjective. The selected topics come from the
areas of computability, logic, (computational) complexity, circuit theory, and
algorithms.

Where is the potential reader for this book to be found? I believe he or
she could be an active computer scientist or an advanced student (perhaps
specializing theoretical computer science) who works through various topics
as an independent study, attempting to “crack” the exercises and by this
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means learns the material on his or her own. I could also easily imagine
portions of this book being used as the basis of a seminar, as well as to
provide a simplified introduction into a potential topic for a Diplomarbeit
(perhaps even for a Dissertation).

A few words about the use of this book. A certain amount of basic knowl-
edge is assumed in theoretical computer science (automata, languages, com-
putability, complexity) and for some topics probability and graph theory
(similar to what my students encounter prior to the Vordiplom). This is very
briefly recapitulated in the preliminary chapter. The amount of knowledge as-
sumed can vary greatly from topic to topic. The topics can be read and worked
through largely independently of each other, so one can begin with any of the
topics. Within a topic there are only occasional references to other topics in
the book; these are clearly noted. References to the literature (mostly articles
from journals and conference proceedings) are made throughout the text at
the place where they are cited. The global bibliography includes books which
were useful for me in preparing this text and which can be recommended for
further study or greater depth. The numerous exercises are to be understood
as an integral part of the text, and one should try to find one’s own solu-
tion before looking up the solutions in the back of the book. However, if one
initially wants to understand only the general outline of a result, one could
skip over the solutions altogether at the first reading. Exercises which have a
somewhat higher level of difficulty (but are certainly still doable) have been
marked with °.

For proof-reading (the original German text) and for various suggestions
for improvement I want to thank Gerhard Buntrock, Volker Claus, Uli Her-
trampf, Johannes Kobler, Christoph Meinel, Rainer Schuler, Thomas Thier-
auf, and Jacobo Toran. Christoph Karg prepared a preliminary version of
Chapter 14 as part of a course paper.

Uwe Schoning



Preface to the English Edition

While I was visiting Boston University during the 1996-97 academic year, I
noticed a small book, written in German, on a shelf in Steve Homer’s office.
Curious, I borrowed it for my train ride home and began reading one of the
chapters. I liked the style and format of the book so much that over the
course of the next few months I frequently found myself reaching for it and
working through one chapter or another. This was my introduction to Perlen
der Theoretischen Informatik.

A few of my colleagues had also seen the book. They also found it inter-
esting, but most of them did not read German well enough to read more than
small portions of it enjoyably. I hope that the English version will rectify this
situation, and that many will enjoy (and learn from) the English version as
much as I enjoyed the German version.

The front matter of this book says that it has been “translated, revised,
and expanded.” I should perhaps say a few words about each of these tasks.
In translating the book, I have tried as much as possible to retain the feel
of the original, which is somewhat less formal and impersonal than a typical
text book yet relatively concise. I certainly hope that the “pleasure of the
pursuit of understanding” has not gotten lost in the translation.

Most of the revisions to the book are quite minor. Some bibliography
items have been added or updated; a number of German sources have been
deleted. The layout has been altered somewhat. In particular, references now
occur systematically at the end of each chapter and are often annotated. This
format makes it easier to find references to the literature, while providing a
place to tie up lose ends, summarize results, and point out extensions. Specific
mention of the works cited at the end of each chapter is made informally, if at
all, in the course of the presentation. Occasionally I have added or rearranged
a paragraph, included an additional exercise, or elaborated on a solution, but
for the most part I have followed the original quite closely. Where I spotted
errors, I have tried to fix them; I hope I have corrected more than I have
introduced.

While translating and updating this book, I began to consider adding
some additional “gems” of my own. I am thankful to Uwe, my colleagues
and Hermann Engesser, the supervising editor at Springer Verlag, for en-
couraging me to do so. In deciding which topics to add, I asked myself two
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questions: What is missing? and What is new? From the possible answers to
each question I picked two new topics.

The introduction to average-case complexity presented in Topic 25 seemed
to me to be a completion (more accurately, a continuation) of some of the
ideas from Topic 8, where the term average-case is used in a somewhat dif-
ferent manner. It was an obvious “gap” to fill.

The chapter on quantum computation (Topic 26) covers material that is
for the most part newer than the original book; indeed, several of the articles
used to prepare it have not yet appeared in print. I considered covering Shor’s
quantum factoring algorithm — either instead or additionally — but decided
that Grover’s search algorithm provided a gentler introduction to quantum
computation for those who are new to the subject. I hope interested readers
will find Shor’s algorithm easier to digest after having worked through the
results presented here. No doubt, there are many other eligible topics for this
book, but one must stop somewhere.

For reading portions of the text and providing various suggestions for
improvement, I want to thank Drue Coles, Judy Goldsmith, Fred Green,
Steve Homer, Steve Kautz, Luc Longpré, Chris Pollett, Marcus Schaefer,
and Martin Strauss, each of whom read one or more chapters. I also want to
thank my wife, Pennylyn Dykstra-Pruim, who in addition to putting up with
my long and sometimes odd hours also proofread the manuscript; her efforts
improved its style and reduced the number of typographical and grammatical
errors. Finally, many thanks go to Uwe Schoning for writing the original book
and collaborating on the English edition.

Randall Pruim
July, 1998
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Fundamental Definitions and Results

Before we begin, we want to review briefly the most important terms, def-
initions, and results that are considered prerequisite for this book. More
information on these topics can be found in the appropriate books in the
bibliography.

General

The set of natural numbers (including 0) is denoted by N, the integers by Z,
and the reals by R. The notation log will always be used to indicate logarithms
base 2, and In to indicate logarithms base e.

If ¥ is a finite non-empty set (sometimes referred to as the alphabet),
then X* denotes the set of all finite strings (sequences) from Y, including the
empty string, which is denoted by A. A subset L of X* is called a (formal)
language (over X). The complement of L (with respect to some alphabet X))
is L = X* — L. For a string z € X*, |z| denotes the length of x; for a set
A, |A| denotes the cardinality of A. For any ordering of the alphabet X, the
lezicographical order on X* (induced by the order on X) is the linear ordering
in which shorter strings precede longer ones and strings of the same length
are ordered in the usual lexicographic way. For ¥ = {0,1} with 0 < 1, this
ordering begins

A<0<1<00<01<10<11<000<"---

We assume that all finite objects (graphs, formulas, algorithms, etc) that
occur in the definition of a language have been suitably encoded as strings
over {0,1}. Such encodings are denoted by ().

A polynomial p in variables z1, ..., x, is a function of the form

k
— @1i Q2 Ani
p(zy,...,z,) = E o R AL Aot LN
i=1

where k,a;; € N. For our purposes, the coefficients, a;, will usually also
be integers (sometimes natural numbers). The largest occurring exponent
a;; (with o; # 0) is the degree of the polynomial p. The total degree of the
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polynomial p is the largest occurring value of the sum a; + a2 + ... + a;ip
(with a; # 0). A univariate polynomial of degree d is uniquely determined by
specifying d + 1 support points (xo,v0), (€1,41), .-, (€q,yq) With zg < z1 <
... < z4 (Interpolation Theorem).

Graph Theory

Graphs play a role in nearly all of our topics. A graph is a structure G =
(V, E) consisting of a finite sets V' of nodes and E of edges. In the case of a

directed graph, £ C V xV, and in the case of an undirected graph £ C (‘2/) ,

the set of all two-element subsets of V. A path (from v; to v2) is a sequence
of adjoining edges (which begins at vy and ends at vs). If v; = vs and the
path consists of at least one edge, then the path is called a cycle. A graph is
connected if there is a path from any node in the graph to any other node
in the graph; acyclic if it contains no cycles; and bipartite if the node set V
can be partitioned into V' = V; U V5 in such a way that V; NV, = (), and
every edge of the graph joins a node in V; with a node in V5. The degree
of a node is the number of other nodes that are joined to it by an edge. In
directed graphs we speak further of the in-degree and out-degree of a node.
A node without predecessors (in-degree 0) is called a source, a node without
successors (out-degree 0) is called a sink.

Two graphs G; = (Vi,E;) and Go = (Va, E») are isomorphic if there
is a bijective mapping ¢ : Vi3 — V2 (which can be extended in the obvious
way to edges) such that e € By <= ¢(e) € Ey. We denote by ¢(G) the
graph isomorphic to G that results from applying the permutation ¢ to the
nodes and edges of G. The set of automorphisms of a graph G is the set of
all isomorphisms between G and G, i.e., the set of all permutations ¢ such
that p(G) =G.

Boolean Formulas and Circuits

A boolean function is a function f : {0,1}" — {0,1}. Boolean functions can
be represented as boolean formulas, boolean circuits, or branching programs.
A boolean formula is built up in the usual way from the symbols A, V, and
-, the variables z;, and parentheses. SAT denotes the (decision) problem of
determining for a given boolean formula whether or not it is satisfiable, that
is, whether there is an assignment for the variables in the formula that causes
the formula to be evaluated as “true” (or 1).

A boolean circuit is a directed, acyclic, connected graph in which the in-
put nodes are labeled with variables z; and the internal nodes have in-degree
either 1 or 2. Nodes with in-degree 1 are labeled with = and nodes with
in-degree 2 are labeled with either A or V. Each node in the graph can be
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associated with a boolean function in the obvious way by interpreting — as
the NOT-function, A as the AND-function, and V as the NOT-function. The
function associated with the output node of the graph is the function com-
puted by (or represented by) the circuit. A formula can also be understood
as a circuit in which every node has out-degree 1. The size of a circuit or a
formula is the number of A, V, and — symbols that occur in it. For some of
the topics, we will consider families of boolean circuits for which there is a
polynomial p(n) such that the size of the nth circuit is bounded by p(n). In
this case we will say that the family of functions has polynomial-size circuits.
For some of the topics we will also consider circuits in which the AND- or
OR-gates may have unbounded fan-in.
Branching programs will be introduced in Topic 14.

Quantifier Logic

Formulas with quantifiers occur in various contexts. In order to evaluate a
formula of the form JzF, where F is a formula (containing function and
predicate symbols in addition to boolean operations), one must first fix a
structure, which consists of a domain and interpretations of all occurring
function and predicate symbols over that domain. The formula JzF' is valid
if there exists some element of the domain such that if all free occurrences
of x in F are replaced with that element, then the resulting formula is valid.
Formulas with universal quantifiers are evaluated analogously.

In this book, the following variations occur: in a quantified boolean formula
the domain for the variables is always considered to be the truth values 0
and 1, and no function or predicate symbols are permitted other than the
boolean operations. The problem @QBF is the problem of determining for a
given quantified boolean formula with no free variables if it is valid (under
this interpretation).

A predicate logic formula may have arbitrary function and predicate sym-
bols as well the equality symbol. When such a formula F' is valid in a given
structure A, then we write A |= F. In this case A is called a model for F.
The formula F' is satisfiable if it has at least one model. It is a tautology if
for every suitable structure A, A |= F'. In this case we write | F.

In an arithmetic formula only the two special functions symbols + and
*, the equality symbol, and the constant symbols 0 and 1 are allowed. Such
formulas are interpreted in the special, fixed structure with domain N, and
+ and * interpreted by the usual addition and multiplication in N.

Probability

We will only consider finite or countable probability spaces (2, so any subset
of {2 can be an event. Pr[E] is used to denote the probability of event E. It
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is always the case that Pr{] = 0, Pr[2] = 1, and Pr[2 — E| = 1 — Pr[E].
If Eq, E,,... are pairwise mutually exclusive events, i.e., for any pair ¢ and
J, BEiNE; =0, then PrlU;E;] = Y Pr[E;]. The inclusion-exclusion principle
holds for arbitrary events Fj, ..., E, and states that

PriuiE] =3, PriEi] =3 ;. PriEi N Ej]
+2icjck PrIEiNE;NE] — - k- PrlEiN... Ey].

In the equation above the first term on the right overestimates the correct
value, the first two underestimate it, etc. Thus, the first term can be used as
an upper bound and the first two terms as a lower bound for Pr{U; E;].

By conditional probability Pr[E;|E,] (read the probability of E; given E-)
we mean the quotient Pr[E; N Ey]/Pr[Es].

A set of events {Ei,...,E,} is called pairwise independent if for every
i,j€{l,...,n}withi # j, Pr[E;NE;] = Pr[E;]- Pr[E;] and completely inde-
pendent if for every non-empty set I C {1,...,n}, Pr[Nier E;] = [[;c; Pr(Ei].

A random wvariable is a map from the set of events into the set R. The
expected value of a random variable Z is E(Z) = ) Pr[Z = a] - a and its
variance is V(Z) = E((Z — E(Z))? = E(Z?) — (E(Z))?. (The sum is over all
values a that the random variable Z takes on with non-vanishing probabil-
ity.) The expected value operator is linear: E(aX + bY) = aE(X) + bE(Y).
Occasionally we will make use of various inequalities when approximating
probabilities.

Markov’s inequality. If Z is a random variable that only takes on positive
values, then Pr[Z > a] < E(Z)/a.

Chebyshev’s inequality. Pr(|Z — E(Z)| > a] <V (Z)/a*.

One frequently occurring probability distribution is the binomial distri-
bution. In a binomial distribution a random experiment with two possible
outcomes (“success” and “failure”) is carried out n times independently. Let
p be the probability of success in one of these trials, and let X be the random
variable that “counts” the number of successes. Then

Computability

The set of (partial) computable functions (over N or X*, depending on the
context) can be defined (among other ways) by means of Turing machines.
One defines a transition function (or a transition relation if the Turing ma-
chine is nondeterministic instead of deterministic) on the set of configurations



Fundamental Definitions and Results 5

of a Turing machine, among which are the start configurations, which corre-
spond uniquely to the possible values of the function argument x, and end
configurations, from which one can derive the value of the function, f(x). A
configuration is a complete description of the Turing machine at a given time
(consisting of state, head position(s), and contents of the work tape(s)). A
sequence of configurations beginning with the start configuration correspond-
ing to input x such that each successive configuration is determined according
to the transition function of the machine is called a computation of the ma-
chine on input z. M; denotes the ith Turing machine, which corresponds to
the ith partial computable function ¢; and the ith computably enumerable
language W; = L(M;). A language L is computable (or decidable) if both the
language and its complement are computably enumerable. (Equivalently, L
computable if there is a Turing machine M such that L = L(M) and M
halts on all inputs.) Well-known undecidable problems (languages) include
the halting problem:

H = {(M,z) | M halts on input =}
and the halting problem with empty tape:
Hy = {(M) | M halts when started with an empty tape} .

Other models of computation that are equivalent to the Turing machine
model include register machines (also called GOTO-programs), WHILE-
programs, and p-recursive functions. In each of these one can define simi-
lar undecidable halting problems. A further example of a language that is
undecidable but still computably enumerable is the set of all tautologies in
predicate logic. On the other hand, the set of all valid arithmetic formulas (in
the structure (N, +, %)) is not even computably enumerable. (One says that
arithmetic is not axiomatizable.)

A language A is (many-one) reducible (written A <,, B) if there is a
total computable function f such that for all z, x € A <= f(x) € B. The
language A is Turing-reducible to B (written A <t B) if there is an oracle
Turing machine M that halts on all inputs and for which A = L(MP?), where
L(M?®) denotes the language accepted by M using B as oracle (i.e., as a
“sub-routine”). If A is reducible to B by either of these types of reducibilities
and B is decidable (or computably enumerable), then A is also decidable
(computably enumerable, respectively).

Complexity Theory
A complexity class is formed by collecting together all languages that can

be computed by Turing machines with similar restrictions on their resources
or structure. The class P consists of all problems that can be solved with
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deterministic Turing machines whose running time is bounded by a polyno-
mial in the length of the input. The class NP counsists of all problems that
are accepted by a nondeterministic Turing machine for which the “running
time” (in this case the depth of the computation tree) is bounded by a poly-
nomial in the length of the input. More generally, one can define the classes
DTIME(f(n)) and NTIME(f(n)). The difference is that the running times
of the corresponding Turing machines are no longer required to be bounded
by some polynomial but instead must be bounded by some function that is
O(f(n)). The classes DSPACE(f(n)) and NSPACE(f(n)) can be defined anal-
ogously, in which case the amount of space used on the work tape (but not
the input tape) is bounded instead of the running time. PSPACE denotes the
class U{DSPACE(f(n)) | f is a polynomial}.
We have the following inclusions:

DSPACE(log ) C NSPACE(logn) C P C NP C PSPACE

-

=

Notice that at least the first two classes are strictly contained in the last.
Sometimes L and NL are used to denote DSPACE(logn) and NSPACE(logn).
If f and F are two functions such that F' is time constructible and grows

significantly more rapidly than f, for example, if

. f(n)log f(n)

lim,, 00 Fln) =0,
then DTIME(f(n)) C DTIME(F(n)). Analogous statements hold for DSPACE,
NTIME, and NSPACE.

For a complexity class C, coC' denotes the set of all languages whose
complements are in C. Some classes are known to be closed under comple-
mentation: P = coP, PSPACE = coPSPACE, DTIME(f(n) = coDTIME(f(n)),
DSPACE(f(n) = coDSPACE(f(n)), and NSPACE(f(n) = coNSPACE(f(n))
(see Topic 4). For other classes, closure under complement is not known and
in fact doubtful: NP =?7coNP.

A language L is called NP-complete if L € NP and for all A € NP,
A SE L, where SE is defined analogously to <;, with the difference that
the reduction function must be computable in time that is bounded by a
polynomial in the length of the input. The language SAT is NP-complete.
For every NP-complete language L we have

LeP < P=NP.

The definition of NP-completeness can be sensibly extended to other (larger)
complexity classes. For example, the language QBF is PSPACE-complete. Just
as <P is a polynomial time-bounded version of X

< polynomial time-bounded version of <,, </, can be defined as the
polynomial time-bounded version of <y. Instead of A §¥ B we sometimes
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write A € P(B) or A € pB (and say that A is computable in polynomial time
relative to B). If in this definition we use a nondeterministic machine instead
of a deterministic one, then we write A € NPZ. These notations can also be
extended to classes of languages:

PY=[J P”, NPY=[] NP".
BeC BeC

Algorithms and Programming Languages

For the representation of algorithms, we use a notation that resembles pro-
gramming language MODULA; this language contains the usual assignment
of variables, branching instructions of the form

IF ... THEN ... ELSE ... END
and the usual loop constructs:

FOR .. TO ... DO ... END
WHILE ... DO ... END
REPEAT ... UNTIL ... END

Occasionally we will use procedures, especially when describing recursive al-
gorithms.

The programs are typically to be understood as informal descriptions of
Turing machines, and from time to time we will expand the programming
language to include additional keywords that describe operations specific to
Turing machines. The instructions

INPUT ..
OuUTPUT ..

express that the Turing machine is to read from its input tape or write to its
output tape. The instructions

ACCEPT
REJECT

cause the Turing machine to halt in an accepting or rejection state.

Nondeterministic machines “guess” a string (from a finite set) and assign
the guess to a program variable. The variable then takes on any one of the
possible values. For this we write

GUESS z € S

where S is a finite set.

Probabilistic (randomized) algorithms are similar to nondeterministic al-
gorithms, but the various possibilities of a guess are assigned probabilities
(always according to the uniform distribution, that is, each possibility is
equally likely to be guessed). In this case we modify the instruction above to
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GUESS RANDOMLY z € S

After the execution of such an instruction, for every s € S it is the case that
Priz =s] =1/|S|.



1. The Priority Method

In the early years of computability theory, Emil Post formulated a prob-
lem which was first solved twelve years later independently by a Russian
(Muchnik) and an American (Friedberg). The solution introduced a new
method, the priority method, which has proven to be extremely useful in
computability theory.

Let Wy, W1, Ws,... be an enumeration of all computably enumerable lan-
guages. Such an enumeration can be obtained by enumerating all Turing
Machines M; and setting W; = L(M;), the language accepted by M;. In
an analogous way we can also enumerate all oracle Turing Machines. For
any language B, let W2 = L(MP) be the ith language that is computably
enumerable relative to B (that is, with B as oracle).

A language A is Turing reducible to B (written: A <y B), if there is
an oracle Turing Machine M that computes the characteristic function of A
relative to B (i.e., with oracle B). In particular, this implies that M halts on
every input (with oracle B).

The definition of <t can also be written

A<rBe (Fi:A=WF and3j: A=W/).

Two languages A and B are said to be Turing equivalent if A <p B and
B <t A, in which case we write A = B.

“Post’s Problem,” as it has come to be known, is the question of whether
there exist undecidable, computably enumerable sets that are not Turing
equivalent to the halting problem. In particular the answer is yes if there are
two computably enumerable languages A and B that are incomparable with
respect to <, i.e. such that A £ B and B £ A.

If there are two such languages, then neither one can be decidable —

Exercise 1.1. Why? <
— nor can either one be equivalent to the halting problem.

Exercise 1.2. Why? <
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So the picture looks like this:

T-equivalent to halting problem

computably enumerable languages

decidable languages

It is not difficult to define languages by diagonalization so that A £t B
(in fact so that A and B are incomparable with respect to <r). One selects
for each i an z; and arranges the definitions of A and B such that z; €
A = z;, ¢ WE ie. z; € A < x; € WP, The input z; is said to
be a witness for the fact that A is not computably enumerable in B via W;.
In the known diagonalization constructions one can usually recognize easily
that the function ¢ — z; is in fact computable. This means that the witness
x; can be found effectively in 1.

The problem with these constructions is that the languages A and B that
they produce are not computably enumerable. In fact, it can be shown that
it is impossible to construct two computably enumerable languages A and B
for which A £t B and B £t A and such that the respective witnesses can
be found effectively. Thus some new method, fundamentally different from
the “usual” diagonalization technique, is needed to solve Post’s Problem.

Before solving Post’s Problem, however, we want to show that the claim
just made is valid. Notice first that a computably enumerable language A
is computable (in B) if and only if A is computably enumerable (in B).
Therefore, we make the following definition: a language A is effectively not
Turing reducible to B if there is a total computable function f such that for
all i, f(i) € A ¢ f(i) € WP, that is, f(i) € A & f(i) € WE.

The following claim is then true:

Claim. If A and B are computably enumerable languages and A is effectively
not Turing reducible to B, then B is computable.

Exercise 1.3. Why does it follow from the claim that if there are any com-
putably enumerable languages that are incomparable with respect to Turing
reducibility that this fact cannot be demonstrated effectively? <

Proof (of the claim). Since B is computably enumerable, it suffices to show
that the hypothesis implies that B is computably enumerable. For each z, let
M, be the following oracle Turing machine:
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INPUT z;

IF z € ORACLE THEN REJECT
ELSE ACCEPT

END

The function
g : z+— Coding of Machine M,

is clearly computable, and furthermore

B _ N lfng,
Woto) = {@ if 2 € B.

By hypothesis there is a total computable function f such that
f(n) € As f(n) e WB.
Now consider f(g(z)) for arbitrary z. We obtain

f9(2) € A & f(g(2)) € W) (by choice of f)
& Wﬁz) = N (by choice of g)

Sze B
That is, B = g~'(f~'(A)). Since A is computably enumerable, it follows
from this representation of B that B is computably enumerable. O
Exercise 1.4. Show that the preceding sentence is valid. <

On the basis of this observation, many researchers were of the opinion
that Post’s Problem could not be solved. There is, however, a solution. The
languages A and B must be Turing incomparable in a certain non-effective
way. The method by which this is possible is now referred to as the priority
method and was developed independently by Friedberg (USA) and Muchnik
(Russia) in 1956, roughly 12 years after Post originally posed the problem.

In 1983, at the Computational Complexity Conference in Santa Barbara
P. Young considered these 12 years as the potential length of time needed to
find a solution to the P-NP problem. Twelve years after its definition in 1971,
the P-NP problem, unfortunately, remained unsolved, as it remains today.

* * * * *

Now we turn our attention to the solution of Post’s Problem.

Theorem 1.1. There exist computably enumerable languages A and B that
are Turing incomparable.

Proof. We present an enumeration procedure that enumerates A and B si-
multaneously, thereby showing that both are computably enumerable. The
enumeration proceeds in stages: stage 0, stage 1, stage 2, etc. Each stage is
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subdivided into two phases, an A phase and a B phase. In an A phase, an
element of A (and in a B phase, an element of B) can potentially be enu-
merated; that is, in each phase one element may be put into the appropriate
language. In addition, we maintain during the construction two lists—L 4 and
L p— the entries of which are all of the form (¢, ). In these pairs 7 is the index
of a Turing machine M;, and z is an input for which we will try to guarantee
that 1 € A<z € WP (z € B & x € WA, respectively). Each entry in these
lists is either ‘active’ or ‘inactive’. Furthermore, x4 (zp) will always be an
input that is so large that it does not affect any of the preceding decisions.

Step 0 is used for initialization.

Step 0. (Phase A and B)
Let A=B=Lys=Lg=0andzqy=25=0

The actual construction then proceeds as follows:
e Step n+ 1. (Phase A)

Ly:=LasU{(n,za)}; ((n,xz4) is ‘active’).

FOR all active (i,z) € Ly in increasing order according to i DO
IF M; on input z and Oracle B (as constructed so far)

accepts in n or fewer steps
THEN A := AU {z}; Declare (i,z) to be ‘inactive’;
( Let y be the largest oracle query in
the computation above;
zp = max(zg,y + 1);
J=0;

(¥) ¢ FOR (k,y) € Lp, k>i DO
Lp:=Lp—{(k,y)}U{(k,zp +7j)}; (xactivex)
Ji=i+1

END;
| B = 7B + J;
GOTO Phase B;

END;
END;
GOTO Phase B;

e Step n+ 1. (Phase B)

Lp:=LpU{(n,zp)}; (xactivex)
FOR all active (i,z) € Lp in increasing order according to ¢ DO
IF M; on input x and Oracle A (as constructed so far)
accepts in at most n steps
THEN B := B U {z}; Declare (i,z) to be ‘inactive’;
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( Let y be the largest oracle query in
the computation above;
xa :=max(za,y+ 1);
Jj =05
(¥) ¢ FOR (k,y) € La, k> i DO
Ly:=La—{(k,y)}U{(k,za+7j)}; (xactivex)
Jji=7J+1
END;
| T4 =24 +J;
GOTO Step n + 2;

END;
END:;
GOTO Step n + 2;

We claim that the languages A and B that are “enumerated” by the
preceding construction have the desired properties, namely that A £ B and
B &7 A, or more precisely that for all i € IV there exist x and z' with
reEAsreWpP ands' € B o' € WA

Notice that the entries (i,z) in the lists L4 and Lp can change and
that such changes respect the following priority ordering: The entry (0, ...)
in List L4 has highest priority, then (0,...) in list Lp, then (1,...) in list L4,
then (1,...) in list Lp, etc. This means that if at stage n of the construction
(i,z) € Ly and M; accepts = with oracle B in at most n steps, then x
is enumerated into A. To prevent subsequent changes to the oracle B that
might alter this computation, all of the entries (j,...) in the list Lg that
have lower priority than (¢, x) are removed from the list and replaced by new
entries which are “large enough” that they do not affect the computation. On
the other hand, it can happen that a requirement “z € A & x € W” that
at some point in the construction appears satisfied is later “injured.” This
happens if some z' is enumerated into B for the sake of some entry (i',z")
of higher priority (i.e., for which i’ < 7). It is precisely the determination of
these priorities that is carried out in section (x) of the construction.

What is important is that for each ¢ the entry (i,...) in list L4 or Lp
is changed only finitely many times (“finite injury”). This can be proven by
induction on i.

Ezercise 1.5. Carry out this induction. Also determine how often (at most)
an entry (i,...) in L4 (Lp, respectively) can change. <

A picture is useful in understanding how the construction proceeds. One
can imagine the construction taking place on the following “abacus”:
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The active entries (i,m) in the lists L4 and Lp are represented by balls
labeled with the number ¢ and appearing in position n of the appropriate
row. The arrows indicate the numbers x4 and =, respectively. If the values
of entries in Lg (L4) change, then this is caused by one of the balls labeled
i in the A row (B row). In this case, all of the balls of lower priority (that
is, with larger index) in the B row are slid to the right until they are beyond
the arrow for zp (x4). After the balls have been slid to the right, the arrow
xp (xa) is slid to the right beyond all of the balls.

We know that the entry (i,z) in Ly slides only finitely many times. Let
(i,z) be the final entry in Ly4, corresponding to the location in which ball
“comes to rest.” There are two cases: x € Aor x &€ A. If x € A, then there
is a step n such that during the A phase of stage n, « enters A. Since (i,x)
is the final entry in L4, it is not possible that at some later stage anything
entered B (for the sake of some (i',2') of higher priority) that might have
injured the requirement z € A & z € W5.

If z ¢ A, then z ¢ WP, since otherwise there would have been a stage n
during which the THEN-clause for (z,4) would have been operative, in which
case ¢ would have been enumerated into A. So in this case it is also true that
r€AsreWph.

By a symmetric argument, one can show that for all 7 there is a ' with
' € B& 2 e WA O
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2. Hilbert’s Tenth Problem

Hilbert’s Tenth Problem goes back to the year 1900 and concerns a fun-
damental question, namely whether there is an algorithmic method for
solving Diophantine equations. The ultimate solution to this problem was
not achieved until 1970. The “solution” was, however, a negative one: there
is no such algorithm.

Among the 23 famous open problems posed by the mathematician David
Hilbert in 1900 was one — problem number ten — which possesses an especially
close connection to computability theory, (although this connection was only
apparent later). This problem deals with Diophantine equations — named
after Diophantus of Alexandria, 3rd century A.D. — which are equations of
the form f(xy,...,x,) = 0, where f is a polynomial with integer coefficients.
Required is a method finding integer solutions z1, ..., z, to such an equation
(i.e., zeroes of f in Z). This task is equivalent to the task of finding, given
two polynomials f and g with integer coefficients, solutions to the equation
f =g, since f =g if and only if f —g=0.

FEzercise 2.1. For what values of a,b € Z—{0} does the Diophantine equation
ar+by =1

have integer solutions? q

A positive solution to Hilbert’s tenth problem (by which we mean the
existence of an algorithm to solve such equations) would have had many im-
portant consequences. Many open problems in Number Theory and also in
some other areas of mathematics can be reformulated as Diophantine equa-
tions.

Hilbert’s tenth problem was solved in 1970 by Y.V. Matijasevic after sig-
nificant progress had been made by J. Robinson, H. Putnam and M. Davis.
The solution was, however, of a much different sort than Hilbert had prob-
ably conjectured. The problem is undecidable, which means that there is no
algorithm that takes as input a Diophantine equation and correctly decides
whether it has an integer solution.

This result represents a significant sharpening of (a variant of) Godel’s In-
completeness Theorem, which says that the problem of testing an arithmetic
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formula for validity is undecidable. Arithmetic formulas are formulas that are
built up from the basic operators =, *, +, boolean operations, constants and
variables over the integers, as well as existential and universal quantifiers.

Ezample of an arithmetic formula:
e VzAu (ux2=v)A-(zxc+uxz=uxx+5)

Diophantine equations can be seen as a special case of arithmetic formulas,
namely those in which negation and universal quantifiers do not occur. (That
is, all variables that occur are existentially quantified.) The following two
exercises show how to eliminate the logical connectives AND and OR.

Exercise 2.2. Show that the problem of simultaneously solving a system of
Diophantine equations

fi(z1,...,2,) =0, and
fa2(x1,...,2) =0, and

fe(ze,...,z,) =0

can be reduced to the case of a single Diophantine equation. <

Exercise 2.3. The last exercise demonstrated in a certain sense the existence
of an AND-function for the solvability problem for Diophantine equations.
Show that there is a corresponding OR-function, that is, show that the prob-
lem of solving

fl(mlw";xn) = 0; or

fo(z1,...,z,) =0, or

fk(mla"';xn) =0

can be reduced to the solution of a single Diophantine equation. <

Ezercise 2.4.° Let Dioph(Z) denote the (decision) problem of determining for
a given Diophantine equation whether it has solutions in Z (i.e., precisely the
problem we have been discussing up to this point). Analogously, let Dioph(N)
denote the problem of determining if there are solutions in N. (Note that there
are equations G that are in Dioph(Z) but not it Dioph(N).)

Show: Dioph(Z) <r Dioph(N).

Show: Dioph(Z) <,, Dioph(N). <

Ezercise 2.5.° Show: Dioph(N) <,, Dioph(Z).
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Hint: By a theorem of Lagrange (1770) every natural number can be ex-
pressed as a sum of four squares. <

Now we turn our attention to the proof of undecidability. This will be
done by first reducing the halting problem for register machines to the prob-
lem ExpDioph(N). The problem ExpDioph(N) differs from Dioph(N) in that
exponential terms of the form z¥, where z and y are variables, are also al-
lowed.

The second reduction that we need, the reduction from ExpDioph(N) to
Dioph(N) is a gem of number theory, but has little to do with theoretical
computer science. For this reason, we omit the proof. (See the references for
places to find a proof.)

For the following it will be important that the so-called dominance rela-
tion, a partial order on N which we will denote by <, can be expressed using
exponential Diophantine equations. The relation © < y means that all the
bits of the binary representation of x are less than or equal to the correspond-
ing bits in the binary representation of y. (That is, if  has a 1 in a certain
position, the y must have a 1 there, too.) We postpone for the moment the
problem of expressing < by means of Diophantine equations and simply use
the dominance relation in what follows.

For the undecidability proof we use the following model for register ma-
chines: A register machine has a finite number of registers Ry, ..., Ry, which
can hold arbitrarily large natural numbers. A register program consists of a
sequence of consecutively numbered instructions

].ZAl
2:A2
m: A,

The possible instructions are:

e INC R; (respectively DEC R;)
Increases (decreases) the value in register R; by one. Negative register
values are not allowed.

e GOTO!
Unconditional jump instruction: Jumps to instruction [/, the computation
proceeds from there.

e IF R; =0GOTO !
Conditional jump instruction: Jumps to instruction [ if the value in register
R]' is 0.

e HALT
Ends the program.

One might wonder about the missing instructions “R; := 0” or “R; :=
R, which many authors allow in their GOTO programs, but it is easy to
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convince oneself that these instructions can be simulated by corresponding
programs that use a kind of counting loop:

Ezercise 2.6. Show that the instructions “R; := 0” and “R; := R,” can be
simulated using the given set of instructions. <

For the following proof, however, it turns out to be a significant simplifi-
cation if only the set of instructions presented above is available. In addition,
it is easy to see that without loss of generality we can assume:

e The last instruction of the program, A,,, is always the HALT instruction,
and that it is the only HALT instruction in the program.

e Whenever the program stops due to the HALT instruction, all of the reg-
isters will have been previously set to 0.

e A DEC R; instruction is never executed while the value of register j is 0.
(This can be avoided using conditional jumps.)

Despite these various restrictions, this model of computation is computa-
tionally universal. Thus, the halting problem H for programs begun with all
registers initialized to 0 is undecidable:

H ={P| P is a program for a register machine and this ma-
chine stops when it is started with all registers ini-
tialized to 0 } .

We will reduce this problem to ExpDioph(N) by giving for each program
P a set of (exponential) Diophantine equations which have a (simultaneous)
solution if and only if P € H. Using the methods discussed in Exercises 2.2
and 2.3, this set of equations can then be transformed into a single equation.
So let P be a program of the form

].IAl
2:A2
m: Ap

and let the registers that are addressed in the program be R;,...,R;. We
assume without loss of generality that the previously mentioned restrictions
are satisfied.

The system of Diophantine equations will contain a number of variables,
the intended meaning of which we will give first. For the sake of readability, we
will use capital letters for all variables. Certain of the variables are supposed
to represent finite sequences of natural numbers (ng, n1, . ..,n,). We represent
such a sequence with the single number
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s
E niB‘,
i=0

where B is a (sufficiently large) base number — also a variable. “Sufficiently
large” will mean that in arithmetic operations we will be using (for example,
adding two such sequence-numbers) we will never need to carry. In addition,
B will be a power of 2. This will allow us to use the dominance relation
to control individual bits of the binary representation of such a sequence-
number.

Now we describe the most important variables and their intended mean-
ings. (All of these variables are understood to be existentially quantified.)

B the base number described above.

S the number of steps in the computation (i.e., the
number of instructions executed) until the HALT in-
struction is reached. The number S is the length of
the sequences coded in the following variables.

W; (j =1,...,k) a sequence-number for each register, which repre-
sents the contents of that register at each step
0,1,...,s in the computation, where s is the value
of S.

N; (i =1,...,m) a sequence-number for each instruction number,
which represents for each step 0,1,. .., s whether the
instruction was (=1) or was not (=0) executed at
that step.

Example. Suppose B = 10, S = 5, and the register R; takes on the values
0,1,2,1,1,0 as the computation runs. Then W; = 11210. If the first instruc-
tion is executed at steps 0 and 3, then N; codes the sequence 1,0,0,1,0,0,
so N1 = 1001.

Now we can give the required Diophantine equations that describe the
halting problem. All the equations are conjunctively connected, so we can
use the previous exercises to transform them into a single equation.

First, we have a requirement on the base number B, namely B must be
a power of 2:

B=2%.

K is an additional (auxiliary) variable. In addition, B must be “sufficiently
large”:
B>k, B>m, B>2-S.

The last condition implies that B will be more than twice as large as any
register value that can be computed in S steps. (We will need this fact later.)
These are not Diophantine equations, since we have made use of the less than
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symbol, but by introducing another auxiliary variable (Z), an expression like
X < Y can be easily expressed as an equation, namely X + Z +1 =Y.
(Another method would have been to define B large enough from the start,
say B = 2k+m+5')

The next equations establish certain boundary conditions, for example
that the sequence-numbers N; consist solely of 0- and 1-components. For this
(and also in the following) it is convenient to have available a variable T'
that consists solely of 1’s, that is 7= Y7, B®. T' can be specified with the
equation

1+(B-1)-T =B

The condition on the variables N; can now be formulated as
Ni ﬂT (i:l,...,m) .

Since exactly one instruction is executed at each step of the computation, we
have the condition

The next equations establish the start and end conditions for the register
machine computation. The equation

14N,

forces the execution of the program to begin with the first instruction. The
last instruction must be the HALT instruction, which we are assuming is
instruction m:

B* A4 Ny, .

Furthermore, initially all registers must be set to O:
W; AB*"™' — B (j=1,...,k).

Now we come to the significant equations, namely those which guarantee
the correct transition behavior from one time step to the next. For each
instruction of the form i: GOTO j we introduce an equation of the form

B-N; < N;.

The multiplication by B causes the 1’s in N;, which indicate the steps at
which instruction 7 is executed, to be moved over one position, thus forcing
instruction j to be executed in step s + 1 whenever instruction ¢ is executed
at step s.

In instructions of the forms 7 : INC R; and ¢: DEC R; there is also
a “hidden” GOTO instruction, namely the jump to instruction ¢ + 1. So in
these cases we also introduce
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B-N; <Ny .

The actual function of INC and DEC instructions can be simulated with
Wj:B'(Wj+ZNi_ZNi’) (jz].,...,k),

where the first sum is over all ¢ for which there is an instruction in the
program of the form ¢ : INC Rj;, and the second sum is over all ¢, for which
there is an instruction in the program of the form ¢’ : DEC R;. Once again
the factor of B causes the effect of the instructions to take effect at the next
time step.

The only remaining instructions are the conditional jumps. An instruction
of the form 7 :IF R; =0 GOTO ! implies that execution continues either
with instruction ! (if R; = 0) or with instruction ¢ 4+ 1. So first we introduce
the equation

B-N; AN + Nij1,

which forces that the next instruction can only be instruction [ or instruc-
tion ¢ + 1. To test the condition R; = 0 we use

B-N;dNipw+B-T—-2-Wj.

Ezercise 2.7. Explain how this equation works. <

All that remains is to show that the dominance relation < can be ex-
pressed using exponential Diophantine equations. For this a theorem of Kum-
mer (1852) and Lucas (1878) is helpful:

Theorem 2.1. = Jy if and only if (Y) is odd. o

FEzxercise 2.8. Prove Theorem 2.1.

Hint: (y) (mod 2) = (yn> <yn_1> <y1> <y0> (mod 2), where z, ...z
T Tn) \Tn—1 T1/ \To

and y, ...yo are the binary representations of = and y. <

Since the property “odd” can be easily expressed as a Diophantine equa-
tion (z is odd if and only if z = 2-n + 1 for some n) it only remains to show
that binomial coefficients can be expressed using (exponential) Diophantine
equations. For this we make use of the Binomial Theorem:

(14 u)" = ; <7Z> ul.

Provided (T;) < u, this implies that (?) is just the ith coeflicient in the u-adic
representation of (1 + u)™. Since (7) < 2" it is sufficient to choose u > 2.
So we can write
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m:<Z><:> Ju,v,w:u=2"+1, v<u* m<u and

(1+u)" = wuF ™ + mu® 40 .

This completes the solution to Hilbert’s Tenth Problem. O

The next two exercises present some variations on Hilbert’s Tenth Prob-
lem that remain undecidable.

Exercise 2.9.° Show that the undecidability of Hilbert’s Tenth Problem, i.e.,
the undecidability of Dioph(N) (or Dioph(Z)), implies the undecidability of
the following problem:

Given two n-variate polynomials f and g with positive coeffi-
cients, determine whether it is the case that f(z) < g(z) for
all x € N™. <

Ezercise 2.10.° Show that Hilbert’s Tenth Problem is already undecidable
if one restricts oneself to polynomial equations of the form f(z,...,z,) =0
where the total degree of f (i.e., the degree of f(z,z,...,z)) is at most four.

Hint: As in the reduction of SAT to 3SAT (see Garey and Johnson) one
introduces for each sub-polynomial of f a new variable and then expresses
the property that f = 0 through the conjunction of a set conditions of the
form f; = 0,..., fr = 0. Each polynomial f; has total degree at most two
and the equation f; = 0 expresses that the ¢th new variable has the desired
value. <
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3. The Equivalence Problem
for LOOP(1)- and LOOP(2)-Programs

In the 1960’s, before the boom in complexity theory, several subrecur-
sive classes of functions and languages were investigated extensively. One
such hierarchy of functions (contained in the primitive recursive functions)
considers the depth of nesting of (FOR) loops. It turns out that there is
a decided difference in the complexity of the equivalence problems for
LOOP(1)- and LOOP(2)-programs: the former is coNP-complete, but the
latter is undecidable.

LOOP-programs form a very restricted class of programs for manipulating
numbers in N (including 0), which are stored in registers. Registers in this
model can hold arbitrarily large integers. The syntax of LOOP-programs
is defined inductively: If X and Y are names of registers, then X := Y,
X =X +1and X := 0 are LOOP-programs. Furthermore, if P and @) are
LOOP-programs, then P;@Q is a LOOP-program, as is LOOP X DO P END.

Regarding the semantics of LOOP-programs, that is, the manner in which
they are to be executed, the following should be said: Assignment statements
are executed in the obvious way so that the register values are changed in
the appropriate fashion. A LOOP-program of the form P; (@ is executed by
executing the program P first and then (with the values P leaves in the
registers remaining intact) executing program ). And a program of the form
LOOP X DO P END executes program P as many times as the value of X at
the beginning of the loop.

In addition to specifying the LOOP-program itself, it is necessary to spec-
ify which of the registers — which we will also refer to as variables — are to be
understood as the input registers, and which as output registers. (Typically,
there is only one output register.)

The function f : N" — N™ computed by a LOOP-program (with n input
registers and m output registers) is defined as follows: f(ai,...,a,), with
a; € N, is the vector of values in the output registers of the machine after the
program is run with a; in the ith input register and 0 in all other registers
at the start of execution. It is known that the functions that are computable
by LOOP-programs are precisely the primitive recursive functions.
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Ezxamples. Addition, in the sense of the assignment “Z := X 4+ Y” can be
done via

Z =Y,
LOOP X DO Z := Z + 1 END

where Z is the output register and X and Y are input registers. Multiplication
can be done with the following program:

Z :=0;
LOOP X DO
LOOP Y DO
Z:=7Z+1
END
END

The loop-depth of a LOOP-program is the maximum occurring depth
of nesting of the for loops in the program. (In our examples, the addition
program has loop-depth 1 and the multiplication program has loop-depth 2.)

Ezercise 3.1. Define loop-depth inductively on the formation of LOOP-
programs. <

We call a LOOP-program with loop-depth n a LOOP (n)-program.

Ezercise 3.2. Subtraction was not included in our set of instructions for
LOOP-programs. Show that the instruction X := X = 1 can be simulated
by a LOOP(1)-program. Note: x ~ y is defined by

Lo _Jr—y ifx >y,
v y_{O if z <.

<

Ezxercise 8.3. Show that the instruction “IF X = 0 THEN P END” can be
simulated by a LOOP(1)-program. <

Exercise 3.4.° Show that if k is a constant, then the instruction “IF X =k
THEN P END” can be simulated by a LOOP(1)-program. <

The equivalence problem (for programs of a certain type) is the problem
of determining for two given programs if they compute the same function.
The equivalence problem for Turing machines is easily seen to be undecidable,
since it is at least as difficult as the halting problem. On the other hand, the
equivalence problem for finite automata is decidable. The question then is
this: With respect to equivalence problems, where exactly is the boundary
between undecidability and decidability? We want to investigate this question
using LOOP-programs.
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The result will be this: The equivalence problem for LOOP(1)-programs
is decidable, but for LOOP(2)-programs it is undecidable, and hence also
undecidable for LOOP (n)-programs where n > 2.

* * * * *

We will begin with the undecidability result. The halting problem for
Turing machines is undecidable. GOTO-programs are equivalent to Turing
machines, so the halting problem for GOTO-programs is also undecidable.
In a GOTO-program, every line of the program is numbered consecutively
beginning with 1 and contains one of the following instructions:

X =Y

X=X+1

X:=0

GOTO ¢

IF X = k THEN GOTO i
HALT

The semantics of each is self-explanatory.

We will focus on the special version of the halting problem for GOTO-
programs where the programs are “run on themselves.” Let Py, P», Ps,... be
a systematic enumeration of all GOTO-programs with one input register and
one output register. Then the language

K = {n| P,(n) halts}

is undecidable. This problem can be reduced to a suitable version of the
equivalence problem for LOOP-programs as follows:

n € K & P,(n) halts
< Js Pp(n) halts in at most s steps
& ds Ap(s) # B(s)
& A, ZB.

Here B is a fixed LOOP(0)-program that, independent of its input, always
outputs 0, and A,, is a LOOP-program that computes the following function:

An(s) = 1 if P,,(n) halts in at most s steps,
"SI0 otherwise.

We will see that A,, belongs to LOOP(2). From this it follows immediately
that the equivalence problem for LOOP(2)-programs is undecidable.

What remains then is to give a construction that for each n (i.e., for each
GOTO-program P,,) effectively produces a LOOP(2)-program A,, with the
desired property. As a first step, we define a LOOP-program D,, that can
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simulate individual transitions from one configuration of P, to the next. We
represent a configuration as a vector (a,x,y, 21, - - -, 2), where a is the num-
ber of the instruction about to be executed (or 0 if the program has halted),
x is the value stored in the input register, X; y the value stored in the out-
put register, Y; and (z1,..., zx) the values stored in the remaining registers
Zy, ..., 2y used by P,. The desired program D,, works with the registers A,
X,Y, Zy, ..., Z (and perhaps others) to represent such configurations. That
is, D,, computes a function f : N3 — N*3 where f(a,2,y,21,...,2;) is
the successor configuration of (a, z,y, 21, - . -, 2k)-

Exercise 3.5. If one is given program D,, that behaves as described, how can
one build the desired program A,,?

Program A, must have loop-depth 2. What loop-depth must D,, have for
this to be the case? <

Now we construct D,,. Let the instructions of the GOTO-program P,, be
numbered 1 through r. Then D,, looks roughly like

IF A =1 THEN ...END
IF A =2 THEN ...END

IF A =r THEN ...END

How the ellipses are filled in depends on the particular instructions of P,:
Assignment statements X :=Y, X := X 4+ 1, and X := 0 can be carried over
directly with the addition of A := A+ 1. The instruction HALT yields A := 0.
For GOTO ¢ we write A := 4. For IF X = k THEN GOTO ¢ we write (at first)

IF X =k THEN A:={ELSE A:=A+1

Note that by using conjunction we can “program out” any nesting of IF
statements that occur, so that we remain in LOOP(1). For example: IF B,
THEN IF Bs THEN P END END is equivalent to IF By AND B, THEN P END, can
be simulated by

“Z, = By”;

“Z2 = B277;

“Zl = Zl + Z277;
AR ARES ].";

LOOP Z; DO P END

The instructions in quotation marks indicate LOOP(1)-programs, see the
previous exercises.
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Altogether, D,, is a LOOP(1)-program and A,, is a LOOP(2)-program,
so we have

Theorem 3.1. The equivalence problem for LOOP(2)-programs is undecid-
able. O

* * * * *

Now we turn our attention to LOOP(1)-programs. In this case we shall
see that the equivalence problem is decidable, in fact, it is coNP-complete.
For this we need to characterize the LOOP(1)-programs precisely by giving
a certain “normal form” for LOOP(1)-programs, so that we can decide if two
LOOP(1)-programs are equivalent by considering only their normal forms.

Definition 3.2. A function f : N™ — N, m > 0, is called simple if it can
be built from the following components using composition:

1. s(z)y=xz+1,

2. 2™xy1,...,x,) =0,

3. ulM(x1,...,xn) = @y,

4. x1 + T2,

5 =k,

6 _ ) T, T2 =0,
- w(r,e) = {07 9 >0,
7. @ DIV k,

8 x MOD k.

where k € N is an arbitrary constant.
We want to prove the following theorem:
Theorem 3.3. A function is LOOP(1)-computable if and only if it is simple.

For the direction from right to left, we observe first that functions (1)—(5)
above are all clearly LOOP(1)-computable.

Ezercise 3.6. Show that the function w in item (6) is LOOP(1)-computable.
<

Exercise 3.7.° Show that for every k£ € N, the functions z DIV k£ and
x MOD k are LOOP(1)-computable.

Hint: Note that k is a constant and not the value of an input register. This
means that the number of registers used to compute z MOD k (or « DIV k)
can depend on k. <

Now we must show the converse: every LOOP(1)-computable function
is simple. Let P be a LOOP(1)-program. Then P has the form P =
P; Py;...; P,. The function computed by P is the composition of the func-
tions computed by P;, P, ..., P, in various registers. It is sufficient to show
that each P; computes a simple function in its registers.
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If P; is an assignment statement, this is clear. Now consider a for loop of
the form
P, =LOOP X DO () END

where @ is a LOOP(0)-program.

Ezercise 3.8. Show that @ can only compute functions of the form
(®1,...,xn) = xj +kor (z1,...,x,) — k, where k is a constant. <

So the effect of the LOOP(0)-program can be described with the following
equations:

A= a1y, + k1
Zy = 0y, + ko

Zm = OmYi,, +km

where for each i, Z; is a program register, a; € {0,1}, k; € N, and y; is the
value of the register Z; before execution the for loop.

Now we can define a directed graph corresponding to this representation.
The set of vertices is {Z1,. .., Z,,} and the edges are

E:{(Zi,Zj)|ajzland (Z#]Ork]>0)}

That is, there is an edge from Z, to Z; if the variable Z; is assigned the value
of Z,, perhaps increased by some constant ;.

Ezample. The equations below

Z1 =Y
Zy=ys+5
Zs =y
Zy=y1+3
Zs =ya+2
Ze =ys +7
Zr =yr
Zg =1ys+1

Zy =4
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give rise to the following graph:

o &
e

& @ ®

Isolated variables, i.e., variables that do not occur within a for loop, or
that are independent of loops, are easily handled. In the example above, the
for loop computes in variables Z7; and Zgy the following functions:

Zr = yr
Zy = (IF z = 0 THEN y, ELSE 4)

These functions are clearly simple (see Exercise 3.9), and this example can
be immediately generalized.

FEzercise 3.9. Show how functions of the form
IF © = 0 THEN f ELSE ¢

can be expressed using the functions w and +. <

The remaining variables are either part of exactly one cycle or depend on
exactly one cycle, since each vertex has at most one predecessor.

Now we introduce labels on the edges of the graph. These correspond
exactly to the k;’s. (Note that Z7 and Zy can be considered taken care of and
omitted from the graph altogether.)
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Suppose that variable Z is part of a cycle of length ¢, and that if we
start from Z and traverse the cycle “backwards” then the edge labels are
ki,ko,... ke Let M = ky + -+ + k. If X (the register that determines the
number of times the loop is executed) contains a multiple of ¢, i.e., & = n-t for
some n > 0, then the function computed in register Z is M -n (= n+n+---+n
(M times)). If e =n-t+1, for some | < ¢, then Z =M -n+ (k1 + - + k;).
The numbers n and [ are just x DIV ¢t and x MOD ¢, so the function that is
computed in this case is

Z = (IF z = 0 THEN z ELSE M - (z DIV #) + (ki + -~ + k(, MOD 1))

which is simple, since the numbers M, ¢, and k; are constants.

Exercise 3.10. The argument for the simplicity of this function is still lacking
with regards to the sub-function (ki + --- + k¢, MOD ¢))- Fill in the missing
details. <

Now consider the case of a variable Z that depends on a cycle, but is not
itself in the cycle. If this variable is i steps from a cycle variable Z’, then the
function computed in register Z is equal to the function computed in register
Z' (but on input z = i) plus a constant, which can be read off of the path
from Z to Z'. So such a function is also simple. This concludes the proof of
Theorem 3.3. a

Now that we have described an effective procedure for obtaining a simple
function from a LOOP(1)-program, the equivalence problem for LOOP(1)-
programs is reduced to the equivalence problem for simple functions. A simple
function is specified by describing in a systematic way how it is built up from
the basic functions. This could be done, for example, by giving an “expression
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tree” with leaves given labels corresponding to the basic functions, or by
providing a sufficiently parenthesized expression.

We now want to investigate to what extent a simple function is uniquely
determined by specifying its values at certain “support points.” For exam-
ple, a polynomial (in one variable) of degree d is completely determined by
specifying its value at any d + 1 points. (This fact will also be important in
Topic 14.) In the case of simple functions, however, the situation is a bit more
complicated.

First, we introduce a relation on N™, i.e., on the set of potential input val-
ues for a LOOP-program. Let M, K € N. We say that the tuple (z1,...,z,)
is (M, K)-comparable with (z{,...,z]) if for i = 1,...,n we have:

e (z;<Morzi<M) = z; =z, and
o (z;>M and 2, > M) = z; =7 (mod K).

: , MK
We denote this by (z1,...,z,) = (2},...,2]) and note that = is an
equivalence relation on N". Furthermore, we observe that
o if M' > M, then
M' K MK
(T1,...,2p) = (2,...,2)) = (v1,...,2p) = (2,...,2)),
e and if K’ is a multiple of K, then
M,K' M,K
(1., xn) = (2),...,2)) = (z1,...,2,) = (2,...,2)).
. . . . . MK .
Exercise 8.11. Determine the indez of the equivalence relation = , that is,
the number of distinct equivalence classes. <

Lemma 3.4. Every simple function f can be assigned numbers M and K

. . . . . M .
such that f is a linear combination on equivalence classes of = , i.e.,

flr, . an) =Bo+ D Bi- i,

=0

where each (B; is a rational constant that depends only on the equivalence
class.

Proof. The proof proceeds by structural induction on the simple function.
The argument for the base case is contained in the argument for the inductive
step, so we will focus on the inductive step from the start.

1. Let f be a simple function that has already been shown to satisfy the
statement of the lemma with constants M and K. Then the statement
of the lemma is true also of f(zy,...,z,)+ 1 with the same constants M
and K.
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2. Upon applying the function z"(---) the lemma holds with M = 0 and
K=1.

3. If f1,..., fmn are simple functions that satisfy the lemma with the con-
stants My, K1, ..., My, K, then the function u*(fi(x), ..., fm(x)) sat-
isfies the lemma with the constants M;, K;.

4. If the functions f; and fo satisfy the lemma with the constants My, K,
Ms, and Ko, then fi(x) + fo(x) satisfies the lemma with the constants
IIlaX(Ml,Mz) and K1 . Kz.

5. If the function f satisfies the lemma with the constants M and K, then
the function f(x) = 1 satisfies the lemma with M + K and K.

6. If the functions f; and f, satisfy the lemma with constants My, Ky, M,
and K», then the function w(f;(x), fo(x)) satisfies the lemma with con-
stants max(Ml,Mg) + K2 and K1 . Kg.

7. If the function f satisfies the lemma with constants M and K, then
f(x) DIV k satisfies the lemma with the constants M and k - K.

8. If the function f satisfies the lemma with constants M and K, then
f(x) MOD £k satisfies the lemma with the constants M and k- K. a

Exercise 3.12.° Fill in the details of the proof above by determining the
constants (3; in cases 6 and 7. <

Now the decidability result is at hand. Simple functions can be completely
specified by giving the appropriate values of M and K, and for each of the
finitely many equivalence classes, the constants ;. Therefore, they can also
be compared on the basis of such specifications. But there is an even simpler
way to compare simple functions:

Ezercise 8.13.° Show that a simple function with constants K and M is
completely specified by giving in addition to K and M the finitely many
function values {f(x)}secq, where Q@ = {(z1,...,2,) |fori=1,...,n, z; <
M +2K}. <

From this our theorem follows immediately:
Theorem 3.5. The equivalence problem for LOOP(1)-programs is decidable.

Proof. First one determines the constants M, K; and M,, Ky for the two
programs, then one checks to see if the functions agree on the input values x
that have z; < max(M;, M) + 2K, K, for all i. O

Ezercise 8.14.° Justify the claims made in the previous proof. <

* * * * *

Now we want to determine more exactly the complexity of the equiv-
alence problem for LOOP(1)-problems. We shall see that this problem is
coNP-complete, which is the same as saying that the inequivalence problem
is NP-complete. Most of the work in showing that this problem belongs to
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NP has already been done. The required nondeterministic algorithm, given
2 LOOP(1)-programs as input, first determines the constants Ki, M; and
K5, M> for the two programs, then nondeterministically guesses an input
vector @ with z; < max(M;, Ms) + 2K, K, for all i, and finally checks to see
that Py (x) # Py(x).

To verify that this whole procedure is in NP, we must take a closer look
at portions of the computation. The effective procedure that produces for a
given LOOP(1)-program its associated simple function can clearly be carried
out in deterministic polynomial time. An inspection of the proof of Lemma 3.4
shows that the constants M and K that are assigned to a simple function can
be chosen in such a way that K is the product of all the constants previously
occuring in DIV and MOD functions. (An empty product is considered to
have the value 1.) The value of M can be determined by counting the occur-
rences of w and =~ 1 functions that occur; if there are m such occurrences,
then we can choose M to be M = m- K. Notice that the number of bits in the
binary representations of M and K is polynomial in the length of the origi-
nal LOOP-program, so we can guess  in nondeterministic polynomial time.
Finally, we need to evaluate the LOOP-programs on the input . A step-
by-step simulation of the LOOP-program, however, does not work, since the
simulation time could be linear in the wvalues of the inputs, which would be
exponential in the lengths of their binary representations. It is more efficient
to make use of the representations as simple functions, since the functions +,
=, w, DIV, and MOD can be evaluated in polynomial time.

Theorem 3.6. The inequivalence problem for LOOP(1)-programs is NP-
complete.

Proof. It remains to show that SAT can be reduced to this problem. Let F
be a boolean formula with n boolean variables. We construct two LOOP(1)-
programs such that the first one does nothing but output 0. The second
program interprets the input z; in such a way that z; = 0 means FALSE
and z; > 0 means TRUE. Under this interpretation, the program evaluates
F' with the given assignment and outputs 1 if the assignment makes the
formula true and 0 otherwise. Clearly the problems are inequivalent if and
only if there is a satisfying assignment for F', i.e., F' € SAT. O

Ezercise 3.15. Construct the second LOOP(1)-program mentioned above.
Hint: It is sufficient to show how to simulate the logical NOR-function with
a LOOP(1)-program. <

Ezercise 3.16. Show that the inequivalence problem for LOOP(1)-programs
is already NP-complete if it is restricted to include only programs with one
input variable. <
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4. The Second LBA Problem

The solution of the so-called second LBA problem came unexpectedly in
1987 and was discovered independently by an American (Immerman) and
a Slovakian (Szelepcsényi). Among other things, this result says that the
class of context sensitive languages is closed under complementation.

The two LBA problems were posed in 1964 by S.Y. Kuroda. The meaning of
these problems (the formal definitions will be given shortly) were repeatedly
brought up and discussed (see, for example, the article by Hartmanis and
Hunt). In 1987 the time must have been “ripe”; the second LBA problem
was solved completely independently by an American researcher, N. Immer-
man, and a Slovakian student, R. Szelepcsényi. The amazing part of these
proofs is this: they are considerable easier than one would have expected of a
problem that had remained unsolved for 23 years. Furthermore, the solution
is precisely the opposite of the conjecture that was widely held prior to the
proof.

What are the LBA problems? Kuroda showed in 1964 that the class of lan-
guages that are recognized by nondeterministic linear space-bounded Turing
machines (LBAs, linear bounded automata) is the same as the class of con-
text sensitive languages. This result is often presented in an undergraduate
course on formal languages. In modern terminology, this result says that

NSPACE(n) = CSL,

where CSL is the class of context sensitive languages. The first LBA prob-
lem is the question of whether deterministic and nondeterministic LBAs are
equivalent:

NSPACE(n) = DSPACE(n) .

The result that comes closest to solving the first LBA problem is Savitch’s
Theorem which says that

NSPACE(s(n)) C DSPACE(s%*(n)) ,
for all s(n) > logn. So in particular,

NSPACE(n) C DSPACE(n?) .
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The second LBA problem is the question of whether the class of languages
accepted by nondeterministic LBAs is closed under complement:

NSPACE(n) = coNSPACE(n) .

A negative answer to the second LBA problem implies, of course, a negative
answer to the first, since DSPACE(n) is closed under complement. But from a
positive solution to the second LBA problem, there is no direct consequence
regarding the first LBA problem.

The second LBA problem has now been solved (the first LBA problem
remains open): NSPACE(n) is — contrary to the previously generally believed
conjecture — closed under complementation. This solution to the second LBA
problem is actually an instance of a more general result: From the proof it
follows immediately that

NSPACE(s(n)) = coNSPACE(s(n)) ,

whenever s(n) > logn.

Although the proof is actually relatively easy, at least in the case of Im-
merman, it appears at the end of a sequence of results which say that certain
hierarchies, defined in terms of the class NSPACE(n), “collapse.” In all of
these results, a certain counting technique is employed which can be used
to complement classes. An overview of these techniques was presented in an
article by U. Schoning.

Exercise 4.1.° Suppose that membership in a language A can be determined
by some nondeterministic algorithm M (with certain resource bounds which
do not interest us at the moment). Furthermore, suppose that the number
of strings in A of a given length is given by an “easily computed” function
f:N—=N

Under these assumptions, give a nondeterministic algorithm for A. <

Ezercise 4.2. Now suppose that in the previous exercise the the algorithm
M has nondeterministic time complexity ¢)s(n) and space complexity sps(n),
and the the computation of f requires t¢(n) time and sy(n) space. Determine
upper bounds for the time- and space-complexity of the algorithm for A in
the previous exercise. <

Now suppose that A € CSL = NSPACE(n). If f(n) can also be com-
puted in linear space, then by the observations above, A € NSPACE(O(n)) =
NSPACE(n). So to finish the proof, we need to show how to compute f in
linear space.

Exercise 4.3. For the computation of f in linear space, we will need to make
use of nondeterminism. That is, we should be thinking of a nondeterministic
linear space-bounded Turing machine that computes f.
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For such nondeterministic machines, there are various imaginable models
of what it means for them to compute functions (e.g., single-valued, multi-
valued). Find a definition that is sufficient to work correctly in this context.

<

Since A is context sensitive, there is a corresponding grammar G with
variable set V' and terminal alphabet I' that generates A. For all n,i € N
define the subset T7* of (V U I')* as follows:

T ={z : |x|§n,5$gaz},

where S = ¢ = means that  can be derived from the start symbol S in at
most ¢ steps according to the rules of grammar G. For all n, T* = S. For any
context sensitive grammar G, it is clear that for each n there is an m such
that T, =17, . Let g(n) = |T}|, where m is the number just mentioned.
Sketch:

Ezercise 4.4. Show that for the proof it suffices to show that g can be
computed in the manner described in Exercise 4.3. <

Now we show that g can be computed in this nondeterministic sense in
linear space. Herein lies the reason why this entire proof is often referred to as
the inductive counting method. Our plan is to compute (nondeterministically)
in order the numbers 1 = |T3|, |17*|, |1%|,- - - until for some m we have |I}| =
|77 1| at which point we will output this number as g(n). What we need then
is a (nondeterministic) procedure that correctly computes [T/} ;| under the
assumption that the correct value of |T*| is known.

Exercise 4.5.° Provide the algorithm for this.

Hint: In order to compute |T}} | correctly, we must identify and count all the
elements of 77 ;. For this we need to first generate (in an “inner loop”) all
the elements of T;*. We will be able to guarantee that we have generated all
of T}* since we know how many elements are in the set. <

It should be noted that we have intentionally displaced the inductive
counting argument of the preceding proof from its original context to the
context of the sets T}". The original proof uses instead the sets (and number)
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of configurations that are reachable from the start configuration of an LBA
in at most 7 steps. The original proof is more easily generalized to other space
bounds like logn.
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5. LOGSPACE, Random Walks on Graphs,
and Universal Traversal Sequences

There is a surprising, at first glance unexpected, difference in (space) com-
plexity between the problems of finding a path from a start node to an
end node in a directed graph and of doing so in an undirected graph. In
an undirected graph this is easier to solve; in fact, in can be done using a
random walk or a universal traversal sequence.

We denote by L the class of all decision problems that can be solved
using algorithms that use only logarithmically much space, ie., L =
DSPACE(O(log(n)). In this definition we only count the storage space used on
the work tape, not on the (read-only) input tape. Similarly, one can define a
nondeterministic version of this class: NL = NSPACE(O(log(n)). Whether the
inclusion L C NL is strict is an open question. (It has, however, been shown
that NL = coNL, see Topic 4.) Just as in the case of the P = NP question,
one can define a notion of completeness for dealing with these classes. But
polynomial time reductions are meaningless in this case, since NL C P.

Exercise 5.1. Why is the running time of every halting NL-computation
polynomially bounded? Why is NL C P? <

One must design the notion of reduction with the smaller of the two
classes in mind (in this case, L). A problem A is said to be log-reducible to
problem B (written A <jo, B) if there is a logarithmically space-bounded
Turing machine with designated (read-only) input and (write-only) output
tapes which are not considered when computing the space usage, such that
forall z, x € A <= M(z) € B.

Ezercise 5.2. Show that log-reducibility is a transitive relation. <
A problem Ay is called NL-complete if Ag € NL and for all A € NL, A <04 Ao.

Consider the following algorithmic problem:

PATH = {(G,a,b) |G is a directed graph and a and b are
nodes in G such that there is a path
from a to b in G }.

Ezercise 5.3. Show that PATH (sometimes called GAP, graph accessibility
problem) is NL-complete.
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Hint: The graph that represents the possible transitions from one configura-
tion to the next in the NL-computation has polynomial size (in the length of
the input). Solutions to this exercise and the previous one can be found in
many books on complexity theory. <

Now one can ask about the situation with undirected graphs instead of
directed graphs. We define

UPATH = {(G,a,b) |G is an undirected graph and a and b
are nodes in G such that there is a path
from a to bin G }.

Often the directed and undirected version of a given problem about graphs
are equivalent in the sense of complexity theory. For example, the Hamilto-
nian Circuit Problem is NP-complete for directed and for undirected graphs
(see Garey and Johnson). The graph isomorphism problems for undirected
and directed graphs are also equivalent under polynomial-time reductions
(see Kobler, Schoning, Tordn). In this case, however, there seems to be a
difference: The NL-completeness proof above does not work for UPATH.

Exercise 5.4. Why not? <

It is still the case that UPATH € NL, so it is possible that UPATH is an easier
problem than PATH. We will show that a randomized version of UPATH is
in L.

Let RL denote the class of problems that can be decided by algorithms that
are simultaneously logarithmically space-bounded and polynomially time-
bounded and are allowed to make use of random decisions in their compu-
tations. The use of these random decisions causes the output of the machine
M to be a two-valued random variable. The computation of a problem A is
to be understood in the following way:

x € A= Pr[M accepts z] > 1/2,
x & A= Pr[M accepts z] = 0.

It is clear that L C RL C NL.

Perhaps the reader is wondering why we had to require polynomial
running-time in the definition. In the exercises above, we just showed that L-
and NL-algorithms only need at most polynomial time. But this is not the
case for randomized log-space machines:

Exercise 5.5.° Give a randomized, logarithmic space-bounded algorithm that
has an exponential expected running time.

Hint: Have the algorithm repeatedly simulate a random experiment for which
each trial succeeds with probability only 27 until there is a successful trial,
then halt. <
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In fact, it can be shown that the class of all languages accepted by random-
ized log-space algorithms (without the polynomial bound on running time)
is exactly NL, so the restriction to polynomial running-time is significant.

The problems UPATH and PATH may not be in L, since a systematic
search for a path from a to b would require keeping track of where one has
been. If the input graph has n nodes, this would require at least n bits of
stored information, too much for a log-space machine.

There is, however, a randomized algorithm that demonstrates that
UPATH € RL. This algorithm carries out a random walk on the graph,
starting at a. This is continued until, if ever, b is reached. A random walk re-
quires less space than a systematic search of the graph: we only need enough
space to store the number of the current node, i.e. log(n) bits. Of course, we
can no longer avoid nodes being visited more than once.

Our random algorithm is the following:

INPUT (G,a,b);
v = a;
FOR i:=1TO p(n) DO
Randomly choose a node w adjacent to v using the uniform
distribution;
v = w;
IF v =0 THEN ACCEPT END;
END;
REJECT;

It remains to show that for an undirected graph G, the polynomial p can be
chosen in such a way that the definition of UPATH € RL is satisfied, namely
so that

(G,a,b) € UPATH = Pr[M accepts (G,a,b)] > 1/2,
(G,a,b) ¢ UPATH = Pr[M accepts (G,a,b)] = 0.

Ezercise 5.6. Show that the given algorithm cannot work for directed graphs.
That is, show that there are directed graphs G such that the node b in G is
reachable by a random walk, but only with probability 27™. So the expected
length of the random walk is 2", hence not polynomial.

Hint: This exercise is very similar to Exercise 5.5. <

By a random walk on a graph G, started at a we mean an infinite sequence
W = (v1,v2,v3,...) with v; = a and v;41 chosen randomly (under the uni-
form distribution) from among the nodes adjacent to v;. (So {v;, viy1} must
be an (undirected) edge in G.) Let W; denote the finite subsequence consist-
ing of the first ¢ nodes in W. For a node v in G we compute the probability
of the occurrence of v in W as

[{i <nfv=wvi}
- :

P, =lim,
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From the theory of Markov chains it is clear (by the law of large numbers)
that this limit exists and that for a connected graph G, P, > 0 for all v.
1/P, is the expected value of the distance between adjacent occurrences of
the node v in W, that is, the mean number of steps it takes for a random
walk starting at v to return to v.

For the moment we will treat each undirected edge {u, v} like two directed
edges (u,v) and (v, u). We claim that each of these directed edges occurs with
probability 1/2e in a random walk on a connected graph G with e (undirected)
edges. It is clear that the sum of these probabilities is 1.

If we extend the notation above to edges as well as nodes, then our claim
becomes

Hi < n | (vi,vig1) = (u,v)}]

=1/2e.

P(uw) = limy, 00

Suppose this is not the case. If the edges do not all occur with the same
probability, then there must be an edge (u,v) that has a larger probability
than the mean of the probabilities of its adjacent edges (via node v). That
is,

1
P T P
(u,v) > d(’U) Z (v,w) »
(v,w)EG
where d(v) is the degree of the node v.

Exercise 5.7. Justify that this inequality follows from the assumption that
the edges do not all occur with equal probability. <

Thus if we can show that for all edges (u,v)

1
Puv T Pv,w )
(u,v) d(v) (v,wZ)EG (v,w)

then by Exercise 5.7 we can conclude that P, ,) = 1/2e for all edges (u,v).
We can see that this is the case as follows: Consider the points in the random
walk W when the edge (u,v) occurs:

W=_(..,uv,...,u,0,...).

After v must come an adjacent edge (v, w), and each such edge occurs with
equal probability 1/d(v). So W looks like

W=_(..,u,v,wy,...,u,v,ws,...),

and the desired equality follows. Thus every directed edge (u,v) occurs with
probability 1/2e, and, therefore, every undirected edge {u, v} with probability
1/e.

Every edge of the form (u,v) leads to node v. Every such edge occurs with
probability 1/2e, so the node v occurs with probability d(v)/2v, i.e., P, =
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d(v)/2e. The mean length of a random walk starting at a random node until
the node v occurs is, therefore, 1/P, = 2e/d(v).

Ezercise 5.8. Let X be a random variable that has an expected value and
takes on only non-negative values. Show the following inequality: Pr[X >
al < E(X)/a.

Hint: Look in a book on probability under the topic “Markov’s inequality.”
<

Now we only have the small step of showing that the length of the random
walk can be bounded by a polynomial but that each node (in particular, our
destination node b) will still occur with probability > 1/2. Furthermore, we
will show that there are universal traversal sequences, that is, polynomially
long sequences of instructions of the form (right, left, left, right, left ...)
which if followed will cause a walk to visit every node in any graph that
has n nodes. (Frequent museum visitors will likely be very interested in this
result.)

Let E(i,j) denote the expected value of the number of steps in a random
walk from node ¢ to node j. We have already shown that the mean length of
time from one occurrence of v to the next is 1/P, = 2e/d(v). In this notation
we can express this as E(v,v) = 2e/d(v).

Ezercise 5.9. Let (u,v) be an edge in G. Show that E(u,v) < 2e. <

Now we want an approximation for E(a,b) for any nodes a and b, which
are not necessarily adjacent. Let E(a,G) denote the mean length of a random
walk starting at a until all the nodes in G have been visited at least once.
We assume that G is connected, so that all nodes in G are reachable from a.
Then for any a and b in G we have E(a,b) < E(a, Q).

Let (a = vg, v1,v2,...,V;) be a path in G that starts at a and visits every
node at least once.

Exercise 5.10. Show that in a connected graph with n nodes there is always
such a path of length k£ < 2n. <

Now we can give a very rough approximation for E(a,G) by considering
the mean length of a random walk that first goes from a to v; (in one or more
steps), then wanders to ve, then vz, etc and in this way eventually arrives at
vi. From this we get

k
E(a,G) < ZE(vi,l,vi) <2n-2e=4en.
i=1

Ezercise 5.11. Show that from this inequality it follows that the probability
that a fixed node b in G is not visited in a random walk that starts at a and
proceeds for 8e steps is at most 1/2.

Hint: Use Exercise 5.8. <
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Now we put everything together: On input (G, a,b), where G is an undi-
rected graph with n nodes and e edges, we simulate a random walk of length
8e. If there is no path from a to b, then this algorithm cannot possibly find
one. If there is such a path, i.e., G(a,b) € UPATH, then this algorithm finds
one with probability at least 1/2.

To reduce the probability that a path exists but is not found, this random
experiment can be repeated or, equivalently, the the length of the random
walk can be increased. If the length of the random walk is m - 8¢, (i.e., m
repetitions of the experiment), then the probability of overlooking an existing
path is reduced to at most 27,

The ability to drastically increase the probability of success while main-
taining a polynomially long random walk (often referred to as probability
amplification) is the key to the existence of a universal traversal sequence. A
d-regular graph is a connected graph in which each node has degree at most
d. Clearly, any d-regular graph has e < dn/2 edges. We order the < d edges
leaving a given node arbitrarily and assign each a number 0,1,...,d — 1.
(Note that each edge (u,v) has two numbers, one with respect to each of u
and v.) By a universal traversal sequence (for d-regular graphs) we mean a
sequence I = (i1, i2,...,%) with i; € {0,1,...,d — 1}, such that for any of
these graphs and any choice of starting nodes, the graph is traversed via I,
in the sense that at each step the choice of the next node to visit is made
according to I and the numbering of the edges leaving the current node, and
that all nodes of the graph are visited.

A randomly chosen sequence I = (i1,1is,...,4;) where each i; is chosen
independently at random under the uniform distribution on {0,1,...,d — 1}
describes precisely a random walk. We have already seen that the probability
that a random walk of length & = m - 8en < m - 4dn® does not completely
traverse a graph G is at most 27, So if g is the number of labeled d-
regular graphs (with the labeling described above) and we choose m so large
that 27 . g < 1, then the probability that a randomly chosen sequence
is a universal traversal sequence is positive, which means at least one such
sequences must ezist. But how large must m be?

Exercise 5.12. Show that the number of labeled d-regular graphs is at most
ndn. <

Since
27M.g <l = 27 .pM <1

< —m+dn-logn <0
<= m >dn-logn,

there must exist a universal traversal sequence for all d-regular graphs with
n nodes that has length (dnlogn)4dn® = O(n3logn).
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6. Exponential Lower Bounds
for the Length of Resolution Proofs

The resolution calculus is one of the most commonly used methods in
theorem proving. For a long time an exponential lower bound for the length
of such proofs was sought. In 1985 this was finally proven by Haken.

The resolution calculus operates on sets of clauses. A clause is a disjunction
(OR) of literals. A literal is a variable or its negation. A set of clauses is
understood to represent a conjunction (AND) of the clauses. Altogether this
corresponds to a formula in disjunctive normal form.

Ezample. The set of clauses

{ {$1,$_2,$_3}, {x_lax_Q}a {I_2,.Z'3}, {I2} }
corresponds to the formula

(r) VTR VT3) A (FTTVT2) A (T2 V x3) Ay .

FEzxercise 6.1. Make a truth table for this formula. Is the formula satisfiable?
<

In each resolution step of a resolution proof two (previously derived or
given) clauses, K; and K>, are combined to derive a new clause K3. This is
possible only if there is a variable x; that occurs positively in one clause and
negatively in the other. The resolvent K3 is then K; U Ko — {z;,T;}. The
notation for this is

K

K,



50 Topic 6

Ezxample.

{371,332,333,33_5}
{xlax37x_47x_57 .7/'6}

{mlaw_Z; :17371'_47 33_5, iL'@}

In the example above, the resolution is done on variable xs, since x> occurs
in the upper clause and T3 in the lower one. After resolution, x5 does not
occur in the resulting clause (but it may occur again later in the resolution).

Several resolution steps can be represented by an acyclic graph. The goal
of the resolution proof is to derive (.

Ezample. (continued from above)

{.’I?]_,Z'_Q, 33'_3}

{72,735}

{71, 7}

{I_z, .1'3}

{z2}

The resolution calculus is sound and complete for refutation. That is, if
a set of clauses F' has a resolution proof that leads to the empty clause,
then F' is unsatisfiable (soundness), and if F' is unsatisfiable, then there is a
resolution proof that leads to the empty clause (completeness).

Ezxercise 6.2.° Prove this.

Hint: The proof of soundness can be done by induction on the length of the
resolution proof; the proof of completeness can be done by induction on the
number of variables that occur in the clause. <

Now suppose we are given a resolution proof. Furthermore, let a be an
arbitrary assignment of the variables that occur. Then a uniquely determines
a path through the resolution proof — from one of the original clauses to the
empty clause — so that for each clause K along this path, a(K) = 0.
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Ezample. Let a(z1) = a(z2) = a(xzs) = 1. Then the path determined by «
in the resolution proof above is indicated below.

{xlam_Za 33'_3}

{72, 73}

{71, 72}

{72, 23}

{z2}

Exercise 6.3. Justify the claim that for each such « there is a path through
the resolution proof from one of the original clauses to the empty clause and
that this path is unique.

Hint: Construct the path by starting from the empty clause and working
backwards toward one of the original clauses. <

A sound and complete proof system for refutation, like resolution, can be
viewed as a nondeterministic algorithm that works in the following way:

INPUT F; (x the formula to refute %)
REPEAT
Nondeterministically choose one possible proof step and
add it to the proof that has been constructed so far;
UNTIL unsatisfiability of F' is established by the proof;
OUTPUT unsatisfiable and accept;

where the test in the REPEAT-UNTIL loop is required to run in time that
is polynomial in the length of the proof. Such an algorithm accepts (in the
nondeterministic sense) precisely the set of unsatisfiable formulas, i.e. SAT.

In the theory of NP-completeness, one defines the time complexity of a
nondeterministic algorithm to be the least possible number of steps (under
some choice of the nondeterministic decisions) in which the result (in this case
establishing the unsatisfiability of a formula) can be reached. So in this case,
the nondeterministic time complexity corresponds precisely to the length of
the shortest possible proof in some calculus. We call a (sound and complete)
proof system a SUPER proof system if there is a polynomial p so that the
algorithm above on an input of length n makes (more exactly: can only make)
at most p(n) passes through the loop before arriving at a result. Or, formu-
lated differently, a proof system is SUPER if for every unsatisfiable formula
F of length n there is a proof of the unsatisfiability of F' that is at most
polynomially long (in n).
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Exercise 6.4. Show that NP = coNP if and only if there is a SUPER proof
system for refutation.

Hint: Use the fact that SAT is NP-complete. <

Is the resolution calculus a SUPER proof system? If so, then by the ex-
ercise above it would follow that NP = coNP, which would be spectacular
and contradict most conjectures. On the other hand, if we can show that
resolution is not a SUPER proof system, then this is an interesting result,
but it does not have any immediate, direct implications for the NP =?7coNP
problem. In the remainder of this chapter we will prove this interesting result.

Theorem 6.1. The resolution calculus is not a SUPER proof system.

Proof. First we will define for each n a formula, i.e., a set of clauses, that
expresses the pigeonhole principle: n+ 1 pigeons do not fit into n pigeonholes
in such a way that no hole contains more than one pigeon.! The variable z; ;
(te{l,...,n}and j € {1,...,n + 1}) will be used to express that pigeon j
is in pigeonhole i. The set of clauses PH P, consists of:

e Type 1 clauses:

{33171; L2150+, l”ml}, {551,2, T2.2,... ;Cﬂn,z}, . -;{Cﬂl,n+1, T2 41y ;CUn,n+1};
and
e Type 2 clauses:

{m:m}: {m:m}: sty {F,l: xl,n-ﬁ-l}: {m: m}a ety {xl,naxl,n+1}>
{m:m}: {m:m}: sty {E: x2,n+1}7 {m: m}a ety {x2,nax2,n+1}>
{xn,la xn,2}7 {xn,la xn,3}7 cey {xmla xnm—l—l}: {xn72> xn,S}: ceey {xn,n: xn,n+1}

The type 1 clauses express that each pigeon is in at least one hole. The type
2 clauses express that each hole contains at most one pigeon (literally, each
hole does not contain a pair of distinct pigeons).

It is clear that for each n, PHP, is unsatisfiable. Our goal is to show
that every resolution proof of this fact must have length at least ¢ for some
constant ¢ > 1. Since the number of variables in PH P, is quadratic in n
and the number of clauses is O(n?), it follows from this that the resolution
calculus is not SUPER.

For the proof we use 1 x (n+ 1) matrices to represent the clauses in PH P,
and their resolvents. The n rows represent the n holes and the n + 1 columns

! Translation note: In German, the pigeonhole principle is called the Schubfach-
prinzip, literally the drawer principle, and the original examples here included
the pigeon example and the following: n+ 1 socks do not fit in n drawers in such
a way that no drawer contains more than one sock. Also, the English expression
“pigeonhole” probably does not refer to bird houses, but to a certain type of
mail slots (common in many university department offices) which are also called
pigeonholes. So that a better example would perhaps be to replace pigeons with
letters, but we will continue with pigeons, as in the original.
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the n 4+ 1 pigeons. We will place a @ in position (¢, j) if the literal ; j occurs
in the clause and a © in position (i, 7) if the literal T; ; occurs in the clause.

Ezercise 6.5. Draw the representation of PH P3 in this scheme. <

Analogously, we can represent assignments to variables in this rectangle
notation scheme: we place a b € {0,1} in position (4, j) if the variable z; ;
should have the value b. We will call an assignment, critical if n of the n + 1
pigeons have been assigned distinct holes, so that all » holes contain a pigeon.
In other words, an assignment is said to be critical if for every i (hole) there
is a j (pigeon) with a(z;;) = 1 and also for every j there is at most one 4
with a(mi,]’) =1.

Ezercise 6.6. Draw a 5 x 6 matrix that represents an arbitrary critical as-
signment. <

Exercise 6.7. Let n be fixed. How many critical assignments are there? <

In the matrix representation of a critical assignment there will be a column
in which there are only 0’s; we will call this column the 0-column of the critical
assignment.

Exercise 6.8. A critical assignment always satisfies all clauses of PHP,
except for one, which one? <

Assume we have a resolution proof that demonstrates the unsatisfiability
of PHP,, represented as an acyclic graph. Let « be a critical assignment.
We apply the construction of Exercise 6.3, which produces for each such
assignment a unique path connecting one of the original clauses with the
empty clause such that for each clause K along this path a(K) = 0.

Ezercise 6.9. The path associated with « can only connect the empty clause
with one of the original clauses in PH P,,. Which one? <

Now we put everything together. Every critical assignment a has a 0-
column. The unique path through the resolution proof of PH P,, determined
by a connects a clause of PH P,, with the empty clause. This clause in PHP,
must be the type 1 clause that has ®’s in the 0-column of «.

Consider a 4 x 5 example (so n = 4). Let a be the following critical
assignment:

o= OO
oSO
SO =O
= o OO

- OO OO

The arrow indicates the 0-column of «.
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The next diagram indicates the path in the resolution proof associated
with a.

The leftmost clause contains n @’s. The empty clause at the end has none.
A resolution step can only eliminate at most one of these @’s. So there must
be a clause along this path that has ezactly n/2 @®’s in the 0-column of a.

Of course, the remaining columns of this clause can (and must) also have
changed, but for the moment we are only interested in the 0-column. So we
have shown that for every critical assignment « there is a clause K in the
resolution proof that has exactly n/2 @’s in the 0-column of a and that
a(K) =0.

Now imagine the clauses of the resolution proof to be linearly ordered in
such a way that resolvents always occur later in the list than their parent
clauses. (Such an ordering is a topological ordering of the acyclic graph of
the proof). The last clause of this order must be the empty clause. For every
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critical assignment a, let K[,) be the first clause K in this ordering that has
exactly n/2 @’s in the 0-column of « and for which a(K) = 0. (This clause
is not necessarily the clause constructed above in our proof of the existence
of such a clause.)

Ezercise 6.10. Show that the clause K4}, which has n/2 @’s in the 0-column
of a, has no &’s in this column. <

Next we want to consider partial assignments, i.e., assignments that do
not assign a value to all of the variables. We are only interested in partial
assignments that can be extended to critical assignments. That is, the partial
assignments that interest us cannot have two 1’s in the same row or column.
In what follows we will consider only partial assignments that in addition to
being extendible to a critical assignment also have the property that ezactly
n/8 of the positions are assigned a 1. (For simplicity we will assume that
n is divisible by 8.) In order to make these partial assignments notationally
distinguishable from critical assignments, we will use capital letters for the
partial assignments. Let S be a partial assignment (with the restrictions
as mentioned). We let K° denote the first clause in the proof sequence of
the form K|, such that S can be extended to a. In this way, every partial
assignment S is assigned a critical assignment «;, namely one for which K, =
K. From now on we will call the clauses of the form K*° complex clauses.

The proof strategy is now the following: We will show that if a resolution
proof is “too short” then it must contain an error. Suppose there is a res-
olution proof P for PHP, that is “too short,” where for the length of the
proof P we only count the number of complex clauses that occur. Suppose
this number is less than ¢" for some constant ¢ > 1 to be determined later.
Then a certain greedy algorithm, which we will give below, with the set of
complex clauses in P as input will find a partial assignment S that satisfies
all of these complex clauses. (That is, the n/8 1’s in S will be in positions
such that for each of the complex clauses at least one of these positions con-
tains a @.) Starting with this partial assignment S, as described above, we
produce a complex clause K = K,y in P for some a with a(K®) = 0. But
this is a contradiction, since S makes all of the complex clauses in P true.
Thus K*° represents an error in the proof, and all correct proofs must be
“long enough.”

In order to carry out this argument with our greedy algorithm, we must
show that every complex clause must necessarily have, in addition to the
n/2 @’s in the 0-column, other @’s in other columns. In fact, there must be
so many that we can always assume that there are at least 2(n?) &’s. The
existence of this many @’s simplifies the argument, that n/8 1’s can be fixed
so that all complex clauses become true.
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Consider an 8 x 9 example. A partial assignment S must in this case fix
n/8 = 1. Assume that the 1 is in position (1,1). Let K = K[, for some a
that extends S. Furthermore, suppose that a(z22) =1,..., (%) = L. The
0-column in this case is n + 1. (Unspecified values in the diagram below are
0.)

?

0-column

The corresponding complex clause K° = K|q) has exactly n/2 = 4 @’s in
column n + 1. For simplicity, we draw them at the bottom:

© S DD

FEzercise 6.11. Show that there must be at least 3n/8 1’s in the diagram for
a that are neither in the same row as a @ in the 0-column of K*° nor fixed
by S. <

Now select an arbitrary 1 from among these 3n/8 many and change « to
0 at this location. At the same time, change the 0 in the same row of the
0-column to a 1. The result is another critical assignment a*, for which the
0-column is the column in which a 1 was changed to a 0. If we carry this
procedure out using the 1 in column 4 of our example, we get the following
transformation:
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0-column

Claim. Now we claim that all 3n/8 columns in which 1’s of the type described
in the last exercise occur are “good” columns. (In our example this would
include, among others, column 4.) A good column is one in which either there
is exactly one © or at least n/2 @’s.

Proof (of the claim). First note that no column of K can contain two ©’s.
Exercise 6.12. Why? <

Now consider one of the 3n/8 columns mentioned in the claim and suppose
that this column is not good. Let this be column j. Then there must be no
©’s and fewer than n/2 @’s in this column. In this case, the transformation
from «a to «* (using this column) does not change the truth value; it is still
the case that a*(K°) = 0.

Exercise 6.13. Justify this. <

Now we can construct a path backwards from the clause K to one of the
original clauses so that for each clause K along this path o*(K) = 0. As in
Exercise 6.9, this path must lead to a clause of type 1 in which the column j
is filled with @’s. So at the end of this path we have a clause with more than
n/2 @®’s. Somewhere strictly between there must be a clause with ezactly
n/2 @’s in column j. This is a clause of the same form as K,-] (perhaps
K|q+)). Since K[4+] is defined to be the first clause of this type that occurs
in the proof P, K[~ must come strictly before K*. But since a* is also an
extension of S, and K° was chosen to be at the first possible position in the
proof, this is a contradiction; K should have been chosen to be K [a]- Thus
every complex clause has at least 3n/8 + 1 “good” columns (including the
0-column). o

Now suppose that P is a resolution proof for the unsatisfiability of PH P,
and {K1, K>,...,K;} are the complex clauses that occur in P. We modify
the sequence {K;} to a sequence K]: in every column that contains a & (this
will be a “good” column) we strike the © and fill the rest of the column
(except for the position of the original ©) with @. For any partial assignment
S, if S(K}) =1, then S(K;) = 1.

The sequence (K7, K}, ..., K}) is the input for the following greedy algo-
rithm. This algorithm “tries” to construct a partial assignment S such that
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the n/8 1’s in S are sufficient to force that S(K}) = S(kK;) = 1. In particular,
this will also be the case for any extension of S to a critical assignment. But
this would be a contradiction, since for each complex clause K (which is in
the input list) there must be an « for which K = K, and a(K®) = 0.

We will see that this contradiction always arises if ¢ is “too small.” Thus
the number of complex clauses in P and, therefore, the length of P itself
must be large enough.

PROCEDURE Greedy(M : Set of clauses): partial assignment;
VAR
S : partial assignment;
E : set of matrix positions;
k,i,j : CARDINAL ;
BEGIN
S = empty assignment;
E := all positions;
FOR k:=1TO n/8 DO
Find the positions (i, ) in E, where the most clauses
in M have a &®;
Expand S by (4,7);
Strike from M those clauses that have @ in position (3, j);
Strike from E row ¢ and column j;
END;
RETURN S;
END Greedy;

Now we analyze the algorithm. The initial situation is that M contains
the ¢ complex clauses given as input. By the discussion above, each of these
complex clauses must have at least (3n/8+1)-(n/2) @’s. E initially contains
all n-(n+1) positions. This means that in the first step the fraction of clauses
that are “taken care of” (i.e., for which their value under S is determined to
be 1) is at least

(3n/8+1)-(n/2) _ (3n/8)-(n/2) 3 _
sy 2 pe = 15 ~ 01875

Exercise 6.14. Justify this. <

Of course, the fraction of clauses that can be “taken care of” decreases
with each step, since row i and column j are stricken. After k passes through
the loop, the ratio of remaining ®’s to the size of E is

(Bn/S+1-K) - (n/2-k) _ (3n/8— k) (n/2— )
(n—k)-(n+1-%k) ~ (n — k)2 '

This quotient is smallest at the last pass through the loop. We get a lower
bound by taking only this last ratio, when k = n/8:
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(3n/8—n/8)-(n/2—n/8) 6
=— ~0.1224.
(n—n/8)? 49
Let M; be the set of remaining clauses in M after the ith pass through the
loop. Then

6 43

|M;| < |Mja| - ol |Mi—1| = 1

This yields the approximation |M;| < (j—g)" -|Mp]|. Now we hope that the line

of argumentation outlined above actually works, i.e., that [M,, 5| = 0. It is

sufficient to show that |M,,/s| < 1, since |M,,/g| is an integer. This is the case

provided (22)"/® .| M| < 1, or equivalently if |Mo| < [(42)}/8]" = ¢" where
¢ = 1.01646...

In summary, if the number of complex clauses that are given as input to
the greedy algorithm is less than ¢”, then the algorithm succeeds after n/8
passes through the loop in constructing a partial assignment S that makes all
clauses in the input true. However, we have also seen that starting with this
partial assignment we can find a complex clause that does not have the value
1 under S, since there is an extension « of S that makes the clause false. This
contradiction implies that all resolution proofs of PH P, must have at least
c" complex clauses. O

S| Mi—q] .

* * * * *

A computer generated proof of PH P3 appears at the end of this chapter.
In its search for a proof, the computer generated 1006 clauses (including the
input clauses 1-22), 91 of which are required for the proof.
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———————— PROOF --——-—-—- 277 [res:53,17] p14 | -p23 | -p32.
1 -p11 | -pil2. 289 [res:54,15] p14 | -p22 | -p31.
2 -p1l | -pi3. 298 [res:55,18] p14 | -p21 | -p33.
3 -pi1 | -pl4. 299 [res:55,17] p14 | -p21 | -p32.
4 -p12 | -pi13. 337 [res:60,13] -pl4|-p23|-p32.
5 -pi2 | -pl4. 888 [res:337,277] -p23 | -p32.
6 -pl3 | -pl4. 889 [res:337,160] -p14 | -p32.
7 -p21 | -p22. 890 [res:337,97] -pl4 | -p23.
8 -p21 | -p23. 891 [res:888,181] -p32 | -pil.
9 -p21 | -p24. 894 [res:888,114] -p23 | -pii.
10 -p22 | -p23. 897 [res:889,299] -p32 | -p21.
11 -p22 | -p24. 899 [res:889,57] -p32 | p24.
12 -p23 | -p24. 900 [res:889,98] -pld | -p21.
13 -p31 | -p32. 903 [res:890,53] -p23 | p34.
14 -p31 | -p33. 904 [res:890,161] -p14 | -p31.
156 -p31 | -p34. 907 [res:891,113] -pi1 | -p24.
16 -p32 | -p33. 909 [res:891,82] -p32 | -p24.
17 -p32 | -p34. 914 [res:894,43] -pi1 | p33.
18 -p33 | -p34. 915 [res:894,84] -p23 | -p34.
19 pi1 | p21 | p31. 918 [res:897,107] -p21 | -pi13.
20 p12 | p22 | p32. 923 [res:900,298] -p21 | -p33.
21 p13 | p23 | p33. 932 [res:904,289] -p31 | -p22.
22 pl4 | p24 | p34. 939 [res:907,265] -pil | -p33.
23 [res:19,3] p21 | p31 | -pi4. 944 [res:909,899] -p32.
24 [res:19,2] p21 | p31 | -p13. 946 [res:944,20] p12 | p22.
25 [res:19,1] p21 | p31 | -pi2. 953 [res:915,903] -p23.
26 [res:19,9] pil | p31 | -p24. 954 [res:953,42] p33 | -pl2.
27 [res:19,8] pi1 | p31 | -p23. 955 [res:953,21] p13 | p33.
30 [res:19,14] pi1l | p21 | -p33. 957 [res:918,24] -p13 | p31.
32 [res:20,5] p22 | p32 | -pl4. 959 [res:923,77] -p33 | -pi2.
33 [res:20,4] p22 | p32 | -pi3. 960 [res:923,30] -p33 | pil.
34 [res:20,1] p22 | p32 | -pil. 975 [res:939,914] -piil.
41 [res:21,6] p23 | p33 | -pl4. 995 [res:959,954] -pi2.
42 [res:21,4] p23 | p33 | -pi2. 997 [res:995,946] p22.
43 [res:21,2] p23 | p33 | -pil. 1001 [res:997,932] -p31.
52 [res:22,3] p24 | p34 | -pii. 1002 [res:1001,957]1 -p13.
53 [res:22,12] pi4 | p34 | -p23. 1003 [res:1002,955] p33.
54 [res:22,11] pl14 | p34 | -p22. 1004 [res:960,1003] pil.
55 [res:22,9] p14 | p34 | -p21. 1006 [res:1004,975]
57 [res:22,17] pl14 | p24 | -p32.
60 [res:23,8] p31 | -p14 | -p23. = _______ end of proof -—----—-

77 [res:25,14] p21 | -p12 | -p33.
82 [res:26,13] pi11l | -p24 | -p32.
84 [res:27,15] pi11l | -p23 | -p34.
97 [res:32,10] p32 | -pl4 | -p23.
98 [res:32,7] p32 | -p14 | -p21.
107 [res:33,7] p32 | -p13 | -p21.

113 [res:34,11] p32 | -p11 | -p24.
114 [res:34,10] p32 | -pi1 | -p23.
160 [res:41,16] p23 | -p14 | -p32.
161 [res:41,14] p23 | -p14 | -p31.
181 [res:43,16] p23 | -pi1l | -p32.
265 [res:52,18] p24 | -p11 | -p33.



7. Spectral Problems and Descriptive
Complexity Theory

This chapter begins with a question from predicate logic, namely to deter-
mine the set of all (sizes of) finite models of a given formula. It turns out
that there is an amazingly close relationship between this question and the
world of P and NP.

In this chapter we want to discuss formulas in predicate logic. These formulas
are built up from atomic formulas. There are two kinds of atomic formulas.
One type has the form P(z1,...,xy), where P is a predicate symbol with arity
k, and each x; is a variable. The other possibility for an atomic formula is a
formula of the form z; = z;.

Atomic formulas are the simplest formulas. More complex formulas are
built up from the atomic formulas. Given two formulas G and H, we can
form boolean combinations, for example

(GANH), (GVH), (G- H), (G+& H), (-G).

Let x be a variable, then by (existential or universal) quantification over
x we obtain from G the new formulas

JdzG, VzG.

An occurrence of the variable z in a formula G is called bound if it occurs in
a subformula of F' of the form Jx G or Vo G. Otherwise an occurrence of the
variable x is said to be free. In this topic we are only interested in formulas
in which all occurrences of x are bound. Such formulas are called sentences.
A sentence can be assigned a truth value by “interpreting” the sentence
in a given structure A. A structure (suitable for interpreting the sentence F')
consists of a non-empty set (the universe) of values for the variables that
occur in F', and concrete predicates for each predicate symbol that occurs in
F,i.e., relations on the universe of the appropriate arity. The truth value A(F')
of the formula F' is determined recursively on the structure of the formula:

e If the formula is a boolean combination of subformulas G and H, then one
determines recursively the truth values A(G) and A(H) and combines these
values according to the usual boolean operations (i.e., truth tables).
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o If F has the form 3z G then A(F) is true if and only if there is a value w
in the universe such that G, interpreted under A with = interpreted as w,
is assigned the value true. (See the instructions below regarding assigning
truth values to atomic formulas for more about the substitution of w for
If the formula F' has the form Vz G then we replace “there exists” with
“for all” in the instructions above.

e If the formula is an atomic formula, then in general it contains variables.
(Note that this case does not occur for sentences themselves, since all
variables in a sentence are bound by quantifiers, but it occurs “inside the
recursion” — in fact, it is the base case of the recursion.) In the previously
executed recursive steps, each variable in a sentence will have been assigned
a value from the universe. Therefore we can evaluate this atomic formula
directly using the interpretations of the predicates given by A. (The equals
sign is always interpreted as identity on the universe.)

If A(F) is true we write A |= F. In this case A is said to be a model for F.
A particular structure is denoted in tuple form: A = (M; Ry, ..., R;,), where
M is the universe and each R; is a relation on the universe which is used to
interpret the predicate P;. A formula can have finite or infinite models (or
none at all), where the size of a model is measured by the size of the universe,
|M|. We let |A| = | M| denote the size of a model A with universe M. In what
follows, we are interested in the set of all (sizes of) finite models for a given
formula. Let

Spectrum(F) = {n € N | there is a model A with |A|=n and A F }.

In 1952, H. Schulz posed the problem (the so-called spectral problem) of char-
acterizing the set of all such spectra. And in 1955, G. Asser posed the question
of whether the class of all spectra is closed under complement.

Ezample. Let F be a predicate logic formula that formalizes the axioms for a
field. (In the usual definition of a field, a field is specified by its underlying set
and two functions on that set. Since we have not allowed function symbols in
our language, we must modify the usual definition slightly. Candidates for a
field are structures A = (M; R., Ry), where R,, Ry are each 3-ary relations
expressing the equations z xy = z and x +y = z, respectively.) A subformula
of F' that formalizes the associative law for field multiplication would then
be

VaVyVzVuVoVwi Ywe (Ri(z,y,u) A Re(u,z,w1) A Ri(y, z,v) A Ri(x,v,ws))

— W1 = Wy .

Other subformulas of F' would have to express the other field axioms as well
as the fact that the relations R, and Ry are functions, i.e., that the values
of the field operations are unique. The set of all models of F would then be
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the set of all fields. From algebra we know that there is a finite field of size
n if and only if n is a prime power. So

Spectrum(F) = {n | n is a prime power } .

Ezercise 7.1. Give a formula for which Spectrum(F) = N — {0}. <

Ezercise 7.2. Give a formula for which Spectrum(F) = {3}. <

Generalizing the previous exercise we see immediately that every finite subset
of N is the spectrum of some sentence.

A finite structure can be coded as a string, just as is commonly done in
complexity theory with other types of objects (e.g., graphs). For example,
the structure A = (M; Ry, ..., Ry), with |A] = |[M| = n, can be coded as

1"0rr ...t

where 7; is a 0-1 string of length n* and R; is the interpretation of a k-
ary predicate P;. This string describes the relation R; “bit for bit” (as a
characteristic sequence) on the universe. Note that we have not coded in the
arity of the predicates — it is implicit in the syntax of the formulas — but this
could be easily done.

Ezercise 7.3.° Use the recursive description for evaluation of A(F') to give
for every sentence F' an algorithm that on input A determines in polynomial
time whether A |= F'. (In other words, show that for all sentences F' in first-
order predicate logic, the set Models(F) = {A | A |= F and A is finite} is in
P.) <

On the other hand, one can ask if for every language L € P there is a
formula F' so that the models of F' are precisely the strings « € L. But this is
not the case; there are languages in P that cannot be described in this sense
by sentences in first-order predicate logic. In fact, Immerman has shown that
the class of languages described by sentences of first-order predicate logic
(under certain additional technical assumptions) is precisely the class AC’.
Symbolically this is expressed as FO = AC. (FO stands for first-order. For
more information about the class AC® see Topics 11 and 12.)

It follows immediately from Exercise 7.3 that for every formula F' the set
Spectrum(F’) over the alphabet {0} (i.e., with all numbers coded in unary)
is in NP. If we code the numbers in binary then the strings are only logarith-
mically as long, so in this case Spectrum(F') € NEXP = J ., NTIME(2").
Exercise 7.4. Justify the last statement. <

The set Spectrum(F) codes the information about the sizes of models
for F'. This is very crude information about F'. In what follows we want to
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use a language that expresses somewhat more information about F'. Observe
first that F' has a model A = (M; Ry,...,R,,) (where Py,..., P, are the
predicate symbols that occur in F) if and only if the formula

G=3P, ...3P, F

has (M) — a model consisting only of a universe, only the size of which
really matters — for a model. The formula 3P, ... 3P, F is a formula in
second-order predicate logic, which means that we may quantify not only
over variables but also over predicate symbols, and hence over relations on
the universe. The semantics of such a formula are defined in the expected
way: relations corresponding to the predicate symbols P; must exist over the
universe that make the formula F' true. Since the predicate symbols are now
bound by the quantification, they no longer require interpretations as part of
the model A for G.

Now we modify the formula (and the underlying question about the ex-
istence of models) in the following way: some of the predicate symbols may
be bound by quantifiers, others (for simplicity we will consider just one) may
occur freely in G:

G=3P, ...3P, F(P,P,,...,Py).

The notation F(P, Py, ..., Py,) is intended to indicate that exactly the predi-
cate symbols P, Py, ..., P, occur in F'. A model for G now must have the form
A = (M; R), where R is a relation over the universe M of the appropriate
arity. We assign to this formula G the set of all of its models

Models(G) = {A | A |= G & A is finite}
which is sometimes called the generalized spectrum of G.

Exercise 7.5. We want to consider the question of what complexity the
language M odels(G) has for this type of second-order formula G, where the
second-order quantifiers are only existential (and occur before all first-order
quantifiers).

Show that Models(G) € NP.

Hint: Make a small modification to the observation above that Spectrum(F')
— coded in unary —is in NP. <

As we will show below, this time the converse is also true: A language L
is in NP if and only if there is such a (second-order, existentially quantified)
formula G such that L = {z | A, |= G}. For this we assign to each string
x a structure A, which codes = in a certain way. In this sense — ignoring
issues of coding — the set of all models of second-order existential formulas
is the class NP. This fact is expressed succinctly as NP = SO3. The amazing
thing about this result is that it gives an exact characterization of the class
NP solely in terms of expressibility in a certain logic. There is no mention of
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Turing machines, computations, running times or polynomials. Descriptive
complexity theory deals with the question of which complexity classes can be
characterized in such a way and whether it may be possible to prove that two
such classes are distinct using only methods from model theory.

It is instructive (and for what follows useful) to reprove the previous
exercise (SO03 C NP) in a different way, namely via a polynomial reduc-
tion to SAT. For this we must reduce an arbitrary structure A = (M; P)
(appropriate for a formula G) in polynomial time to a boolean formula «.
The construction will, of course, make use of G. But note that G is fixed
and A is the input, so the algorithm must only be polynomial in |A|. Let
G=3P, ...3P,, F(P,P,...,P,), and let A = (M; P) be a suitable struc-
ture. The first-order part of G is the formula F', where the predicate symbols
P,Py,..., P, occur. The interpretation of P is given by A, but the existence
of predicates {P;} that make F' true is the question. Let M = {1,2,...,n}
. We replace step by step every subformula of F' of the form Jz F' with
F'(z/1)V---V F'(xz/n), where F'(x/i) denotes that for every free occurrence
of z in F' we replace & with i. (This is a purely syntactic process.) Similarly,
every subformula of the form Va F' is replaced by F'(x/1) A--- A F'(z/n).
The resulting formula (a substitute for the formula F') contains no quantifiers
or variables; all of the variables have been replaced by constants. The atomic
formulas in the new formula have three possible forms:

Plir,...,it) (%)
=7 ()
Py(i1,- .., ir)

(I and k are the arities of the predicate symbols involved.) The atomic formu-
las of the forms marked with (x) can be evaluated directly using the structure
A. This can be used to simplify the formula. Furthermore, every atomic for-
mula of the form P;(i,...,i;) can be made true or false independently of
every other one. So each P;(i1,...,i;) can be considered as a name for a
boolean variable. Now we are just looking for a satisfying assignment to a
boolean formula, which will exist if and only if A = G. Since the construc-
tion requires only polynomial time, what we have described is nothing other
than a reduction to SAT.

What is interesting here is that the structure of the formula F' is reflected
in a certain way in the resulting formula «. If we assume that the formula
F' has the form F' = Vz;...Va; H, where H is quantifier free and a Horn
formula (i.e., H is in conjunctive normal form and each clause contains at
most one positive literal), then the formula « given by the reduction is also
a Horn formula.! For Horn formulas, the satisfiability problem is known to
be solvable in polynomial time: SAT N Horn € P. So

! In fact, it is sufficient in this context if only the portions of the formula consisting
of the literals P;j(i1, ..., i) form a Horn formula but the input predicate or the
order relation do not.
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SOdNHorn CP.

* * * * *

Now we want to turn our attention to the reverse direction, which strongly
resembles the proof of Cook’s theorem. Let L be a language in NP. So there is
a nondeterministic Turing machine M that accepts the language L in polyno-
mial time. Let the number of nondeterministic steps needed by M on inputs
of length n be bounded by the polynomial n¥. Without loss of generality
we can assume that the machine never visits tape cells to the left of the in-
put. Let X' be the work alphabet of the Turing machine, and let the input
alphabet be {0,1,0} C X. Furthermore, let Z be the set of states. Then con-
figurations of M can be described as strings of length n* over the alphabet
I' =Y U(Z x X): The string

a; ag ... a;—1 (z,ai) Ajt1 - - - Apk

codes that the tape contents of M at a given time are precisely a; ... a,x,
the head is located at position i and the state is z. An accepting computation
of M on input z with |z| = n and = z; ...z, can be represented by an

nkF x n¥ matrix with entries from I":
(20,21) ®2 T3 -+ Ty, L SRR
(zZe, ) @2 az o+ Ap  Ap1 ccc Gk

The first row represents the start configuration. In the last row the halting
state z. has been reached, and we will assume that this only happens when
the read-write head is at the left most position and reading a blank tape cell.

The symbol in position (i + 1,5 + 1) depends only on the three symbols
in positions (,7), (i, + 1), and (i,7 + 2), and the nondeterministic choices
of the machine.

(4,4) (4,7 +1) (4,7 +2)

(i+1,j+1)
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If we assume that at each step there are always two nondeterministic choices
available, then we can describe this with two finite 4-ary relations, Ag, Ay,

“ Z C:| S AO (OI' S Al), AO “list-

which “list” all possible allowable tuples: [
ing” one choice; Ay, the other.

Now we set about describing a formula G so that « € L if and only
if for a certain structure A,, A, = G. The simplest structure that can be
used to represent a binary string (for the moment) is A, = ({1,...,n}, E),
where E(i) is true if and only if #; = 1. But if we use this encoding, we
have the following problem: All structures that are isomorphic to A, will be
indistinguishable to the formula G (which we have yet to give). So we must
add to the structure an order relation < on the universe, which represents
our intended ordering of the universe (which we have already indicated by
saying that our universe is {1,2,...,n}). The unique structure A, describing
T is now

A =({1,...,n},<,E).

The fact that G can make use of an ordering of the universe will be seen to
be very useful. A first component of G, based on <, will be used to describe
a successor relation S on k-tuples. In this way we will in a certain sense be
able to count to n¥ (and not just up to n). The 2k-ary predicate S will be
existentially quantified in G: G = 35 .. .. Later in G we will “axiomatize” the
desired properties of the predicate S. We will define the portion of G used
to specify the properties of S recursively, defining Sy, Sz, ... S = S, where
each S; is a 2i-ary predicate defining an ordering on i-tuples:

Si(@,y) = (x <y AVz(z <2)A(y#2) = (y <2))
Sit1(z1, T, y1, -, Yi)
= (51(961,341) AN (5 = yj))
\Y (Max(:ﬂl) AMin(yy) A Si—1(x2,. .. ,azi,yz,...,yi)) .

The two additional predicates used above, Min and Max, identify the largest
and smallest elements of the universe. Min can be defined via

I Min Vz (Min(m) o Vy((e=y)V(z< y))) :

Max can be defined similarly.

For every symbol a in I' we introduce a new 2k-ary predicate symbol
P, which we use to represent the computation of machine M on input =
as described above. In particular, P,(x,y) will be true if and only if the
symbol a is in position (x,y) in the matrix given above. We are using x as
an abbreviation for (z1,...,zx).

So the final formula G will have the form

G =353IMinIMax3P,, ... 3P, ICF ,
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where I' = {a1, ..., G, }. The k-ary predicate C expresses (through its truth
value) for each time step which of the two nondeterministic choices was made.
The Formula F' consists of the axiomatization of S, Min, and Max given
above, and the following conditions on the predicates P,.

Let’s get right to the heart of the formula G: the transition relation for
the machine M. This can be expressed as

Va:,:c',a:",y,y' /\ (Pa(way)/\Pb(w;y,)/\Pc(way”)
a,byc,deI’
(a,b,c,d) € Ay

NSz, &) NSy, y') NSy, y")
ACly) = Pala'y)) -

We will also need the same formula with Ag in place of A; and -C(y) in
place of C(y). (Note: this is the only formula in the construction that is not
a Horn formula.)

In a similar way we can express the transition relation for the column at
the far right and left edges of the matrix.

Exercise 7.6.° Give a formula that correctly describes the first row of the
matrix, i.e., the start configuration of the machine. <

Ezercise 7.7. Give a formula that expresses that at no time and at no
location can more than one of the predicates P, be true. <

Ezercise 7.8. Give a formula for the last row of the matrix, that is, one that
checks for an appropriate end configuration. <

The desired existentially quantified, second-order formula G now consists
of the conjunction of all of the formulas generated in the construction. The
models of this formula characterize precisely the strings z that the Turing
machine M accepts. So we have

Theorem 7.1. (Fagin’s Theorem) NP = SO3. a

This result can be immediately generalized to the polynomial hierarchy,
PH (cf. Topic 16). Let SO denote the set of all models of arbitrary second-
order formulas (universal quantification is allowed now), then

Corollary 7.2. (Stockmeyer) PH = SO. o

Let’s return now to the spectral problem. Here we do not have an input
encoding like A, and, therefore, also no order relationship on the universe.
Only the question of the sizes of the models is relevant. In this context there
can be any arbitrary ordering of the universe — not just the one that corre-
sponds to the intended order of the input string — that causes the construction
to work. The input is coded in unary as 1™. For this reason we can extend
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the construction above to existentially “guess” an ordering and fix it with
additional axioms: G = 3 < (Axioms for <) A ... .

Exercise 7.9. Give a formula that characterizes < as a total ordering. That
is, every model for the formula must interpret < as a strict total ordering of
the universe. <

From this we get

Theorem 7.3. (Bennett, Rédding, Schwichtenberg; Jones, Selman; Fagin)
The set of spectra of first-order formulas (coded in unary) is exactly the class
of NP-languages over a one-element alphabet (NPy ).

Corollary 7.4. The set of spectra of first-order formulas in closed under
complement if and only if NPy is closed under complement if and only if
NEXP is closed under complement.

Exercise 7.10. Justify the last part of the corollary: NP; is closed under
complement if and only if NEXP is closed under complement. <

In the construction above there was only one place where we made use of
a formula that was not a Horn formula in the sense described on page 65 (see
also the footnote there). If the Turing machine is deterministic, then we no
longer need the predicate C, which simulated the nondeterministic choices
of the nondeterministic machine, or the distinction between Ag and A;. The
result is a Horn formula. This gives the following result:

Theorem 7.5. (Gridel) P =S03N Horn. |

We note only that once again it is important for this last result that an
order relation on the universe be available, either in the form of the input
encoding or, as it is often done, by enriching the logical language to include
a built-in < symbol with a fixed interpretation. The axioms for the ordering
cannot be expressed as a purely Horn formula. (The problem is the totality
condition.)
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8. Kolmogorov Complexity,
the Universal Distribution,
and Worst-Case vs. Average-Case

An algorithm can exhibit very different complexity behavior in the worst
case and in the average case (with a “uniform” distribution of inputs). One
well-known example of this disparity is the QuickSort algorithm. But it is
possible — by means of Kolmogorov Complexity — to define a probability
distribution under which worst-case and average-case running time (for all
algorithms simultaneously) are the same (up to constant factors).

What is the difference between the following two bit sequences?
010101010101010101010101010101

110101000011100100100101111111

The first sequence exhibits a certain pattern which is easy to notice and
which makes the sequence easy to describe: it consists of 15 repetitions of
‘01°. The second sequence does not have such an obvious pattern. In fact, the
second sequence was generated by flipping a coin. If a pattern were detectable
in the second sequence, this would be merely coincidence. In this sense, the
second sequence is “more random” than the first. On the other hand, in
the sense of probability theory, each sequence is an equally likely result of
flipping a coin 30 times, namely, each occurs with probability 273%. Thus,
probability theory does not provide the correct framework within which to
talk meaningfully about a random sequence.

But consider now algorithms that generate each sequence: In the first
case:

FOR ::=1TO 15 DO OUTPUT ‘01’ END
and in the second case:
OUTPUT ‘110101000011100100100101111111°

If we abstract away the specific length of our examples, namely 30, and
imagine instead an arbitrary value n, then the length of the first program
(as text) is O(1) + log(n), since we need log(n) bits to represent the number
n/2. The second program, on the other hand, has length O(1) +n. That is, in
order to describe this “random” sequence, we are essentially forced to write
down the entire sequence, which takes n bits. On the basis of this intuition
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we will define a sequence to be random if any description of the sequence
requires essentially n bits.

We will also consider the following variation: Consider algorithms that
take an input y and produce an output z. The minimal length of such a
program that generates z from y is a measure of the relative randomness of
x with respect to y; or said another way, it describes how much information
about z is contained in y. If in the examples above we let n, the length of the
sequence to be generated, be the input to the program rather than a constant
within the program, for example,

INPUT n; FOR i:=1TO n/2 DO OUTPUT ‘01’ END

then the first program has length only O(1), while the second program is still
of length O(1) + n.

Now fix a universal programming language (say MODULA or Turing ma-
chine). Then K (z | y) denotes the length of the shortest program (in this fixed
programming language) that on input y outputs z in finite time. K(z | y) is
the conditional Kolmogorov complezity of x with respect to y. The (absolute)
Kolmogorov complexity of z is K(z) = K(z | A).

Returning to our first example above, we obtain K ( \0’1/ ) <logn+c

n/2-times
and K( \0/1_/ | n) < ¢, where ¢ is a constant independent of n. (The
n/2-times
constant ¢ depends on the choice of programming language.)

In many cases, the information y from which = is to be generated will
be precisely the length of x, as in our example. This has the following in-
tuitive explanation: a string z contains two kinds of information — its inner
irregularity or randomness, and its length. If we reveal the information about
the length of z “for free,” then we can concentrate solely on the randomness
of z. If n = |z|, then K(z | n) is called the length-conditioned Kolmogorov
complezity of x.

Ezercise 8.1. Show that there are constants ¢ and ¢’ such that for all strings
zandy, 0 < K(x|y) < K(z) 4+ cand K(z) < |z| +¢. <

Ezercise 8.2. Show that there is a constant ¢ such that for all z, K (z | ) < c.
<

Exercise 8.3. Let m, be the sequence consisting of the first n binary digits
in the representation of the irrational number 7. How large is K (m,, | n)? <

Since the choice of programming language seems to be arbitrary, one must
consider how this choice affects the definition. In any universal programming
language one can write an interpreter u (a universal Turing machine) which
on input p'y behaves just like program p’ (in programming language P’) on
input y. Let Kp (Kpr) denote the Kolmogorov complexity with respect to the
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programming language P (P'). If we assume that p’ is the shortest program
that generates z from y, then Kp/(z | y) = |p'|. Since u(p'y) = =z, we get
Kp(z | p'y) < |u|, and since Kp(p') < |p'| + ¢ (see Exercise 8.1), we get

Kp(w|y) <p'l+c+ul = Kp(z|y) +c+lul = Kp (o |y) +O(1) .

So values of K with respect to two different programming languages differ
by at most an additive constant. As long as we are willing to ignore constant
additive factors, we can consider the definition of Kolmogorov complexity to
be robust and speak of the Kolmogorov complexity of a string .

There can’t be too many strings of low Kolmogorov complexity. There
are at most 2¥ programs of length k, so there can be at most 2* strings with
K(z) = k. (The same is true of K(z | y) = k for any y.) Altogether we see
that the 2™ strings of length n are partitioned as follows:

at most 1 string has K-complexity = 0,
at most 2 strings have K-complexity = 1,
at most 4 strings have K-complexity = 2,

at most 2"~ ! strings have K-complexity = n — 1.

In general, the number of strings with K-complexity < k is at most 1+ 2 +
- 42k = 21 _ 1 Considered the other way around this means that

at least 1 string has K-complexity > n,

more than half of the 2" strings have K-complexity > n — 1,
more than 3/4 of the 2" strings have K-complexity > n — 2,
more than 7/8 of the 2" strings have K-complexity > n — 3,

Exercise 8.4.° Give a lower bound for the expected value of the K-complexity
of a string chosen uniformly at random from among all strings of length n.
<

Ezercise 8.5.° Show that the function « — K(z) is not computable. <

Now we want to define the universal probability distribution, at least on
strings of length n. That is, for each length n we define a probability distri-
bution u so that p(x) is the probability of selecting the string x from among
the strings of length n = |z|. In order for this to be a probability distribution,
of course, it must be the case that Z{z:|x|:n} p(z) = 1. We want to define p
in such a way that pu(z) is proportional to 272K ie. for some constant
¢, p(w) = ¢ - 272K This is possible as long as >, =y 27K = d
for some constant d, since then we can set ¢ = 1/d. So it suffices to show
that 3 121=n} 2 2K(=[n) j5 hounded above by some constant. (The 2 in the
exponent is there to give us convergence.)
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Ezxercise 8.6.° Show this. <

Many algorithms exhibit different behavior in the worst case than in the
average case, at least when average-case is interpreted under the uniform dis-
tribution of strings of a given length. A naive implementation of the Quick-
Sort algorithm is an example: in the worst case it requires 2(n?) time, but
on average it requires only O(nlogn). Now we want to study the average-
case complexity of QuickSort (or any other algorithm) under the probability
distribution pu.

An interesting detail in the case of QuickSort is that the worst-case occurs
when the input list is sorted in ascending or descending order. Let the num-
bers to be sorted be {1,2,...,n}. K((1,2,...,n) | n) = O(1), so under the
distribution u, the probability of a sorted list is especially large, in fact, it is a
constant independent of n: u((1,2,...,n)) = 2 2K((1L2n)ln) — 2-001) .
«. From this it follows that the expected running time for QuickSort under
the probability distribution w is:

Z H(I)TQuiCkSOI“t(x) (1,2, n))TQuickSOrt((l’ 2,...,n))
{z:|z|=n}

where T4 (z) denotes the running time of algorithm A on input z and z is
a permutation of {1,2,...,n}. So under the probability distribution y, the
average running time of QuickSort is as bad as the worst case, namely 2(n?).
We shall see that the probability distribution u exhibits this same malevolent
behavior towards all algorithms, namely that the average-case running time
is within a constant factor of the worst-case.

In the counting arguments given above to bound the number of strings x
with K(z) >n —k or K(z | y) > n — k we focused our attention on strings
of only one length n. Now we want to generalize this into the following very
useful and generally applicable theorem.

Ezercise 8.7.° Let M be an arbitrary set of strings and let m = |M|. Show
that for every number k and every string y, there are at least m(1 —27%)+1
strings « in M for which K(z | y) > logm — k. <

Next we want to discuss the properties of a Kolmogorov random string x,
i.e., a string for which K(x | |z|) > |z|. We expect a random string (in the
usual sense of probability theory) to have roughly the same number of zeroes
and ones. This is also the case for a Kolmogorov random string:

Ezercise 8.8.° Explain why a Kolmogorov random string (if it is sufficiently
long) cannot consist of 2n ones and $n zeroes.

Hint: How would this situation provide a means of describing the string
(algorithmically) with fewer than n bits? <



Kolmogorov Complexity 75

Now let’s take another look at the universal probability distribution and
our QuickSort example. QuickSort was intended to be understood as a repre-
sentative for an arbitrary algorithm, in particular, for one where the average-
case and worst-case running times differ (under the uniform distribution).
The only important property of the sequence (1,2, ...,n) for that argument
was that it is an input — in fact, the lexicographically least input — on which
the algorithm exhibits its worst-case behavior (£2(n?) in the case of Quick-
Sort).

Now let A be an arbitrary algorithm that halts on all inputs. Consider
the following program, which on input n, describes (i.e., outputs) a certain
string of length n.

INPUT n;

w = 0;

FOR (all y with |y| = n, in lexicographical order) DO
v := (Running time of A on input y)
IF v > w THEN w :=v; ¢ := y END;

END;

OUTPUT gz;

This algorithm has a fixed length (independent of the input n but dependent
on the algorithm A); let’s call it ¢. For every n, let z,, be the output of A on
input n. Then K(z,, | n) < ¢ and so p(z,) is proportional to 2~ 2&(@nln) >
272¢, This means that for some constant a, independent of n, u(z,) > a.
Furthermore, by the construction of the algorithm for generating x,, the
running time of A on input x, is maximal among inputs of length n. That
is, A exhibits its worst-case complexity on input z,,.

Exercise 8.9. Now finish the proof that under the universal probability
distribution p on inputs of length n, every algorithm that halts on all inputs
has an average-case complexity that is (up to constant factors) identical to
its worst-case complexity. <
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9. Lower Bounds via Kolmogorov Complexity

The concept of Kolmogorov complexity can be used to prove complexity
lower bounds. In many cases the proofs obtained in this way are much more
“elegant,” or at least shorter, than the original proofs. In a few cases, the
lower bounds were first achieved by means of Kolmogorov complexity.

The method of using Kolmogorov complexity to establish lower bounds works
as follows: Suppose we want to prove a lower bound on the running time of
a Turing machine to perform a certain task — or a lower bound on the size
of some other mathematical or computational object. Let = be a sufficiently
long Kolmogorov random string, i.e., K(z) > |z|. Now we assume that the
lower bound we are seeking is violated, e.g., there is a Turing machine that
performs the given task more quickly than the stated bound. Then perhaps
there is a way to use this Turing machine — and possibly some additional
information — to describe the Kolmogorov random string = with fewer than
n = |z| bits. This would, of course, be a contradiction and establish the lower
bound.

Our first example of this approach comes from number theory rather than
computer science, but the result has implications for computer science as well.
We will use Kolmogorov complexity to prove that there are infinitely many
prime numbers. In fact, the argument we will give can even be extended to
prove a weak form of the Prime Number Theorem.

So suppose that there are only finitely many prime numbers, say p1,p2, - - -,
pr. Let n be a sufficiently large number so that the Kolmogorov complex-
ity of the binary representation of n is not compressible, i.e., K(bin(n)) >

|bin(n)| = logn.! Every natural number has a unique prime factorization,
ie., n=p"py*...pg*. So the numbers ny,ny,...,ny (coded as bit strings)
constitute a unique description of n, and thus n — or rather bin(n) — can be
reconstructed from the sequence ny,ns, ..., ng.

! For simplicity in this example we will do computations assuming that |bin(n)| =
, n=0
log,n]+1,n>0"
additive constants do not play a role in this context, this simplification does not
change the validity of the argument.

log n. The exact value is actually |bin(n)| = {t But since
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Ezercise 9.1. Use the observations just made to determine an upper bound
on K (bin(n)) that contradicts the choice of n made above and thus completes
the proof that there are infinitely many primes. <

This argument can be pushed farther. The Prime Number Theorem is a
famous and hard theorem in number theory which says that 7 (n), the number
of prime numbers < n, is asymptotic to n/Inn, that is

n
n) ~ —.
m(n) Inn
With significantly simpler arguments — using Kolmogorov complexity — we
will show that for infinitely many n a lower bound of

n

m(n) > :
() = log® n
holds. This lower bound is sufficient for many applications.

Let p;, be the mth prime number. It is sufficient to show that for infinitely
many m, P, < mlog2 m.

Ezxercise 9.2. Show that this is indeed sufficient. N

Now let n be a sufficiently large natural number such that K (bin(n)) >
logn. Let p,, be the largest prime number that divides n. The number n can
be (algorithmically) reconstructed from m and n/p,,. So a bit string that
codes these two numbers is a sufficient description of n.

Exercise 9.3. Give an algorithm that reconstructs n from the numbers m
and k =n/pp,. <

Thus
log(n) < K (bin(n)) < |encoding of m and n/py,| .

The problem is that we cannot simply write down the binary representations
of m and n/p,, one after the other, since then we would not know where
one number ended and the other began. We must sacrifice some additional
(and in this case very costly) bits to make our encoding such that it can be
correctly decoded.

For a string w = ayas...ap—1a, € {0,1}* let W = a10a20...a,—10a,1.
By means of this encoding of w, the end of the code for w can be recognized
by the final ‘1’. Such a code is called self-terminating. More formally, an
encoding scheme is self-terminating if it can “recognize its own end” in the
following sense: From any string of the form code(w)v, where v is arbitrary,
it is possible to recover code(w) algorithmically.

We could code the pair of numbers as bin(m)bin(n/py). But since
|@w| = 2|w|, this would cost 2 log m+log(n/p,,) bits. Plugging this into the ap-
proximation above would yield: logn < K (bin(n)) < 2logm +logn —logp,,
SO Py < m?, ie., w(n) > y/n. So this method of coding wastes too many
bits.
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If, however, we let
code(w) = bin(jw|)w ,

then we get another coding of w that is also self-terminating.

Exercise 9.4. Justify the claim just made. Furthermore, compute the length
of code(w) as a function of w. Use this to show that p,, < mlog®m. <

Ezercise 9.5. The improvement from w to code(w) can be iterated. What
self-terminating code does one get in this way? What improved lower bound
for w(n) does this yield? <

It is interesting to note that any improvement in the length (or, rather,
shortness) of self-terminating codes can be translated directly into a sharper
bound in our ‘Weak Prime Number Theorem.’

Exercise 9.6. Show that if n is a sufficiently large number and its binary
representation has high Kolmogorov complexity, (i.e., K(bin(n)) > logn),
then n cannot be a prime number.

Hint: Use w(n) ~ n/Inn. <

* * * * *

This Kolmogorov method can also be used in the context of circuit com-
plexity. Consider a boolean function f from {0,1}" to {0,1}. The circuit
complexity of such a function is the smallest number of boolean gates that
suffice to build a circuit that has n (binary) input gates and computes the
function f. Since a truth table for such a function has 2" rows, by giving
a binary string of length 2™ (the evaluation vector) such a function can be
uniquely characterized.

Now we select an especially “difficult” boolean function, f, for which the
Kolmogorov complexity of this string is high, i.e., K’ > 2™. What is the circuit
complexity of the associated boolean function f7 Since a boolean circuit
completely characterizes a function (and, in turn, its encoding as a binary
string), we have the following inequality for the Kolmogorov complexity of
the binary string for f:

K < |the shortest description of the circuit| + O(1) .

How many bits do we need to represent a circuit consisting of g gates? The
circuit can be described by listing all its gates. Each gate is described by
giving its type (i.e., which boolean operation it computes) and the numbers
of the gates (or inputs) that feed into the gate. This requires ¢ + 2log(g + n)
bits for each gate.
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Ezercise 9.7. Let size(f) be the circuit complexity of f, that is, the smallest
number of gates that can be used to compute f. Show that size(f) = 2(2"/n).
<

Exercise 9.8.° A formula is a circuit in which every gate has fan-out 1. Show
that the smallest formula for f has size 2(2"/logn).

Hint: A formula can be encoded especially compactly, without the use of any
parentheses, in “reverse Polish notation.” <

* * * * *

Finally, we want to use the Kolmogorov method to prove that any one-
tape Turing machine that accepts the language

L = {w0l®lw | w e {0,1}*}

requires at least quadratic (£2(n?)) time. From this it follows (or at least is
provable with only slight modifications) that the languages

{ww | w € {0,1}"}

and
{ww® | w € {0,1}*}

also require quadratic time. In the latter, a® is the reversal of a:

(al...an)Rzan...al.

We use the concept of a crossing sequence. Let M be a Turing machine
and let ¢ be some fixed boundary between two adjacent cells on the tape. On
a given input x, the crossing sequence for x and ¢ is the sequence of states
in which the Turing machine finds itself as its read-write head crosses point
i on the tape. We denote this crossing sequence by CSy;(z,7). CSpy(x,1) is
an element of Z*, where Z is the set of states for the Turing machine.
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Ezxample.

- >,

CS = Z3R125%24

Ezercise 9.9. Why is

o0
> 1CSu(w,i)| = timey (x) ?
i=—00
(timeps(x) is the running time of M on input x.) <

By Exercise 9.9, in order to show that timeys(z) = 2(n?), it is sufficient
to show that a number of crossing sequences CSy(z,i) for = (specifically
£2(n) of them) each have length at least 2(n). We will restrict our attention
to the crossing sequences that occur in the middle n/3 positions of the input,
where n is the total length of the input. This is the portion that on input
w0!*lw consists entirely of 0’s.

Without loss of generality, we can assume that all of our Turing machines
only enter the halting state when their read-write head is on cell 0 of the
tape.

Exercise 9.10.° Prove the following lemma:
Let |z| = i. If CSp(zy,i) = CSy(xz,i), then xy € L(M) if and only if
xz € L(M). N

Ezercise 9.11. At what point in the proof of the previous exercise do we
make use of the “WLOG” assumption above? <



82 Topic 9

Exercise 9.12.° Prove the following lemma:
If i = |z = |2'| and ¢ = CSy(zy,i) = CSp(a'y’,i), then ¢ =
CSn(xy' i) = CSpy(a'y, ). <

Now let M be a Turing machine that accepts L. Let w0!“lw be an input
for M and let |w| < i < 2|w|. By the previous lemma we know that for

distinct w and w’ with |w| = |w'|, the crossing sequences C'Sys(w0!*lw | i)
and CSy (w'01* lw' | i) must also be distinct.
Exercise 9.13. Why? <

Exercise 9.14. Describe an algorithm that on inputs M, m € N, i € N,
m < i < 2m and crossing sequence c¢ (all coded in binary), outputs the string
w of length m for which C'Sy;(w0®lw , i) = ¢. (By the previous observation,
w, if it exists, must be unique.) N

We conclude, therefore, that the Kolmogorov complexity of w must satisfy
K(w) < O(log|w|) + |¢|. If w is chosen to be Kolmogorov random — here’s
where the Kolmogorov argument comes in — then K(w) > |w|, so |¢| >
|w| — O(log n).

Exercise 9.15. Complete the proof that for every one-tape Turing machine
M that accepts L, timeys (z) = 02(|x]?). <

As an aside, we mention that the argument above actually works not
only for a string w that is Kolmogorov random but also for any “typical”
string w. The expected value (under the usual uniform distribution) for the
Kolmogorov complexity is E(K (w)) > |w| — 2 (cf. Topic 8). So even in the
“average” case, timey (z) = 2(|z|?).
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10. PAC-Learning and Occam’s Razor

Many (algorithmic) learning theories have been developed. The one which
is now most often considered originated with L. Valiant (1984) and is called
PAC-learning. In this chapter we show an interesting connection between
PAC-learning and the principal known as “Occam’s Razor.”

The philosopher and logician Wilhelm von Occam (1285-1349) is credited
with the following principle, which is usually referred to as Occam’s Razor:

If there are several hypotheses that each explain an observed phe-
nomenon, then it is most reasonable to assume the simplest of them
(i.e., the one most succinctly formulated).

With this “razor,” Occam cut out all superfluous, redundant explanations.
(This was directed in particular at the scholastics.)

If looked at dynamically, the process of formulating a hypothesis that
explains previously made observations is very much like learning; upon pre-
sentation with additional observations, it may be necessary to revise the
previously held hypothesis and replace it with a new one (which explains the
new observations as well as the old), and so on. More precisely, we are inter-
ested in learning a concept by means of observations or examples which are
provided by a teacher “at random” along with a statement about whether or
not the examples belong to the class that is to be learned.

The process can be understood as the principle of finding a hypothesis
in the natural sciences: “Nature” is directed “internally” by a function f

which is unknown to humans. Furthermore, examples x,z2,... are gener-
ated according to some (equally unknown) probability distribution P. As an
outsider, one can only observe the pairs (z1, f(x1)), (22, f(z2)),.... After a

while, one forms a hypothesis h, which explains the observations made up
until time m, i.e., h(z1) = f(x1), ..., h(xm) = f(@m)-
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Sketch:

raﬂdomly chosen
according to P

The principle of Occam’s Razor suggests that one should choose h to be
the simplest possible hypothesis. “Simple” could be understood in the sense
of Kolmogorov complexity, i.e., choose h so that K(h) is minimal. A “good”
hypothesis h is one that proves to be valuable for future observations as well:
Pr[h(z) = f(z)] should be close to 1, where z is chosen randomly according
to P. The quintessence of the following investigations will be that it is worth
looking for a simple hypothesis (in the sense of Occam’s Razor) since with
high probability such a hypothesis will also be a good hypothesis.

Now we want to formalize these ideas and capture them with a definition.
The x;’s will simply be 0-1-strings of a suitable length n. The concept to be
learned, f, and the hypotheses h will then be n-place boolean functions.

Definition 10.1 (Valiant). Let n > 0. A hypothesis space H,, is a subset
of the set of all n-place boolean functions. A concept to be learned is any
function f € Hy. Let P be a probability distribution on {0,1}™. A set of
examples is a finite set of pairs ((z1, f(x1)),---, ((xm, f(xm)), where the x;’s
are independently chosen according to the distribution P. A hypothesis h €
H,, is consistent with a set of examples if h(z1) = f(x1),..., h(zn) = f(@m)-
The function h € H,, differs from the concept f by at most e if Pr[hA f] < e,
where h A f = {z | h(z) # f(x)} and x is chosen randomly according to P.
An algorithm A that on input of a finite set of examples produces a consistent
hypothesis is called a learning algorithm.

A family of hypothesis spaces (H,,)n>o is called PAC-learnable if there is
a learning algorithm A and a polynomial m — in the arguments n, 1/¢, and
1/6 — such that for every n > 0, every concept f € H,, every probability
distribution P on {0,1}", every € > 0 and every § > 0, A on input of an
example set with m(n,1/e,1/6) elements (chosen at random according to P)
produces a hypothesis h € Hy, that with probability 1 — § differs from h by at
most €.

The abbreviation PAC stands for “probabilistically approximately cor-
rect.”
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Sketch: .
hypothesis space H,,
set of all
n-place
boolean
functions
concept to
be learned f
set of all
hypothef'es set of all
consistent with hypotheses
a given h with
example set PrihAf]l<e

Ezercise 10.1. Let A be a learning algorithm that on input of a (sufficiently
large) example set with probability > 1 — § produces a hypothesis h that
differs from f, the concept being learned, by at most ¢.

If a set of examples and a value « € {0,1}™ are chosen at random (inde-
pendently and according to P), what is the probability that the hypothesis
h produced by A on this example set agrees with the concept being learned,
i.e., with what probability is h(z) = f(z)? <

In the diagram, a small oval represents the set of all hypotheses that are
consistent with a fixed example set. Such an example set, consisting of m
examples, is chosen at random according to P. The concept f is, of course,
always among the consistent hypotheses. We will see that the larger m is, the
more likely it is that all consistent hypotheses lie in the e-neighborhood of f,
so that in the diagram, the oval is entirely contained in the circle. In this case,
any learning algorithm has a high probability of producing a hypothesis that
differs from f by no more than e, since by definition, a learning algorithm
always produces a consistent hypothesis.

Let’s approximate the probability p that after a random choice of an
example set of size m there is a consistent hypothesis that is not in the
e-neighborhood of f:

p < Z Pr[h is consistent)
h € Hy,,
Prih A fl >¢

< Y -9m
h € Hy,,
PrlhAf]l>¢
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< |Hp|-(1—g)™.

Ezercise 10.2. Under the assumption that P is the uniform distribution on
{0,1}™, give an upper bound for the number of h € H,, with Pr[h A f] <e.
<

If 6 < |Hp|-(1—e)™, then we are guaranteed that every learning algorithm
(on example sets of size m) has probability at least 1 — ¢ of producing a
hypothesis that differs from f by at most €. We can re-express this as a
condition on m:

5 < |Hyl - (L—2)™

(i
m > m(log |Hp| + log(1/0)) .
To satisfy this inequality, since In(1 — z) < —, it is sufficient to choose
m so that

m > 2 (log | H, | + log(1/9)

This term is polynomial in 1/e, 1/ and log|Hy|. The dominant term is
log |Hy|. If H, is the set of all n-place boolean functions on {0,1}, then
|H,| = 2%", so log |H,| = 2". For the polynomial bounds that are required
in the definition it is necessary to restrict the set of (relevant) hypotheses.

In cases that occur in practice it is often the case that there are many
fewer than 22" potential possible hypotheses. Sometimes it is the case that the
learning algorithm is guaranteed to produce a hypothesis that is shorter than
the typical hypothesis, which has length 2", as if it were following Occam’s
razor. In order to speak of the length of a hypothesis, we must fix some
encoding scheme, for example boolean circuits. In “pure form” we can identify
the length of the hypothesis with its Kolmogorov complexity.

Definition 10.2. (Blumer, Ehrenfeucht, Haussler, Warmuth) A learning

algorithm is said to be an Occam algorithm, if for every n > 0 with respect to

the hypothesis space H,,, on input of an example set of (sufficiently large) size
11—

m, the hypothesis produced by the algorithm always has length < p(n)-m'~¢,
where p is a polynomial and « > 0.

This means that we can restrict our hypothesis space to include only
hypotheses of length < p(n) - m!~%, and this set has size 2°(")'m' ™" The
term m!~® in this expression has an interesting interpretation: an Occam
algorithm must perform a certain form of information compression so that
the number of examples, m, is sub-linear in the size of the hypothesis space.

Ezercise 10.3.° Show that from |H| < 2P(m)'m ™ it follows that for PAC-
learnability it is sufficient to choose m to be polynomial in n, 1/¢, 1/6. <

a

So we have shown
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Theorem 10.3. (Blumer, Ehrenfeucht, Haussler, Warmuth) If for a family
H = {H, : n} of hypothesis spaces there is an Occam-algorithm, then H is
PAC-learnable. O

We want to explain this concept using an example from the literature (cf.
Valiant). Let DNF,, ;, denote the set of all formulas in disjunctive normal
form in the variables x1,...,x,, such that all of the monomials consist of at
most k literals. That is, a formula f in DNF,, ; has the form:

m k
f(mlaaxn):\//\zz] with Zije{mla"'amnax_l;"'aﬁal};
i=1j=1

where z;; = 1 denotes that position j of clause ¢ remains unfilled, so that
clause j contains fewer than k literals. In what follows we will identify for-
mulas with the functions they define.

Ezercise 10.4. Show that in DNF,, ; there are at most 2(2n+1)" different
functions. <

The number of functions in the hypothesis space H = DNF}, , is dras-
tically less than 22"; the function log|H| is bounded by the polynomial
(2n + 1)*. By the preceding discussion, to demonstrate the PAC-learnability
of DNF, }, it is sufficient to give any learning algorithm and to choose the
size of the example set to be m > L((2n + 1) +1log(1/6)). The only thing
that remains, then, is to give an algorithm that for any example set produces
a consistent hypothesis.

Although the PAC-learnability of DN F}, j, is often discussed in the liter-
ature in connection with Occam’s Razor, this example is really too simple.
The hypothesis space is so small that the length of every hypothesis h sat-
isfies K(h) < (2n + 1)* < p(n) - m*~% with p(n) = (2n + 1)* and a = 1.
So every learning algorithm (i.e., any algorithm as long as it is merely able
to produce something consistent with the examples) is an Occam algorithm.
The requirement that the hypothesis have length sub-linear in m does not
play a role at all.

Here is a simple learning algorithm:

INPUT example set {(z1, f(x1)),..., (@m, f(zm))};
h := set of all monomials with < k literals;
FOR i:=1TO m DO
IF f(z;) =0 THEN
h:=h—{m| mis a monomial in h with m(z;) = 1};
END;
END;
OUTPUT #;

Ezercise 10.5. Show that this algorithm always produces a hypothesis that
is consistent with the example set. <
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In this example, it is important that the function f is also in the hypothesis
space H,,, even though all of the definitions and theorems and the algorithm
are applicable even when f & H,,. For example, let f be the parity function.
The results in Topic 12 will imply that this function cannot be approximated
by a low-degree polynomial. So the naive algorithm just given must necessar-
ily produce an inconsistent hypothesis when applied to the parity function.

* * * * *

It should be noted that in the literature, the complexity of the learning
algorithm (relative to the size of the input example set) is also an issue and
is usually included in the definition. The learning algorithm should run in
polynomial time, just as it does in our example. Since the complexity of
the learning algorithm is irrelevant for Theorem 10.3, we left this out of our
definition.

In a further departure from the literature, we have implicitly assumed
that the hypotheses are boolean functions. This seemed to us to be consistent
with the usual practice in complexity theory where every finite mathematical
object is coded as a 0-1-string.
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11. Lower Bounds for the Parity Function

In their pioneering work of 1984, Furst, Saxe and Sipser introduced the
method of “random restrictions” to achieve lower bounds for circuits: The
parity function cannot be computed by an AND-OR circuit of polynomial
size and constant depth.

By the parity function, PARITY, we mean the infinite sequence of functions
par, :{0,1}"* — {0,1}, n =1,2,3,... with

n
par, (z1,...,x,) = <Z CUZ> mod 2 .
i=1

The question of existence or non-existence of combinatorial circuits for the
parity function has been investigated for a long time. This is because many
other functions can be expressed in terms of the parity function.

We are interested here in circuits of a specific kind, namely circuits that
consist of AND- and OR- gates with unbounded fan-in and have inputs labeled
with variables x; or their negations T;.

Ezample.

AND

7~

T T2 T T2

Gates of the same type that follow one directly after the other can be
combined into a single gate without changing the function computed by the
circuit. For example, the circuit above is equivalent to the following circuit:
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AND

T

T T2 1 T2

So circuits of this type can be put in a certain normalized (leveled) form by
artificially filling in with gates of fan-in 1:

AND

Cor )Cor )(Cor )(or )

T €2 T T2

Now we have on the first level only OR-gates, on the second level only AND-
gates, and, if necessary, we can continue alternating between levels of OR-
and AND-gates.

Exercise 11.1. 'Why can all boolean functions on n variables be computed
by a circuit with only 2 levels (a depth 2 circuit)? What is the size (number
of gates) of such a circuit in general? <

The distributive laws for boolean algebra state that
cAyVz)=(@Ay)V(@Az),
zV(yAz)=(xVy A(xzVz).
Exercise 11.2. Use the distributive laws to transform the depth 2 AND-OR
circuit above into a depth 2 OR-AND circuit. <

Ezercise 11.3. Suppose we have a depth 2 AND-OR circuit in which all the
OR-gates in the first level have fan-in ¢ and the AND-gate in the second level



Lower Bounds for Parity 93

has fan-in d. After using the distributive laws to transform such a circuit into
a depth 2 OR-AND circuit, what is the fan-in of the OR gate? What is the
fan-in of the AND-gates? <

Note that the condition “fan-in = d” for the AND-gate in the previous
exercise can be replaced by the condition that “the number of variables upon
which the value of the AND-gate depends is at most d.”

FEzercise 11.4. Suppose we have a circuit for the complement of parity (par,,)
that has depth ¢ and size g. Show that there is a circuit with ¢ levels and g
gates that computes par,,. <

Exercise 11.5. Suppose we have a circuit for par,,. Now set some of the x;’s
to 0, others to 1, and leave the remaining ones as variables. Any OR-gate
that now has an input with value 1 (or any AND-gate with an input with
value 0) can be eliminated and replaced with 1 (or 0), etc. Show that the
resulting reduced circuit again computes either parity or its complement (on
a smaller number of variables). <

Now we want to investigate whether PARITY can be computed with cir-
cuits of constant depth and polynomial size. In other words, the question
is: Is there a constant ¢t and a polynomial p such that for all n the boolean
function par,, can be computed with a depth ¢ circuit that has at most p(n)
gates? Note that ¢ is not allowed to grow with increasing values of n but must
remain constant.

For t = 2, at least, we can show that this is not possible:

Exercise 11.6.° Prove that PARITY cannot be computed by polynomial-size,
depth-2 OR-AND circuits.

Hint: First show that every AND-gate on level 1 in such a circuit must have
exactly n inputs. From this conclude that the circuit must have at least 27!
AND-gates. <

Exercise 11.7. Show that PARITY can be computed by polynomial-size cir-
cuits of depth O(logn).

Hint: As a first step, construct a polynomial-size, O(logn) depth circuit of
XOR-gates. <

We denote by AC the class of all boolean functions that can be computed
by polynomial-size, depth O((logn)*) circuits with AND- and OR-gates of
unbounded fan-in. Exercise 11.7 shows that PARITY € AC'. We want to show
that PARITY ¢ AC®. (Note that O((logn)®) = O(1)). Exercise 11.6 is a first
step in that direction, the base case of an induction.

The proof of this is due to Furst, Saxe and Sipser, who made use of
(at least in this context) a new technique of “random restrictions,” which
has since been used repeatedly even in other contexts. The result was later
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improved from “not polynomial size” to “at least exponential size” by Yao
and then by Hastad, whose proof is regarded as the significant breakthrough.

We will discuss here the weaker Furst-Saxe-Sipser version because it is
somewhat simpler and provides a good opportunity to work through the
technique of random restrictions. For this we will need a bit of probability
theory. If we conduct a random experiment in which there are two possible
outcomes, success and failure, which occur with probability p and ¢ = 1 — p,
and if we repeat this experiment n times independently, then the probabil-
ity of obtaining exactly k successes is just (})p¥¢"~*. This is the binomial
distribution.

Exercise 11.8.  Let X be a random variable that “counts” the number of
successes in n trials. Compute (or look up in a book on probability theory)
the expected value E(X) and the variance V(X) for this random variable.

<
Exercise 11.9. Prove Chebyshev’s inequality:
Prl|X - B(X)| > a] < V(X)/a? .
Hint: Use Markov’s inequality. (See Exercise 5.8.) <

Exercise 11.10. Suppose n = 100 and p = 0.3. Use Chebyshev’s inequality
to give an upper bound for Pr[X < 17]. <

Exercise 11.11. Prove another inequality for the binomial distribution:
Pr[X >a] <p*-2",

where X is as above. (This inequality is only useful when the right side is
less than 1.) <

* * * * *

In order to show that PARITY cannot be computed by polynomial-size,
constant-depth circuits, it is sufficient to prove the following claim:

Claim 1. ¥Vt Ve Vpolynomials p PARITY cannot be computed using a depth ¢
circuit of size p(n) that has input fan-in < ¢ (i.e., constant fan-in on level 1).

Theorem 11.1. PARITY ¢ AC.

Exercise 11.12.  'Why does this theorem follow directly from Claim 1?7 <
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Proof (of Claim 1). Claim 1 was proven in Exercise 11.6 for the case t = 2.
There it was shown that the input fan-in cannot be constant nor can the size
of the circuit be polynomial.

Suppose the claim is false. Then there is some ¢ > 2 such that parity
can be computed by polynomial-size, depth ¢ circuits with constant fan-in on
level 1. Let t be the least such. Let k be strictly larger than the degree of
the polynomial that bounds the size of the circuits, and let ¢ be the constant
that bounds the input fan-in. We will use this to show that there is also a
polynomial-size circuit family of depth ¢t — 1 with constant input fan-in that
computes parity. (It is worth noticing that both the degree of the polynomial
bounding the size and the constant bounding the input fan-in will increase
when we reduce the depth.) This will contradict the minimality of ¢ and
establish the claim.

The strategy for producing the new circuits is the following: Let
S1,92,53,... be the supposed depth ¢ circuit family for PARITY. We will
construct S;, (a new depth ¢ — 1 circuit in the circuit family S7, S5, S5, ... for
PARITY) by taking an element of the S-sequence with more than n variables
(say Sy,2) and then as in Exercise 11.5 replacing (the appropriate) 4n? — n
of the variables with the constants 0 and 1, leaving a circuit with n input
variables. This circuit will be constructed in such a way that we can use the
distributive laws (Exercises 11.2 and 11.3) to reverse the order of the AND-
and OR-gates on levels 1 and 2 without increasing the size of the circuit ex-
ponentially, as happens in general (see Exercise 11.3). For this it is sufficient
to show that each gate on level 2 depends on only a constant number of input
variables. This guarantees that after application of the distributive laws, the
new circuits will have constant input fan-in (see Exercise 11.3). After this
transformation, the new circuit will have the same type of gates on levels 2
and 3, so these can be collapsed to a single level, leaving a depth ¢ —1 circuit.
The size of the resulting circuit S, will be quadratic in the original size, so
the degree of the polynomial that bounds the size doubles.

The word “appropriate” in the preceding paragraph is loaded. Just how
are we to find an “appropriate” constant substitution? Here is the new idea:
try a random substitution (usually called a random restriction). If we can
show that the probability of getting an appropriate substitution is positive,
then we can conclude that one exists.

We use the following random restriction: For each variable z;, independent
of the others, we perform the following random experiment, which has three
possible outcomes:

e with probability 1/,/n the variable z; remains,
1-1/Vn
2

1-1/vn
2

e with probability the variable z; is set to 0.

e with probability the variable x; is set to 1.

How does one arrive at these probabilities? A boundary condition is that
the probabilities for 0 and 1 must be equal so that in the following discus-
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sion we will be able to exchange the roles of AND and OR (by symmetry).
In addition, it turns out to be useful to set the probability that a variable
remains as small as possible. On the other hand, this probability can only be
polynomially smaller than n for reasons which we will discuss below.

Let r denote a random restriction and let  be the result of this restriction
on z;, so zf € {z;,0,1}. Let S denote the circuit S after applying the
random restriction r. By Exercise 11.5 it is clear that S” is once again a
parity function — or the complement of parity — on fewer variables. In any
case, by Exercise 11.4 there is a circuit for parity with the same depth and
size.

By Exercise 11.8 the expected value of the number of variables in S is
n- \/Lﬁ = y/n. The variance is n - \/Lﬁ -(1- ﬁ) < y/n. The number of variables
actually remaining must be in inverse polynomial relationship to the original
number of variables and not decrease exponentially, otherwise we will not be
able to bound the size of the resulting circuit with a polynomial in the number
of remaining variables. The following exercise shows that this happens with
high probability.

Ezercise 11.13.  Use Chebyshev’s inequality (see Exercises 11.9 and 11.10)
1
to show that Pr[ there are fewer than 1/n/2 variables in S| = O(—=). <«

Vn

This means that with high probability there are at least \/n/2 variables
remaining. In what follows, we are only interested in random restrictions that
leave at least that many variables.
Exercise 11.14. At first glance it is not yet clear how to produce a new
sequence Si, S5, S%, ... without any gaps. For every n the random restriction
applied to the circuit Sy,2 produces a circuit that has on average 2n inputs
and with high probability at least n inputs. Explain how to convert the results
of this process into a sequence S7, S5, 5%, ... without any gaps. <

Next we will give upper bounds for the probabilities that our random
restriction has certain undesirable properties. If we succeed in showing, as in
Exercise 11.13, that each of these probabilities can be bounded above by a
function that approaches 0 as n — oo, then the probability that a random
restriction has any of these (finitely many) properties will (for large enough
n) be less than 1. From this it follows that for every large enough n there
must exist a restriction that has only desirable properties.

First we show that with high probability the gates on level 2 (after the
restriction) depend on only a constant number of inputs. For this argument
we can assume that the gates on the first level are OR-gates and thus the
gates on the second level are AND-gates. (If the situation is reversed, then by
duality we can repeat the argument given below exchanging AND and OR,
0 and 1, and z; and Z;.)

For our probability approximations we will take an arbitrary, fixed AND-
gate on level 2 and show that the random restriction has an undesirable effect
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— in this case, dependence on too many variables — with probability at most
O(=x). Since altogether there are only O(n*~!) gates, it follows that the
probability of this undesirable effect occurring at any AND-gate on level 2 is
at most O(-% -n*~1) = O(%). So with high probability all of the AND-gates
on level 2 have the desired property after the random restriction.

Now we use induction to prove the following claim:

Claim 2. For every AND-OR circuit that has input fan-in (at the OR-gates)
at most ¢, there is a constant e = e, (depending only on ¢) such that the
probability that the AND-gate after a random restriction depends on more
than e variables is at most O(-).

Proof (of Claim 2). The proof of Claim 2 is by induction on c. The base case
is when ¢ = 1. In this case, there are no OR-gates, only the one AND-gate.
We distinguish two cases, depending on whether the AND-gate has large or
small fan-in.

Case B1. The fan-in of the AND-gate is at least 4k - lnn.

In this case it is very likely that there is at least one input to the AND
gate that has been set to 0 by the random restriction, in which case the AND-
gate does not depend on any of the variables that remain after the random
restriction.

Exercise 11.15.° Show that in this case
Pr[AND-Gate is not set to 0] = O(Jr) . <

Case B2. The fan-in of the AND-gate is less than 4k - Inn.

In this case it is very likely that the random restriction sets all but
constantly many variables to constants. This is at least plausible, since
the expected value E(X) for the number of remaining variables satisfies
E(X) < (4klnn)-(1/y/n) = 0 as n — oo (see Exercise 11.11).

FEzxercise 11.16.° Show that in this case

Ly

Pr[the AND-Gate depends on more than ... inputs] = O(m

Note that it does not matter what constant is inserted in place of ..., and
that this may depend on k.

Hint: Our solution works with the constant 18k. Use Exercise 11.11. <

Now we come to the induction step. We assume that e._; exists and show
that e, exists. Once again there are two cases. The inductive hypothesis only
plays a role in the second case.

Case 11. Before the random restriction, the AND-gate on level 2 has at least
d - Inn OR-gates below it with disjoint input variables, where d = k - 4°.



98 Topic 11

In this case we will show that it is very likely that after the random
restriction one of the OR-gates will have had all of its inputs set to 0, which
causes the AND-gate to also have the value 0. In this case the AND-gate does
not depend on any inputs, and the claim is established.

Ezxercise 11.17.° Show that in this case

Prlthe AND-Gate is not = 0] = O(—) .
n
Hint: Remember that all of the OR-gates on level 1 have, by assumption, at

most ¢ inputs. Also, the following relationships might be useful: a!*® = pine
and In(1 — z) < —u. <

Case 12. Before the random restriction, the AND-gate on level 2 has less
than d-Inn OR-gates below it with disjoint input variables, where d = k-4°.

In this case, choose a maximal set of OR-gates with disjoint variables. Let
H be the set of variables that occur in these OR-gates.

Ezercise 11.18. How large can |H| be? <

It is important to note that in each of the OR-gates at least one variable
from H occurs.

Ezercise 11.19. Why is this the case? <

There are | = 217! assignments for the variables in H. If we plug any one of
these assignments into the original AND-OR circuit, then at least one input
to each OR-gate disappears. So after such plugging in, all of the OR-gates
have fan-in at most ¢ — 1. Now we can apply the induction hypothesis. Let
Ay, ..., Ay, be the [ circuits that arise in this way (one for each assignment to
the variables in H). The probability that the function value of A7 (i.e., after
the random restriction) depends on more than e._; variables is bounded
above by O(-r).

The function f computed by the AND-OR circuit can be completely spec-
ified in terms of the A;’s. As an easy example, suppose that H = {z1,22},
so | =4, then

f=@@1 T AV (TT 22+ A2) V(21 -T2 - A3) V (w1 - 22 - Ag) .

From this it follows that the probability that f depends on more than [-e. 1
variables is bounded above by I - O(-).

Instead of using the AND-OR circuit to determine the dependency of f
(after the random restriction) on the input variables, we find it advantageous
to work with the equivalent representation in terms of the A;’s just given.
With high probability, after the random restriction, H will only consist of
constantly many variables, so that the number of remaining terms in our
expression for f will also be constant. Let h be the random variable that
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indicates the number of remaining variables in H after the random restriction.
Once again we are dealing with a binomial distribution with p = 1/4/n, and
we can approximate as we did in case 2 of the base case of the induction:

Ezxercise 11.20.° Show that Pr[h > 4cd + 2k] = O(x).

Hint: Feel free to use a larger constant if necessary. This size of the constant
is not at issue. Use Exercise 11.11. <

Thus with high probability, h < 4cd + 2k, and when this is the case, then
our representation of f consists of at most 2" < 24¢@+2k —. 1 terms that are
not identically 0. Now we put together all the probability approximations: If
we let e, = m - e._1, then we get

Pr[f depends on more than e. variables |
< Prlh > 4cd + 2k]

+m - Prla fixed A; depends on more than e._; variables]
1 1
<O(— -O(—
<O()+m-0(=;)
1
2

= 0(

This completes the proof of Claim 2. O

Now the proof of Claim 1 is complete as well: There must exist a restric-
tion that leaves enough variables; however, each AND-OR circuit on levels
2 and 1 depends on only constantly many of these variables. So with only
constant cost, we can apply the distributive laws and get the second level to
be an OR-level and the first level an AND-level. But now the adjacent ORs
on levels 2 and 3 can be combined, leaving us with a circuit of polynomial
size, depth ¢t — 1, and constant input fan-in, contrary to our assumption that
t is the minimal depth for which this was possible. O
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12. The Parity Function Again

The lower bound theory for circuits received an additional boost through
algebraic techniques (in combination with probabilistic techniques) that
go back to Razborov and Smolensky.

The result of Furst, Saxe, and Sipser that the parity function cannot be
computed by AC? circuits (AND- and OR-gates, constant depth, unbounded
fan-in, and polynomial size) was later proven in a completely different way by
A. Razborov and R. Smolensky. Now we want to work through their method
of proof and some related results. The technique is algebraic in nature but
also uses a probabilistic argument. The argument works as follows:

1. First we show that every function f computed by AC® circuits can be
approximated by a polynomial p of very low degree. Approximation in
this case means that for “almost all” n-tuples (ai,...,a,) € {0,1}",
flar,...,an) =play,...,a,).

2. Then we show that the parity function cannot be approximated in this
sense by a polynomial of low degree.

We begin with step 1. Clearly the AND-function

Ty Tn
can be represented as the polynomial @1 - - -, =[]} ;.

Exercise 12.1. Using 1 — « to represent the NOT-function and DeMorgan’s
laws, give a polynomial representation of the OR-function. <

The problem with this is that in general the polynomials have degree n;
that is, they contain monomials that mention all of the x;’s. This can be
greatly improved by a probabilistic method that goes back to Valiant and
Vazirani. We construct a random polynomial as follows: Let Sop = {1,...,n}.
Furthermore, let S; 11 C S; be chosen randomly so that each element j € S;
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is in S;11 with probability 1/2. Now consider a sequence So, S1,. .., Siog n+2
generated as just explained. Let ¢; denote the random polynomial ) zj,
which has degree 1.

Now if OR(z1,...,2,) = 0, this means that all z;’s have the value 0.
Thus all the g;’s are also 0, and, therefore, the polynomial 1 — p, where
p= Hy):gonﬁ(l —¢;), is also 0. This polynomial has degree O(logn).

If, on the other hand, OR(x1,...,%,) = 1, then there is at least one
xz; = 1. We will show that in this case, the probability is > 1/2 that one of
the polynomials g; has the value ezactly 1. So in this case Pr(l—p=1) > 1/2.

JES;

Ezxample.

S
S 0
So
T T2 I3 T4 Ty Z9 T10

In this example we have 10 variables, 5 of which (z,z3,z6,xs,x9) have the
value 1. One possible realization of the random subsets S; is indicated. Note
that in our example, S3 has exactly one variable with the value 1.

So the polynomial 1 — p approximates the OR-function in a certain sense.
The success rate is still not very high, however; it is only 1/2. But this can be
significantly improved by using new, independent random numbers to gener-
ate additional polynomials p, say p1, p2, - - -, Pt, and then using the polynomial
1 — pi1p2 - -+ pr — which has degree O(tlogn) — for our approximation.

Exercise 12.2. What is the error probability of the polynomial 1—pips - - - ps?
How large must ¢ be to get an error probability below a given constant &7
<

Exercise 12.3. Construct the corresponding polynomial for the AND-
function. <

We still need to show that for any choice of a non-empty subset 1" of Sy
(corresponding to the variables that are true) the probability is at least 1/2
that there is at least one i € {0,1,...,logn+2} such that the size of TNS; is
exactly 1. To approximate this probability, we partition the event space into
various cases and then compute the probability separately for each case.

Case 1. For alli € {0,1,...,logn + 2}, |T'NS;| > 1.

Ezercise 12.4. Give an upper bound for this (for us bad) case. <
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Case 2. Thereis ani € {0,1,...,logn + 2} with TN S;| < 1.

Case 2A. TN S| =|T| =1

Case 2B. |[T'NSp| = |T| > 1 and there is an 7 € {1,...,logn + 2}
with |TﬂSz| <1

Under the assumption that we are in case 2B, let ¢ be such that
TN S;—1] > 1 and |T' N S;| < 1. The probability for TN S;| =1
under the condition that |TNS;| <1and |[TNS;_1| =1t >11is

t —
W2t 2
o o Z 3"
(027" + ()2 t+173
Ezxercise 12.5. Show that it now follows that
Pr(there is an ¢ with |[TN S;| =1) >1/2. <

Next we want to show how to simulate an AC® circuit with size s and
depth ¢ using our polynomials so that the error probability is at most . For
this we use the polynomials above for the gates, but with error probability
for each gate < e/s.

Exercise 12.6. What is the degree of the resulting polynomial, as a function
of €, s, and t? (O-notation suffices.) If s is polynomial in n and € a constant,
what sort of function is this? (constant, logarithmic, polylogarithmic, linear,
polynomial, exponential, etc.) <

* * * * *

In summary, for every boolean function f that can be computed by AC®
circuits, a polynomial p can be randomly generated that has very small
degree and such that for any (ai,...,a,) € {0,1}" the probability is at
least 1 —e = 0.9 (for example) that f(ai,...,a,) =p(ai,...,a,). From this
we conclude that there must be at least one choice of a fized polynomial
p for which f(a1,...,a,) = p(ay,...,a,) for all (a,...,a,) € S, where
|S] > 0.9 2"

Exercise 12.7. Justify the last claim. <

Now we want to consider more carefully the possible representations of
the boolean values TRUE and FALSE. In the polynomial approximations
above we have tacitly identifying TRUE with 1 and FALSE with 0, as is
usually done. For what we are about to do, it will be more advantageous to
use the so-called Fourier representation which identifies TRUE with —1 and
FALSE with 1.

Ezercise 12.8. Find a linear function that maps 0 to 1 and 1 to —1. What is
its inverse? <



104 Topic 12

If we apply this function to our polynomial p, we get a polynomial
g1, yyn) =1=2-p((1 —21)/2,...,(1 —zp)/2) that for 0.9 - 2™ strings in
{=1,+1}" correctly simulates f (transformed to use {—1,+1}) and has the
same degree as p.

Suppose now that the parity function is in AC®. Then there must be such
a function ¢ for parity. So for 0.9 - 2" strings in {—1,+1}", q(y1,...,Yn) =
[T, vi- That is, after this transformation, the parity function corresponds
exactly to multiplication.

Exercise 12.9. Why? <
Now we prove the following

Lemma 12.1. There is no polynomial of degree \/n/2 that correctly repre-
sents the function [[;_, y; for 0.9 2" strings in {—1,+1}".

Corollary 12.2. PARITY ¢ AC". O

Proof (of the lemma). Let q(y1,...,yn) be a polynomial of degree v/n/2 that
correctly represents the function [}, y; for 0.9-2" strings in {—1, +1}". Let
S ={W1,-- yn) € {=1,+1}" [ [T2, i = q(¥1,-- -, 9a)}. So |S] > 0.9 -2
We can assume that the polynomial q is multi-linear, that is, no variable has
an exponent larger than 1.

Exercise 12.10. Why? <

The vector space L(S) (over R), which consists of all linear combinations
of vectors in S, has dimension |S|. Similarly, POL, the set of all n-variate
multi-linear polynomials of degree (n++/n)/2, is a vector space with the usual
polynomial addition (which does not increase the degree) and multiplication
by scalars in R. A basis for this vector space is the set of all monomials
[I;cq @i with |T'| < (n + /n)/2. Thus the dimension of this vector space is

n++/n)/2
SV (0)-

Ezercise 12.11.° Show that this sum is strictly smaller than 0.9 - 2" < |S].
<

Now we show that L(S) can be embedded by a linear transformation h (a
vector space homomorphism) as a subspace of POL. It is sufficient to show
how the basis vectors in L(S) — the elements of S — are mapped by h. Let
s € S and let T be the set of indices in s where a —1 occurs. If |T'| < n/2,
then h(s) is the monomial [];., y:. if |T'| > n/2, then h(s) is the polynomial
a1,y Yn) HieT yi, which has degree at most (n + y/n)/2 and, therefore,
is in POL.

Ezercise 12.12. Convince yourself that for all (y1,...,y,) € S

[Tyvi=atw,- - 90) [Twi-

iel igT
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Therefore, the polynomials h(s) are linearly independent in POL.

<
Since the polynomials h(s) are linearly independent in POL, dim(POL) >
dim(L(S)). This yields the contradiction

0.9-2" < dim(L(S)) < dim(POL) < 0.9 - 2"

and completes the proof of Lemma 12.1. O

Ezercise 12.13. Improve the result that PARITY ¢ AC® to show that any

polynomial-size circuit for par, must have depth at least Q(%gog—n). <

* * * * *

We can use the result that parity is not in AC® to show that this is also
the case for other boolean functions, for example for majority. For this we
intl(r)oduce a notion of reducibility that is tailored to the definition of the class
AC".

A family of boolean functions F' = (fi, fa, f3,...), where f, : {0,1}" —
{0, 1}, is AC?-reducible to a family G = (g1, 92,93, - .), if there is a constant
d and a polynomial p such that for every n, there are circuits for f,, that have
depth at most d and size at most p(n) that may consist of AND-gates and
OR-gates (with unbounded fan-in) and also g; gates (i arbitrary).

It should be clear that if F'is AC°-reducible to G and G € AC’, then
F € AC? as well.

Ezercise 12.14. Why? <

Examples for such families of functions are

PARITY = (par,, par,, pars,...)

and
MAJORITY = (maj,, maj,, majs,...),
where maj(zy,...,z,) = 1 if and only if for at least n/2 of the inputs z; we
have z; = 1.
Ezercise 12.15. Show that PARITY is AC’-reducible to MAJORITY. <

From this it follows immediately that
Theorem 12.3. MAJORITY ¢ AC". O

In fact, we can use this same technique to show that every symmetric
boolean function is reducible to MAJORITY. A symmetric function is one
that is invariant under permutations of the input variables; that is, its value
depends only on the sum of the input variables, > | z;. Such a function can
be completely specified by a value vector of the form (fo, f1,--., fn), where
each fj, gives the value of the function when ) " | x; = k. (So there are only
271 distinct symmetric functions of n variables.)
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Furthermore, one can show that all symmetric functions are in NC* and
that majority is not AC’-reducible to parity. In other words, majority can-
not be computed by circuits with constant depth, polynomial size, and un-
bounded fan-in over {A,V, ®}.

The following sketch shows the situation:

MAJORITY

PARITY

symmetric functions

* * * * *

The proof method in which a circuit (in this case a so-called perceptron)
is described via a polynomial and the degree of this polynomial is compared
with the least possible degree of a polynomial that represents the parity
function (in order to show that the proposed circuit cannot compute parity)
was first used by Minsky and Papert. By a perceptron we mean a depth-2
circuit that has a threshold gate (also called a McCulloch-Pitts neuron) for
its output gate. This means (for now) that the gates on the first level may
compute any boolean functions of the inputs. From the binary output values,
a; € {0,1}, of these functions a weighted sum is then computed, each input
to the threshold gate being assigned the weight w; € R. Finally, this weighted
sum is compared with a threshold value ¢ € R. If the sum is at least as large
as the threshold, then the perceptron outputs 1, otherwise it outputs 0. That
is, the value of the perceptron’s output is given by

{1 if Zz w;ag Z t,

0 otherwise.
The threshold gate can have an unbounded number of inputs.

T

T2

Tn

threshold gate
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The intended application of such circuits as classifiers in the area of pat-
tern recognition and the biological model of a neuron makes it reasonable to
consider the case where the gates on level 1 do not depend on all of the in-
puts x1, . .., &, but only on a strict (possibly very small) subset of the inputs.
The perceptron is also attractive since one had hoped that by successively
varying the weights, such circuits could “learn” any boolean function. Minsky
and Papert showed, however, that such circuits are not capable of computing
parity on x1,...,&y,. It is this result that we consider next. This result has
been credited with bringing to a halt research (or at least funding of research)
in the area of neural nets, which in the 60’s had just begun to flourish. This
lasted for about 20 years, until recently when — despite this negative result —
the value of neural nets was again recognized.

Ezercise 12.16. Convince yourself that the model just described is equiva-

lent to a model in which all gates on the first level are AND-gates, but in

addition to the input variables z1,...,x,, their negations are also available.

The number of inputs to an AND-gate is still required to be less than n.
Sketch:

T

Tn :

— Yy ™ Jd
xl

: t

T, threshold gate

<

Every AND-gate can be described as a polynomial over {0, 1}, namely
the product of terms that are z; if the variable z; is an input to the gate and
(1 — =;) if its negation is an input to the gate.

Example. The AND-gate that conjuncts x1, Tz, and T3 is represented by the
polynomial

CUl(]. — 372)(]. — 373) =21 —T1T2 — T1T3 + T1T2X3 .

It is clear that on inputs from {0, 1}, this multi-linear polynomial rep-
resents precisely the correct value of the AND-gate. Furthermore, the total
degree of this polynomial corresponds to the number of inputs to the AND-
gate, and must, therefore, be less than n. Let f; (i = 1,...,m) be the poly-
nomial that represents the ith AND-gate of a perceptron. These polynomials
are then added (weighted according to the threshold gate):
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m
> wifi.
i=1

This is a multi-linear polynomial in all variables x1,...,x,, and still has
total degree < n (i.e., no monomial in the sum can mention n literals). If
such a circuit were capable of computing parity, then there would be some
real constant ¢ such that

m

Zwtfz Z t <— parn(xl,...,xn)zl,
i=1

In other words, the sign of the polynomial p with
m
p(1,...,an) = Zwifi —t
i=1

determines the parity of the input bits z1,...,z,.
The next step makes use of the fact that parity is symmetric. This means
that for any permutation 7,

par,(z1,...,x,) = par,(n(z1),...,7(xy)) .

Now we build the polynomial
41, ywn) = 3 p(a(@1), ., 7))

This is a multi-linear polynomial of total degree < n, the sign of which also
represents the parity function. The sum is over all permutations 7 of the
n-element set {z1,...,z,}. Furthermore, all monomials that have the same
number of variables must occur with the same coefficients.

Exercise 12.17. Justify the last sentence. <

So the polynomial ¢ can be written as

s
q(l‘l, e ,In) = Zaiti 5
=0

where s < n, ap, ..., as are appropriate coefficients, and the terms ¢; sum up
all monomials with ¢ variables:

b= Y Ilw
SC{a1,tn} JES
|S|=i

By the previous exercise, the polynomial ¢ depends only on z1 + - - - + .,
and not on the particular tuple (z1,...,zy). Let 7 be a polynomial in one
variable defined by
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r(zy + -+ x,) =q(z1,...,2,) -

w=Sa(t)

2

Since t; is just (““Jr'f””")

7

This is a univariate polynomial of degree s < mn with the property that
r(k) > 0 exactly when k is even (for k € {0,1,...,n}).

Sketch for n = 4:

N0

But such a polynomial that has n zeroes must have degree at least n. This
is a contradiction, which proves that no perceptron can compute parity. O
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13. The Complexity of Craig Interpolants

The Craig Interpolation Theorem (1957) was placed in the context of the
P < NP and NP = coNP questions in a paper by Mundici (1984).

The Craig Interpolation Theorem of propositional logic states that for any
two formulas F' and G in propositional logic such that F — G there is a
formula H which uses only variables occurring in both formulas such that
F — H and H — G. The formula H is called an interpolant of F' and G.

Exercise 13.1.° Prove the Craig Interpolation Theorem. <

If the formulas F' and G have length n, then the question arises: How long
must H be? It turns out that the answer is influenced by how the formulas are
represented and that the method of encoding can have a decided impact on
the result. Branching programs and boolean circuits are two length efficient
representations of boolean functions as formulas.

For a given boolean function F, let size(F') be the size (number of gates)
of the smallest circuit (over =, A, V) that computes F. For formulas F' and G
of length n let H be an interpolant of minimal circuit size. So size(H) is the
interpolant complexity of F and G, which we denote by int(F,G). For every
n let 6(n) be defined as

d(n) = max{int(F,G) | |F| = |G| =n} .

Not much is known about the growth rate of 6(n). From the fact that formulas
of length n can have (almost) n variables (more exactly O(n/logn) variables)
and the proof of the previous exercise, we get an upper bound for d(n) of

o(2n).
Ezercise 18.2. Why can’t a formula of (coding-) length n contain more than
O(n/logn) many variables? <

The interesting (open) question is whether perhaps d(n) has only a poly-
nomial rate of growth. A positive answer would have an interesting conse-
quence for the class NP N coNP:

Theorem 13.1. If d6(n) is polynomially bounded, then all languages in NPN
coNP have polynomial-size circuits.
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For more on polynomial circuit complexity see Topics 9, 16, and 17.

At first glance, this result seems very surprising. How does the proof work?
Recall the proof of Cook’s Theorem (that SAT is NP-complete, see the book
by Garey and Johnson for a proof). The proof contains a construction that
given any language A € NP and n € N produces in polynomial time a boolean
formula F,(71,...,%n, Y1, -,Yp(n)) (Where pis a polynomial), which we will
call F,,(z,y), so that for all = € {0,1}",

r€A << JyF,(z,y)=1.

Now let A € NPNcoNP. Then for every n there is a Cook formula F,, (z, y)
for A € NP and a corresponding formula G,,(z,2) for A € NP. Note that y
and z are distinct variables, but that the x-variables are common to both
formulas.

Ezercise 13.3. Show that F,, — -G,,. <

By the Craig Interpolation Theorem there must be an interpolant H,, so
that F,, —» H,, and H,, — —G,,. Let C,, be the smallest circuit that computes
the boolean function H,. If §(n) is polynomially bounded, then for some
polynomial ¢ and all n, |C,| < g(n).

Ezercise 13.4. Show that C), is a circuit for the characteristic function of A
on strings of length n. Since the size of C,, is polynomial in n, this implies
that all languages in NP N coNP have polynomial-size circuits. <

Now one can ask if the proof can be modified to better reveal its
“quintessence.” In particular, we want to generalize the right side of the im-
plication as much as possible while maintaining the truth of the statement.
By inspecting the proof carefully, we arrive at the following formulation:

Theorem 13.2. If the function 6(n) is polynomially bounded then any dis-
joint pair of NP languages A and Ay is PC-separable. (This means that there
is a language C with polynomial-size circuits such that Ay C C and C C A,).

Ezercise 13.5. Why is Theorem 13.1 a (simple) corollary to Theorem 13.27
<

FEzxercise 13.6. Prove Theorem 13.2. <

Exercise 13.7. Show that at least one of the following statements is true:

1. P=NP,
2. NP # coNP,
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3. An interpolant of F' and G with F' — G is not, in general, computable
in time polynomial in |F| + |G|. <

Exercise 13.8.°  Show that the hypothesis that every NP language has
polynomial-size circuits (cf. Topic 16) implies that d(n) is polynomially
bounded. <

So if one could show that §(n) is not polynomially bounded, one would have
shown that P # NP!
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14. Equivalence Problems and Lower Bounds
for Branching Programs

Branching programs are a computational model for boolean functions
which, in comparison to circuits, have a somewhat restricted “express-
ibility.” For a certain (further restricted) model of branching programs,
the equivalence problem is solvable in probabilistic polynomial time. For
this model, explicit exponential lower bounds have also been proven.

An interesting algorithmic problem is to determine whether two differently
constructed circuits are equivalent. Do these circuits compute the same func-
tion even though they are wired differently? In this case, we could replace
the more complicated of the two circuits with the simpler one.

It would be ideal, of course, if this problem could be solved efficiently
(say in polynomial time) on a computer. But it is well-known that the satis-
fiability problem (for boolean formulas or for circuits) is NP-complete, and
there is no known algorithm for any NP-complete language that runs in poly-
nomial time. Testing two circuits for equivalence is similarly hard, since the
inequivalence problem is NP-complete. The naive method of trying out all
possible assignments to the variables requires exponential time. But is there
some alternative method that is cleverer and faster?

In order to investigate this question, we will leave the world of circuits
and consider a new representation of boolean functions, namely branching
programs (also called binary decision trees, or BDDs).

Definition 14.1 (Branching Program). A branching program B with
boolean variables 1,x2,...,x, is a directed, acyclic graph G = (V, E) with
the following types of nodes:

e computation nodes: FEvery computation node b has exactly two out-going
edges ko and k1, where ko is labeled with “T;” and ki with “z;” (for some
ie{l,...,n})

e terminal nodes: Nodes with out-degree 0 are called terminal nodes. Termi-
nal nodes are divided into two categories: accepting and rejecting.

There is one distinguished computation node with in-degree 0 which is called
the start node and denoted vgiart -

Given an assignment z1,...,z, € {0,1}, the graph of B is traversed
starting with the start node until a terminal node is reached. During this
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traversal, edges may only be used if their labels agree with the assignment to
the corresponding variable. If the computation ends in an accepting terminal
node, then B(x1,...,x,) =1, otherwise B(x1,...,2x,) = 0.

We say that a branching program B computes the n-place boolean function
f,if forall zy,...,z, € {0,1}

B(xy,...,xy) = f(x1,...,2,) -

A branching program B is one-time-only if in every path from the start
node to a terminal node, each variable occurs at most once.

Two branching programs B and B' are equivalent if for all assignments
LlyeoeyLp,

B(z1,...,%xy) = B'(z1,...,%,) .

Exercise 14.1. Show that for every boolean function f that is computable by
a branching program of size s, there is a circuit of size O(s) that computes

f- <

The problem of determining whether two differently constructed circuits
compute the same boolean function can now be translated to the world of
branching programs. We define the language BP-INEQ as follows:

BP-INEQ = {(B,B’) | B and B' are not equivalent branch-
ing programs } .
Unfortunately, BP-INEQ is NP-complete. This greatly decreases our

chances of finding an efficient algorithm for BP-INEQ. If we were to suc-
ceed, we would have shown that P = NP.

Ezercise 14.2.° Show that BP-INEQ is NP-complete.
Hint: Reduce the satisfiability problem SAT to BP-INEQ. <

One special subproblem of BP-INEQ is BPI-INEQ, in which pairs of
one-time-only branching programs are compared:

BPI-INEQ = {(B,B') | B and B’ are not equivalent one-
time-only branching programs } .

Testing two one-time-only branching programs for equivalence appears to be
simpler; we will show that BP1-INEQ € RP. (For more on the class RP see
Topic 17.) So BPI-INEQ is contained in a class that is “below” NP. This
means that one-time-only branching programs must have a simpler structure
than is generally the case. (One should check that in the proof of the NP-
completeness of BP-INEQ), it is significant that no one-time-only branching
programs are constructed.)

The basic idea of the proof that BP1-INEQ € RP is to guess the assign-
ment to the n variables. The values assigned to the variables, however, are
not chosen from {0, 1}; rather they are chosen from the larger set {1,...,2n}.
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Since branching programs are only set up to handle boolean functions, we
need a procedure for turning a branching program into a function (prefer-
ably a polynomial) that can take n-tuples of integers as inputs. Of course,
the actual information, the boolean function that the branching program is
supposed to be computing, should not be lost in this process.

So the goal is to associate with any branching program B a polynomial pg,
such that for all z1,...,z, € {0,1} we have B(x1,...,zn) = pp(z1,...,Zp).
To this end we construct for every node of B a polynomial that is built from
the polynomials of its predecessors:

1. For the start node vsgart, Pvgnrs = 1-

2. For a node v with predecessors vy,...,v; ,
! T if (v;,v) is labeled,
Py = Z @; - pu;, where a; = with z;
i=1 11—z otherwise.

3. Finally, the polynomial pp is the sum of the polynomials for the accepting

terminal nodes:
PB = va ’
v

where the sum is over accepting nodes v.

Exercise 14.3.° Let B be the following branching program:
D5y ()

I T3

Construct the polynomial pg and check if pg (w1, x2,x3) = B(x1,x2,x3) for
all ¢y, 22,23 € {0,1}. (Use a truth table.)

Now show that the polynomial constructed in this way from any branching
program has the same value as the underlying branching program for any
assignment zy,...,z, € {0,1}

Hint: Prove the following claim (by induction on m):

Let z1,...,z, € {0,1} and let V,,, be the set of all nodes in B that
are reachable from vsgar¢ in exactly m steps. Then for all v € V,,,

1 v is reachable on the mth step
pu(T1,. .., Tn) = of B(xy,...,zp),
0 otherwise.
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When we speak of the polynomial of a branching program, we will always
assume that it has been constructed by the procedure described above. Note
that it is easy to efficiently evaluate such a polynomial pgp on a particular
input (x1,...,x,). In contrast, it is much more difficult to multiply out such
a polynomial symbolically to compute its coefficients.

By the previous exercise, two branching programs B and B’ are equivalent
if and only if for all z1,...,z, € {0,1}, pp(x1,...,2n) = pB: (T1,...,20).

Ezercise 14.4. Show that it is not possible (in the case of general branching
programs) to conclude from this that for all z;,...,z, € N, pg(z1,...,z,) =
pB: (T1,. .., Tn). <

* * * * *

Now comes the question, how many points must be tested for equality
in order to know whether two such polynomials are identical? How many
(distinct) support points of a polynomial with n variables and degree <1 (a
multi-linear polynomial) determine the polynomial uniquely.

We are aided here by the following theorem:

Theorem 14.2. If p and q are different multi-linear polynomials in n vari-
ables, and S C R is an arbitrary finite set with |S| > 1, then there are at least
(|S] = 1)™ points (z1,...,x,) € S™ for which p(z1,...,2,) # q(z1,...,2y).

Exercise 14.5.° Prove Theorem 14.2 by induction on 7. <

Corollary 14.3. If the n-variate, multi-linear polynomials p and q agree on
the 2™ points (0,0,...,0,0), (0,0,...,0,1), ...,(1,1,...,1,1), then p and q
are identical.

Ezercise 14.6. Why is this a consequence of Theorem 14.2 <

So if B and B’ are equivalent one-time-only branching programs, then
the polynomials pp and pp' are identical.

Exercise 14.7. Why? <

We have now gathered the necessary tools to show that BPI-INEQ is
contained in the class RP.

Theorem 14.4. BPI-INE(Q € RP.

Proof. Let B and B’ be one-time-only branching programs with associated
multi-linear polynomials pp and ppr. A probabilistic Turing-machine M for
BPI1-INEQ functions as follows:

1. For every variable z;, 1 <4 < n, a value from S = {1,...,2n} is chosen
at random under the uniform distribution.

2. Ut pg(x1,...,xn) # pe(x1,...,2,), then M accepts, otherwise the input
is rejected.
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If (B,B') ¢ BPI-INEQ, then B and B’ are equivalent. In this case
Pr[M((B, B')) accepts] =0

Ezercise 14.8. Why? <

On the other hand, if (B, B') € BP1-INEQ), then for at least half of the
assignments to z1,...,2Z, ,

B(mla"wmn) #B’(mla"'amn) .

Ezercise 14.9.° Prove this.
Hint: Use Theorem 14.2.
This concludes the proof that BPI-INEQ € RP.

* * * * *

Next we want to compare the complexity of various statements regard-
ing branching programs. The equivalence problem for general branching pro-
grams is coNP-complete, as we have argued above. In contrast, the corre-
sponding equivalence problem for one-time-only branching programs is in
coRP, since BPI-INEQ € RP.

A related, but potentially more difficult problem for a class of (branching)
programs is the inclusion problem: given two branching programs, decide
if the boolean functions f; and f» they represent satisfy fi(z1,...,o,) <
fZ(CUl; s ;wn) (equivalently: fl(mh s ;wn) = fZ(CUl; s ;mn))

If the inclusion problem can be solved efficiently, then so can the equiva-
lence problem. Thus the inclusion problem is harder: if the equivalence prob-
lem does not have an efficient solution, then the inclusion problem does not
either. This follows from the fact that f; = f» if and only if f; = f> and
f2= f1.

For general branching programs, the inclusion problems remains coNP-
complete. This follows from the NP-completeness proof for the inequivalence
problem given above.

There are, however, situations in which there is a difference between the
complexity of the inclusion problem and the complexity of the equivalence
problem for a class. For example, the inclusion problem for deterministic
context-free languages is undecidable. The status of the equivalence problem
for deterministic context-free languages is an open question and may even be
decidable.

We showed above that the equivalence problem for one-time-only branch-
ing problems is in coRP. The inclusion problem, on the other hand, is coNP-
complete:

Theorem 14.5. The inclusion problem for one-time-only branching prob-
lems is coNP-complete.
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Exercise 14.10.° Prove Theorem 14.5. <

* * * * *

Finally, we want to give an exponential lower bound for one-time-only
branching programs with respect to an explicitly given boolean function.
Note that it is not the exponential lower bound itself that is of interest — this
follows, for example, from Exercise 9.7 — rather it is the explicit presentation
of such a function.

Let n be a prime number. Then the algebraic structure

GF(n) = ({0,...,n -1}, *mod n > Tmod n)

is a finite field. Let POL be the set of all polynomials in one variable over
GF(n) with degree < n/3. There are exactly n/"/3! polynomials in POL.
By the Interpolation Theorem, since GF(n) is a field, specifying [n/3] zeroes
uniquely determines the polynomial.

Now we define our explicit boolean function f : {0,1}" — {0,1}. The
graph of every polynomial on GF(n) can be represented by an argument tuple
= (20,0,.-+,%n—1,n—1) in the following way: z; ; = 1 if and only if p(i) = j.

Ezample. Let n = 7. The first square below represents the polynomial p(z) =
z + 3; the second represents the function p(z) = 2z? + 3z — 1. (A black circle
represents the boolean value 1.)

6 [ @ 6@
o o
fummmna 1=
{ o { COm
0 o | 0 [ 11
0123456 0123456

Of course, some tuples & do not represent any polynomial. Our boolean
function f:{0,1}"" — {0,1} is defined by

f(X)=1 <= X represents a polynomial in POL .

Suppose that B is a one-time-only branching program that computes f.
Along every path from the start node to a terminal node, each variable is
queried at most once.

Ezercise 14.11.  Show that along every path from the start node to an
accepting node, every variable is also queried at least once. <

Every boolean vector x induces a path through the branching program.
We will call this path the x-path. Let & be given with f(x) = 1. So =
represents a polynomial in POL. Along the x-path there must be exactly n
variables for which the query is answered 1, since there are exactly n 1’s in
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@. Let k(x) be the node where on the x-path where for the (n/2)th time the
query is answered with a 1.

The following picture sketches the branching program with the x-path,
the node k(x), and other nodes of the form k(z') indicated.

Ezercise 14.12.° Show that for distinct  and @’ with f(x) = f(z') = 1,

Hint: Use the Interpolation Theorem for polynomials and a “cut-and-paste”
argument to construct a new path & from x and x'. <

From this it follows that in B there are n™/? distinct nodes of the form
k(X) with f(X) = 1, since there are that many polynomials in POL. So
n™/3 = 220 ig a lower bound for the size of a one-time-only branching
program that computes f. Since the number of input values is m = n?, this

bound, expressed in terms of m is 220m"%).
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15. The Berman-Hartmanis Conjecture and
Sparse Sets

If all NP-complete languages were P-isomorphic to each other, then it
would follow that P # NP. This “Isomorphism Conjecture” has been the
starting point of much research, in particular into sparse sets and their
potential to be NP-complete.

In computability theory it is well known that all complete problems for the
class of computably enumerable sets (under many-one reductions) are actu-
ally computably isomorphic to each other. This means that between any two
such problems, there is a computable bijection that provides the reduction.

Led by the idea that the classes P and NP are “polynomial-time analogs”
of the classes of computable and computably enumerable languages (in the
definitions of computable and computably enumerable, “finitely many steps”
is replaced by “polynomial in the input length many steps”) it is natural to
ask whether a similar “isomorphism theorem” is true for NP-complete lan-
guages as well. Precisely this was conjectured by L. Berman and J. Hartmanis
in 1977:

Berman-Hartmanis Conjecture (Isomorphism Conjecture)
All NP-complete languages are pairwise polynomial-time isomorphic (P-
isomorphic) to each other.

Two languages A and B are said to be P-isomorphic if there is a polynomial-
time computable bijection f that is polynomial-time invertible (i.e., f~! is
also polynomial-time computable) and is a many-one reduction from A to B.
(This implies that f~! is also a many-one reduction from B to A.)

The analogy to computability theory suggests that the conjecture should
hold. But even if it is true, it will probably be hard to prove, since

Berman-Hartmanis Conjecture holds = P # NP .

Exercise 15.1. Prove the claim just made. <

In their paper, Berman and Hartmanis showed that all the then-known
NP-complete problems were pairwise P-isomorphic. For this they showed that
all the known NP-complete languages (including SAT) have a certain prop-
erty P, and that any language that is NP-complete and has property P is
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P-isomorphic to SAT and, therefore, to every other NP-complete language
with property P. See the following sketch:

------------ NP-complete languages

------------ NP-complete languages
with property P
(= P-isomorphic to SAT)

9

NP

L

So the Berman-Hartmanis Conjecture is equivalent to the question: Do
all NP-complete languages have property P? If they do, then they are all
P-isomorphic, and we will say that the many-one degree (maximal set of
many-one equivalent languages) of an NP-complete language collapses to its
isomorphism degree (which is the isomorphism degree of SAT).

So what is this property P? Roughly, it says that all inputs x can be
systematically extended with some “irrelevant” information y in such a way
that (non-) membership is not altered. Furthermore, the information y can
be easily recovered from the version of x that has been “padded” with y. The
following definition makes this precise.

Definition 15.1. A language A C X* has property P if there are two
polynomial-time computable functions py : X" x X* = X" anddy : X* — X~
such that

pa does not alter (non-) membership in A, i.e., v € A& pa(z,y) € A,
pa is length-increasing, i.e., [pa(z,y)| > |z| + |y|,

pa 1s injective, and

da is the inverse of pa with respect to the second argument, i.e.,

)y zf’z:pz‘l(way)a
da(z) = {* otherwise.
Note: the function p4 is often referred to as a padding function.
Although this definition appears to be quite technical and involved, it
turns out that for (typical) NP-complete languages this property is easily
established.

Exercise 15.2.° Show that SAT has property P. <
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Next, we consider two lemmas which establish conditions under which
many-one reductions can be converted into 1-1 reductions; and 1-1 reductions,
into isomorphisms.

Lemma 15.2. Let A and B be languages that each have property P and
are polynomial-time many-one reducible to each other (A §§1 B and B §§1
A). Then each of A and B can be reduced to the other via a polynomial-
time computable injective function (1-1 reducibility) that is length-increasing
(i.e., | f(x)| > |z|) and has a polynomial-time computable inverse. O

FEzxercise 15.3.° Prove Lemma 15.2.

Hint: Construct the injective function using a suitable composition of the
many-one reduction and the padding function. <

Lemma 15.3. Let A and B be languages that are polynomial-time many-one
reducible to each other (A SE B and B SE A) via reductions that are in-
jectiwe and length-increasing and have polynomial-time computable inverses.
Then there is a polynomial-time computable bijection between A and B that
has a polynomial-time computable inverse. In other words, the languages A
and B are P-isomorphic. O

Exercise 15.4.° Prove Lemma 15.3. <

Combining these two lemmas and the observation that SAT has property
P, we get the following theorem:

Theorem 15.4. Every NP-complete language with property P is P-isomor-
phic to SAT. O

* * * * *

From today’s standpoint, the evidence seems to indicate that the Isomor-
phism Conjecture is probably false. (See the paper by P. Young.) But aside
from the status of the conjecture itself, the Isomorphism Conjecture seems
to be even more significant for the number of important investigations and
results to which it led. In particular, this is the case in regard to sparse sets.

Definition 15.5. A set A is called sparse if there is a polynomial p such that
foralln e N, [{z € A : |z| < n}| < p(n).

So in a sparse language, of the exponentially many possible strings of length
less than n, only polynomially many belong to the language.

Exercise 15.5.  Show that SAT is not sparse by showing that there are
constants € > 0 and § > 0 such that there are at least £2°" strings of length
at most n in SAT. g
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Exercise 15.6. Show that no sparse language can be P-isomorphic to SAT.
<

In light of the previous exercise, one can formulate the following weaker
version of the Isomorphism Conjecture:

Second Berman-Hartmanis Conjecture. If P # NP, then no sparse lan-
guage can be NP-complete.

The notion of NP-completeness in this conjecture (as in the original Isomor-
phism Conjecture) is polynomial-time many-one reducibility. But it is also
interesting to investigate this question with respect to polynomial-time Tur-
ing reducibility.

After important first steps by P. Berman and by S. Fortune, and with
one eye on a technique used by R.M. Karp and R.J. Lipton, the Second
Berman-Hartmanis Conjecture was finally proven in 1980 by S. Mahaney.

For a long time, this result could only be marginally improved. An impor-
tant breakthrough to more general reducibilities (namely to bounded truth-
table reducibility) came in a 1991 paper by M. Ogiwara and O. Watanabe. A
somewhat more streamlined proof of this result was given by S. Homer and
L. Longpré. Finally, based on the technique of Homer and Longpré, the most
comprehensive result was achieved by V. Arvind et al.

We present here the original result of Mahaney using the techniques of
Ogiwara-Watanabe and Homer-Longpré.

Theorem 15.6. If P # NP, then no NP-complete language can be sparse.

Proof. Suppose there is a sparse language S with SAT §,F:1 S. Let p be the
polynomial that witnesses the sparseness of S and let f be the reduction.
We must somehow algorithmically exploit the fact that exponentially many
strings in SAT of length at most n must be mapped onto only polynomially
many strings in S to show that SAT € P (so P = NP).

If we determine that for some pair of strings « and y, f(z) = f(y), then
the status of ¢ and y with respect to membership in SAT must be the same:
either they are both in SAT or neither of them is. And for strings = and
y in SAT we expect that this situation (namely, that f(z) = f(y)) occurs
frequently.

An important step in the proof consists of using a variant of SAT rather
than SAT itself for the rest of the proof. Let <1 be the lexicographical ordering
on the set of all strings of length at most n. For example, for n = 3 we have

A<0<100<000<001 <01 <010 ---<q111.
Now we define

LeftSAT = {(F,a) | F is a boolean formula with n variables, a € .
{0,1}¢, i < n, and there is a satisfying assign-
ment b € {0,1}" for F with a <b }
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Imagine the set of all 0-1 strings of length at most n arranged in a tree.
Let b € {0,1}" be the largest (with respect to <) satisfying assignment for
F. Then for all strings a in the striped region below, (F,a) € LeftSAT:

0" b 1"

Ezercise 15.7. Show that SAT <P LeftSAT and LeftSAT <P SAT. <

So LeftSAT §§1 S, say via the reduction g. Let ¢ be a polynomial such
that |g((F,a))| < q(]F|). Now we design an algorithm for SAT that exploits
this reduction from LeftSAT to S.

INPUT F;
{ Let n be the number of variables in F' }
T:={X};
FOR i:=1TO n DO T := Extend(T) END;
FOR each b €T DO

IF F(b) =1 THEN ACCEPT END
END;
REJECT

In the function Extend, the set T of partial assignments is extended in such
a way that after n extensions, all strings in 7" have length n. In order for this
to be a polynomial-time algorithm, it is important that calls to Extend do
not increase the size of T' exponentially but only polynomially. In order for
the algorithm to be correct, at the end of the algorithm, 7" must contain a
satisfying assignment for F' if there is one. For this it will be important that
T always contain a string a that can be extended to the largest (with respect
to <) satisfying assignment b. Then at the end of the algorithm b must be in
the set 7.
Here is the procedure Extend:

PROCEDURE Extend (7T : Set_0f_Strings):
Set_0f_Strings;
VAR U: Set_0f_Strings;



128 Topic 15

BEGIN
U := 0
FOR cach a € T DO U := U U {a0, al} END:;
FOR each a,a’ € U, a <a' DO

IF g((F,a)) = g((F,a')) THEN U :=U — {a} END

END:
{ Now let U = {a1,...,ax}, where i < j = a; < a;. }
{ Let m = p(q(|F])). }
IF &k > m THEN U := {ay,...,a,} END;
RETURN U

END Extend

First every string in T is extended by both 0 and 1. Thus U has twice as
many strings as 7. Two processes are then used to reduce the size of U:
If a g-value occurs twice, then the smaller of the two strings giving rise to
this value is removed from U. If U still has too many elements (more than
m) then only the smallest m are kept. Since m is polynomial in n (it is the
maximum possible number of strings g(F,a) for F € SAT), it is clear that
the algorithm runs in polynomial time.

Correctness is established by the following exercise. O

Ezercise 15.8.° Suppose F' is satisfiable. Let b = by ...b, be the largest
satisfying assignment for F'. Show that after each application of Extend, the
initial segment by ...b; of bis in T'.

Hint: Be sure you understand the effects of Extend in terms of the tree of
assignments. <

Finally, we note that the proof just given can be fairly easily extended from
many-one reductions to more general reductions (such as bounded truth-table
reductions or conjunctive reductions, for example). Furthermore, we did not
make use of the property that S € NP, so we have actually proven a somewhat
stronger theorem, namely

Theorem 15.7. IfP # NP, then there is no sparse language that is NP-hard
(with respect to many-one reducibility). a

References

For more information about computability theory and proofs of the isomor-
phism result in that setting see

o M. Machtey, P. Young: An Introduction to the General Theory of Algo-
rithms, North-Holland, 1978.

o P. Odifreddi: Classical Recursion Theory, North-Holland, 1989.



The Berman-Hartmanis Conjecture 129

o H. Rogers: Theory of Recursive Functions and Effective Computability,
McGraw-Hill, 1967.

The original statement of the Isomorphism Conjecture appeared in

o H. Berman and J. Hartmanis: On isomorphism and density of NP and
other complete sets, SIAM Journal on Computing 6 (1977), 305-323.

For an overview of some of the work that was generated by this conjecture
as well as an indication why the conjecture is most likely false see

o P. Young: Juris Hartmanis: Fundamental contributions to the isomor-
phism problem; in A. Selman, ed., Complezity Theory Retrospective,
Springer, 1990, 28-58).

The proof of the Second Berman-Hartmanis Conjecture built on results found
in

o P. Berman: Relationship between density and deterministic complexity
of NP-complete languages, Symposium on Mathematical Foundations of
Computer Science, Lecture Notes in Computer Science 62, Springer, 1978,
63-71.

o S. Fortune: A note on sparse complete sets, STAM Journal on Computing
8 (1979), 431-433.

o R.M. Karp and R.J. Lipton: Some connections between nonuniform and
uniform complexity classes, Proceedings of the 12th Annual Symposium
on Theory of Computing, ACM, 1980, 302-309.

and appeared in

o S. Mahaney: Sparse complete sets for NP: solution of a conjecture of
Berman and Hartmanis, Journal of Computer and System Sciences 25,
130-143.

Extensions of Mahaney’s theorem can be found in

o V. Arvind et al: Reductions to sets of low information content, in K.
Ambos-Spies, S. Homer, U. Schoning, ed., Complexity Theory: Current
Research, Cambridge University Press, 1993, 1-45.

o S. Homer and L. Longpré: On reductions of NP sets to sparse sets, Pro-
ceedings of the 6th Structure in Complexity Conference, IEEE, 1991, 79—
88.

o M. Ogiwara and O. Watanabe: On polynomial-time bounded truth-table
reducibility of NP sets to sparse sets, SIAM Journal on Computing 20
(1991), 471-483.



130 Topic 15



16. Collapsing Hierarchies

The polynomial hierarchy can be defined in exact analogy to the arithmetic
hierarchy of computability theory, but it is not known if the polynomial
hierarchy is a strict hierarchy of language classes. In fact, under certain
assumptions about the class NP, this hierarchy “collapses.”

NP is the class of all languages that can be defined using existential quantifi-
cation over a polynomial-time predicate. The “search space” of the existential
quantifier must, however, be bounded to include only strings of length poly-
nomial in the length of the input. In the following formal definition, NP is
precisely the class X of the polynomial-time hierarchy, which is usually ab-
breviated PH.

Definition 16.1. A language L is in the class XF of the polynomial-time
hierarchy if L can be defined via a language A € P and a polynomial q as
follows:

L={z|3yVy...Q"%: (y1,y2,...,v:) € A} .

In this definition Q =V, if i is even and Q = 3 if i is odd. Furthermore, all
quantifiers are polynomially bounded in the following sense:

3"z 0(2) = Iz [lz| <q(l2]) A #(2)],
vz p(2) = Yz []z] <qllz]) = »(2)] -

The classes IIF are defined to include all languages L such that L € XF.
Finally, PH=J, XF. O

Usually we will drop the superscripts on our quantifiers when it is clear from
context that they are polynomially bounded.

The following diagram shows the inclusion structure of the classes in the
polynomial hierarchy. (For more details see the books by Balcazar, Diaz, and
Gabarro; Garey and Johnson, Koébler, Schoning and Tordn; or Bovet and
Crescenzi.)
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Xy may
X3 113
X4 5
NP=X? I =co-NP
=1L =P

It is not known whether or not the polynomial-time hierarchy is a strict
hierarchy (i.e., whether or not Y& ¢ X ¢ ¥¥ C -..). The analogously
defined arithmetic hierarchy X3, XY, ... from computability theory is a strict
hierarchy. (The difference is that in the arithmetic hierarchy, the quantifiers
do not have a polynomial length bound. So X9 is the class of all computably
enumerable languages.)

Ezercise 16.1. Show that the statements ¥ = X1, ¥F = ITY and PH =
Zip are all equivalent. (This implies a “downward separation” property: If
for some i, I # XE | then X C X C ... C XF). <

The following diagram shows the inclusion structure of the polynomial-
time hierarchy under the (unlikely) assumption that it “collapses” to the class
P

P =¥ =PH

NP=? 7 =co-NP

It is absolutely plausible, to take P # NP as a working hypothesis and
to prove theorems under this “Cook Hypothesis.” The hypothesis P # NP,
in terms of the polynomial-time hierarchy, means that X¥ # X¥. Further-
more, by the previous exercise, the hypothesis NP # co-NP is equivalent to
YP + P, This second hypothesis is stronger than the first. Altogether,
the polynomial-time hierarchy provides an infinite reservoir of (plausible)
hypotheses which could represent the working hypothesis of some theorems.
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PH# XV for all k

PH#S?

PH# X?

PH#X? (NP #co-NP)

PH# X2 (P#£NP)

The circuit complexity of a language L is a function ccr, : N — N such
that ccp, (n) gives the minimal necessary number of boolean gates (of the types
AND, OR, and NOT) that can be used to build a circuit that computes the
characteristic function of L on strings of length n. If the NP-complete lan-
guages are not computable via a (deterministic) polynomial time-bounded
algorithm (i.e., P # NP), then it could still be the case that they have
polynomial-size circuits. This would be a very interesting situation: It would
be possible with a certain (exponential) expenditure to build a circuit with,
for example, n = 1000 inputs that is only modestly sized (polynomial in n)
and is capable of efficiently solving all instances of SAT of length (up to)
1000. This means that although it would require exponentially much work
done as a preprocess — but then never repeated — one could design a fast
“chip” for SAT.

We want to investigate this question and eventually link this situation
with the (unlikely) collapse of the polynomial-time hierarchy.

Exercise 16.2. Show that there are languages that are not in P but do have
polynomial-size circuits. <

Exercise 16.3.° Show that a language L has polynomial-size circuits if and
only if there is a sparse set .S such that L € ps (i-e., L can be computed in
polynomial time relative to some sparse oracle). <

Instead of L € PY, we can also write L §¥ S and consider this as a
(polynomial-time Turing) reduction of L to S. By means of the previous
exercise we can express the question of whether all languages in NP have
polynomial-size circuits equivalently as the question of whether all languages
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in NP (or just the NP-complete languages) are reducible to sparse sets. In
this way, this question is related to the questions surrounding the Berman-
Hartmanis Conjecture of the previous topic.

A language L in NP = XY has the form

L={z|3y (z,y) € A}

for some A € P and a polynomially bounded existential quantifier. For every
x € L there must be at least one y with (z,y) € A. We call such a y a witness
or a proof for the fact that z € A. (For example, a satisfying assignment for
a formula F is a witness that F' € SAT.)

We want now to consider circuits that have not just a single output bit
(which expresses whether or not « € L) but which also have (suitably many)
additional output gates by means of which the circuit provides a witness y
for z € L (when this is the case). We will call such a circuit for a language
in NP a witness circuit.

Exercise 16.4.° Show that if SAT has polynomial-size circuits, then SAT
also has polynomial-size witness circuits (which produce in certain output
gates a satisfying assignment for the boolean formula if it is satisfiable).

Hint: Use the self-reducibility of SAT. <

Now there is only a small step remaining to prove the following result of
R.M. Karp and R.J. Lipton:

Theorem 16.2. If all languages in NP have polynomial-size circuits then
the polynomial-time hierarchy collapses to its second level (PH = X¥°),

Proof. Let L be alanguage in IT1. It suffices to show that from the hypothesis
it follows that L € X¥. Let A be a language in P such that

L ={x|Vy3Iz (z,y,z) € A} .
Then the language
L'={(z,y) | 3z (z,y,2) € A}

is in NP. Since SAT is NP-complete, L' can be reduced to SAT by a
polynomial-time computable function f, i.e. f~'(SAT) = L'. This implies
that

L={x|Vy(z,y) € L'} ={x|Vy f((z,y)) € SAT} .
We claim now that the following characterization of L is possible, which shows
that L € X

L = {z | 3cVy [ ¢ is a witness circuit and ¢(f((z,y))) produces
a satisfying assignment for the formula f({(z,y)) |} .
Ezercise 16.5. Prove that this representation of L is correct. <

This completes the proof of Theorem 16.2 (with a much simpler proof
than was originally given). O
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* * * * *

The boolean hierarchy (over NP), similar to the polynomial-time hierarchy,
arises from the fact (or conjecture) that NP is not closed under complement.
The class BH is the smallest class that contains NP and is closed under the
boolean operations of intersection, union and complement.

A hierarchy of classes between NP and BH can be formed by beginning
with NP and systematically adding unions and intersections with coNP lan-
guages.

Definition 16.3. The classes BH,,BHs, ... of the boolean hierarchy over NP
are defined as follows:

BH, = NP,
BHzi:{AﬂP|A€BH2i_1,BENP} (ZZ].),
BH2i+1:{AUB|A€BH2i,BENP} (ZZ].)

Exercise 16.6.° Show that BH = |J, BH;. <

The inclusion structure for the boolean hierarchy is similar to that for the
polynomial-time hierarchy:

BH, : co-BHy4

BH3 CO-BH3
BH> co-BH5
NP =BH; co-BH; =co-NP
P

The boolean hierarchy is contained in the class PNP ¢ XP k. We say
that the boolean hierarchy collapses to the kth level if BH; = co-BHg. The
following result due to J. Kadin was a sensation at the 1987 Structure in
Complezity Theory Conference held at Cornell University:

Theorem 16.4. If the boolean hierarchy collapses at any level, then the poly-
nomial hierarchy collapse at the third level. More precisely, in this case the
polynomial-time hierarchy collapses to the boolean closure of X¥, which in
turn is contained in X1 .

Proof. 1t is possible to systematically define complete languages for the levels
of the boolean hierarchy. We sketch this below for the first few levels:



136 Topic 16

L, = SAT

Ly = {(F\,Fy) | Fy € Ly N F, € SAT}

Ly = {(F1, F>, F3) | (F1,F») € Ly V F3 € SAT}

Ly = {{Fy, Fy, F3, Fy) | (F1, By, F3) € L3 A\ F3 € SAT}

It is easy to show that L; is complete for BH; (and so L; is complete for
coBH;). If BH; = co-BH;, then L; can be reduced to L; and vice versa. This is
the starting point for the proof. We will give the proof for the case i = 2. The
general case contains the same basic argument but is technically somewhat
more involved.

Suppose L <P L,, so there is a polynomial-time computable function
f that maps pairs of boolean formulas (Fi, F>) to pairs (G1,G2) with the
property that

FL €e SATNF, € SAT < G, € SATV Gy € SAT .

As a first step, we will try to show that SAT € NP. We will not be successful,
but will very nearly achieve this goal. How do we design a nondeterministic
algorithm for SAT? The following would be one attempt:

INPUT F;

Nondeterministically guess a formula F' with |F'| = |F]|,
and a satisfying assignment for F’, so F' € SAT;

Compute (G1,G2) := f(F', F);

IF G, € SAT THEN ACCEPT END

This nondeterministic algorithm accepts a certain subset of SAT, namely
the unsatisfiable formulas F' for which there is a satisfiable formula F' of the
same length, so that f(F',F) = (G1,G2) with Gy € SAT. We will call this
algorithm the easy algorithm, and the formulas that it accepts will be called
easy formulas. Clearly easy formulas are unsatisfiable, but perhaps they do
not make up all unsatisfiable formulas. We will call a formula hard if it is
unsatisfiable but not easy. So

Fishard <= F € SAT
AYF'[|F'| = |F| = f(F',F) = (G1,G2) A Gy € SAT] .

We note at this point that the property of being hard can be described with
a [T predicate.

But how do we get the hard formulas? The fact that they are hard is the
key. Fix an arbitrary hard formula £ of length n. With the aid of this one
formula, we can correctly nondeterministically accept all other unsatisfiable
formulas of this length by means of the following algorithm:
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INPUT F;
Compute (G1,G2) = f(F,F);
IF G, € SAT THEN ACCEPT END

Why is this algorithm correct? Since F' is hard, f(F,F') produces a pair of
formulas (G, G) such that G5 € SAT. Since F' € SAT, we have the following
equivalence:

F € SAT < G, € SAT,

or equivalently, _
F e SAT < G; € SAT.

This demonstrates that the algorithm is correct. This algorithm is unusual
in that first we need to be given n bits of information (F), but then param-
eterized with this information (called advice), the algorithm is correct for all
formulas of length n. For a given hard formula F we will call this algorithm
the F-algorithm.

We have come very close to demonstrating that SAT € NP, but have fallen
just short (because of the need for advice in the previous algorithm). Never-
theless, what we have done is sufficient to show a collapse to the polynomial-

time hierarchy to ¥ C P¥2  Let L € X, L can be represented as
L ={z | JuVviw (z,u,v,w) € A}
for some language A € P. Let
L' = {{z,u,v) | Jw (x,u,v,w) € A} .

L' € NP, so there exists a reduction g from L' to SAT. So L can be
written as
L = {x | JuVv g((z,u,v)) ¢ SAT} .

If we could replace the reference to SAT with some NP-predicate (this would
amount to SAT € NP) then we would have a ¥f characterization of L. As
we have said, we are not able to achieve this. But consider the following
language:

B = {1" | there is a hard formula of length n} .

The language B is in X¥. Furthermore, let

C = {z | FuVYv [g({z,u,v)) is not accepted
by the easy algorithm |} .

Then C € X¥. Now consider

D = {z | 3F [F is hard A
JuVv [g((x, u,v)) is not accepted by the F-algorithm]]} .
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D is also in ¥f. The language L can now be recognized by the following
deterministic oracle algorithm using the languages B,C, and D as oracles.
In this algorithms, m is a suitable polynomial in |z| that gives the length of
9((z,u,v)).
INPUT «z;
IF 1m(<) ¢ B THEN
IF z ¢ D THEN ACCEPT END
ELSE
IF z € C THEN ACCEPT END
END;
REJECT

This oracle machine asks exactly two of the three oracle questions 1™(#) ¢ B,
x € D, and = € C. Since this is a constant number of oracle queries, the
language L is in the boolean closure of the class X, O
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17. Probabilistic Algorithms,
Probability Amplification,
and the Recycling of Random Numbers

Probabilistic algorithms require (stochastically independent and uniformly
distributed) random numbers, and in general the smaller the probability
of error is supposed to be, the more random numbers are required. Here
we introduce a method, whereby random numbers already used by an
algorithm can be “recycled” and then reused later in the algorithm. In
this way it is possible to drastically reduce the number of random numbers
required to obtain a specific bound on the error probability.

A probabilistic algorithm can make decisions depending on chance. This can
be modeled by a Turing machine in which each configuration may have several
(but only finitely many) “next” configurations, each of which is chosen with
equal probability. By introducing probability the decision and running time
of an algorithm (accept or reject, 0 or 1) on input « become random variables.

The concept of acceptance is defined here differently than it is for non-
deterministic machines. A string z is accepted by a probabilistic algorithm
if the probability that the algorithm accepts z is > 1/2. More generally, one
can fix an arbitrary threshold probability value a € (0,1) and say that a
string x is accepted if the probability of acceptance is greater than «.

Definition 17.1. A language L is in the complexity class PP (probabilistic
polynomial time) if there is a polynomial time-bounded probabilistic algorithm
and a threshold value a € (0,1) such that L consists of precisely those strings
that are accepted with probability > a.

An algorithm that demonstrates that a language belongs to PP will be called
a PP-algorithm.

The notion of a polynomial time-bound in the definition above means
that for every realization of the random variables, T'(x) (the running time
of the algorithm on input z) is bounded by p(|z|), where p(n) is some fixed
polynomial.

In this topic, we are primarily interested in probabilistic algorithms that
exhibit a “probability gap” between the accepted and rejected strings. This
means that not only is the probability > « when x € L and < a when « & L,
but in fact, the algorithm fulfills a stronger condition: If © € L, then the
probability of acceptance is > a + /2, and if ¢ L then the probability is
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< a—¢/2 (for some € > 0). So there is a gap of € between the probabilities
of acceptance for the strings = € L and the strings « ¢ L.

z &L € x €L

|
0 Q 1

Definition 17.2. A language L is in the class BPP (bounded-error prob-
abilistic polynomial time), if there is a PP-algorithm for L with threshold
probability o, and a probability gap €, such that the condition above is satis-
fied. That is, L is accepted in the sense of a PP-algorithm, and the probability
that a string x is accepted is never in the range (o —¢e/2,a+¢€/2).

A probabilistic algorithm that fulfills the definition above is called a BPP-
algorithm. It is clear that P C BPP C PP.

Definition 17.3. A language L is in the class RP if there is a BPP-algorithm
for L such that ¢ = 2a. That is, if € L, then the probability that the
algorithm accepts on input x is 0.

Sketch:
r¢L ¢—i |
0 « 1

This acceptance criterion is a strengthening of the requirement for an NP
language, so it is clear that P C RP C NP and P C RP C BPP. The inclusion
relationship between NP and BPP is an open question. We will come back to
this relationship shortly; in particular, the inclusion NP C BPP is unlikely,
since it implies a collapse of the polynomial hierarchy (cf. Topic 16).

Definition 17.4. A language L is in the class ZPP (zero error probabilistic
polynomial time) if and only if L € RP and L € RP. That is, ZPP = RPN
coRP.

Exercise 17.1. The name “zero error” comes from the fact that for the
languages L € ZPP, one can give a polynomial time-bounded probabilistic
algorithm and a constant ¢ so that on input z with probability p > ¢, the
algorithm answers correctly (z € L or ¢ ¢ L) and with probability 1 — p
the algorithm answers “I don’t know.” So in contrast to the class BPP, the
algorithm never outputs a wrong assertion.

Show that for any language L € ZPP there is such an algorithm with
three output values (accept, reject, don’t know). <

Exercise 17.2.° Prove that ZPP is precisely the class of languages that
possess probabilistic algorithms of the following type: the algorithm always
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outputs the correct answer (accept or reject, never “don’t know”) and the
erpected running time is polynomial. <

The following diagram indicates the inclusion structure of these proba-
bilistic classes in comparison to P and NP:

PP

co-NP

P

The problems below the dotted line can be considered efficiently solvable
“for all practical purposes.” In particular, all of them have polynomial-size
circuits. The main reason for this is related to the fact that all of them permit
“probability amplification.” This will be our next topic of discussion.

* * * * *

The probability gap that exists in the definitions of the classes BPP, RP
and ZPP plays an important role with regard to probability amplification.
This means that with only a polynomial increase in running time, we can
modify our algorithms, for example in the case of BPP, so that strings in the
language are “almost always” accepted, and strings not in the language are
“almost never” accepted.

Sketch:
x¢L z el

0 1

In the case of the class RP — and hence also for ZPP — the probability
amplification is relatively easy to obtain. Accepting computations are always
correct, so in this case we know that x € L. We only need to mistrust the
rejecting computations. Suppose we have been given an RP-algorithm for a
language L. This algorithm accepts strings in the language with a certain
probability > . By running the algorithm several times on the same input,
each time with new random numbers, so that the individual results of this
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experiment are independent, and accepting only if at least one of the indi-
vidual results was an accepting computation, we obtain an algorithm with a
significantly larger probability gap.

Exercise 17.3. How large is the probability gap after ¢ trails? To get an error
probability of < 27", how many times must the algorithm be repeated? <

The situation is not quite so easy for BPP-algorithms. Here we must
mistrust both the accepting computations and the rejecting computations,
since both results can be wrong some of the time. Although neither result is a
certain criterion for € L or ¢ L, each offers a certain amount of evidence,
evidence which can mount in favor of one decision or the other with repeated
trials. Let M be a BPP-algorithm with threshold value a and probability gap
e. The following algorithm yields the desired probability amplification (i.e., a
larger probability gap):

INPUT z;
s:=0;
FOR i:=1TO ¢t DO
Simulate M on z; let the result be y;
IF y=*“accept” THEN s:=s+ 1 END;
END;

IF s > at THEN ACCEPT
ELSE REJECT END

This is a Bernoulli experiment since a random experiment with a certain
probability p of success is repeated independently ¢ times. In our case p >
a+e/2ifz € L,and p < a—¢/2if x ¢ L. So the probability that this
algorithm gives a “false reject” when = € L is at most

at

> (Z) AR ¢ ) L

=0
where v = a +¢/2.

Ezercise 17.4.° Show that this function is exponential in 1/¢t. How large
must ¢ be chosen to bring the probability of error under 2777 Give a similar
approximation of the error for the case that x & A.

Hint: Use Chernoff bounds or Bernstein’s law of large numbers. <

So as in the simpler case of RP, we get a linear relation between t and n if
the goal is an exponentially small probability of error.

In summary, for every language L € BPP and for every polynomial p
there is a BPP-algorithm M for the language L with threshold value a and a
probability gap of 1 — 27" where n is the length of the input. This means
that the probability of error on input z is less than 2-7(/#],
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So, for example, if one chooses p(n) = 2n, the probability of error is
already so small that for most random choices z made by the algorithm, the
algorithm is always correct with this fixed z for all « of length n. That is,
this 2z serves as “advice,” from which membership of all strings of length n
can be correctly decided (cf. Topic 16).

Exercise 17.5. From this it follows that all languages in the class BPP have
polynomial-size circuits (cf. Topics 16 and 13). Justify this claim. <

With the results of Topic 16, we now get the following theorem immedi-
ately:

Theorem 17.5. If NP C BPP, then the polynomial hierarchy collapses to
P

Exercise 17.6.° Show the following result: If NP C BPP, then NP = RP.

Hint: It suffices to show that SAT € RP. Use a BPP-algorithm for SAT
to with small error rate and the self-reducibility of SAT to find a potential
satisfying assignment for the input formula. If the probabilistically generated
assignment is not a satisfying assignment, then reject. <

* * * * *

In the last section we saw that in order to improve the probability gap
from & > 0 (for example, e = 1/2) to ¢ = 1 — 27 we needed to repeat the
algorithm O(k) times and then make a decision based on majority vote. This
shrinks the probability of error to 2=() If the underlying probabilistic
algorithm requires r random bits, then our new algorithm requires O(rk)
random bits.

If one takes the perspective that not only computation time and memory
use are costly resources to be minimized, but also the number of random
bits, then one could attempt to achieve the probability amplification with
the smallest possible number of random bits. It seems plausible that the
number of random bits could be reduced when one considers that each block
of r random bits used by the algorithm really only serves to get 1 bit of
information, namely whether the probabilistic algorithm accepts some input
with those r random bits. That is, the relative entropy of r bits on a given
decision of the probabilistic algorithm is still very high. We just need to find a
way to “recycle” (better re-prepare) the r random bits so that no (significant)
dependency results. That this is possible is essentially due to the method of
“universal hashing” and an analysis presented in the “Leftover Hash Lemma”
below.

The solution to the problem will look like this: After using the r random
bits, we will use a hash function h to obtain s < r “recycled” bits, which are
then augmented with r — s “fresh” random bits to form r random bits for
the next trial. This process is then iterated for each trial.
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r random bits ‘
h
s Bits *--\ ----------- r — s random bits
h
s Bits 4--\ ----------- r — s random bits

The sequence of r-bit “pseudo-random” numbers that arises in this way can
then be used in place of the original k independently chosen random numbers.

Now we approximate the number of actual random bits used. We need
r bits for the first random number and r — s for each subsequent (pseudo-
random) number. The function h will be chosen randomly from a class of
so-called universal hash functions. We will see that the selection of h can be
done with O(r) bits. Altogether we need r + O(r) + (r — s) - (k — 1) random
bits. We will see that r — s can be chosen so that » — s = O(k). So we
need O(r + k?) random bits. (In fact, it is possible — by other methods —
to further reduce the number of random bits required to O(r + k).) This is
a drastic improvement over our original probability amplification algorithm
which required O(rk) random bits.

Definition 17.6. A class H of hash functions from {0,1}" to {0,1}* (s <r)
is called universal, if for every z,y € {0,1}" with x # y,

Prlh(z) = h(y)] = 1/2° .

The probability above is over h chosen uniformly at random from H. (In this
case the probability of a collision is the same as if h(z) and h(y) are chosen
uniformly at random from {0,1}°).

A class H of hash functions from {0,1}" to {0,1}* (s < r) is called almost
universal, if for every x,y € {0,1}" with z # y,

Prih(z) = h(y)] = 1/2° + 1/2" .

Let’s try the following class of hash functions. Let p > 2" be a prime
number with bit-length O(r). The hash functions in H are specified by giving
two numbers a,b € [0,p — 1]. The hash function h = hy, 45 is defined so that
h(z) is the s least significant bits of the number (az + b) mod p. This can be
expressed as

hp.ap(x) = ((az + b) mod p) mod 2° .

It is clear that for any x # y and randomly chosen values a and b, the value
((az+b) mod p)-((ay+b) mod p) is uniformly distributed in [0, p—1]x [0, p—1].
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(This uses the fact that GF(p) is a field.) So this class of functions would be
universal.

The restriction to the last s bits, however, destroys the uniformity of the
distribution, and, therefore, the universality of the hash functions.

Ezxercise 17.7.° Show that the class H defined above is an almost universal
class of hash functions. <

Definition 17.7. Let D and D' be probability distribution on a finite set S.
We say that D and D' are e-similar if for every subset X C S,

ID(X) - D'(X)| < <.

Here D(X) is the probability of X wunder the distribution D, so D(X) =
S pex Pro(a).

A distribution D is e-almost uniformly distributed if D and the uniform
distribution on S are e-similar.

The collision probability of a distribution D is the probability that two
elements x and y, chosen independently according to D, are the same.

The following lemma shows that for an (almost) universal class of hash
functions an amazing amount of uniformity holds if we choose h randomly
from H, but choose the argument x at random from an unknown but “large
enough” set.

Lemma 17.8 (Leftover Hash Lemma). Let X be an arbitrary subset of
{0,1}" with |X| > 2'. Let H be an almost universal class of hash functions
from {0,1}" to {0,1}°. Suppose r > 1 > s and let e = (I — s)/2. Then the
distribution of (h,h(zx)) is 1/2¢-almost uniform on the set H x {0, 1}*.

Proof. We show the proof in two steps:

Step 1. The collision probability of the distribution (h,h(x)) is at most
(1 +2/2°)/(|H|2°).

Step 2. Let D be a distribution on a finite set S. If the collision probability
of D is at most (1 + 2§2)/|S|, then D is d-almost uniformly distributed on
S.

It is clear that the statement of the lemma follows immediately from Steps
1 and 2, which are proven below. O

Ezercise 17.8.° Prove Step 1. <

Proof (of Step 2). Suppose D is not d-almost uniformly distributed. Then
there is a subset Y of S with D(Y') > |Y'|/|S| + d. Let 8 > 0 be such that
DY) = |Y|/|S| + B. The collision probability of D is given by Pr[d; = ds]
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where d; and ds are chosen at random according to D. We use Y to partition
the probability space. The probability for d; = d> under the condition that
dy,dy € Y is at least 1/|Y]; and the probability for di = ds under the
condition dy,ds ¢ Y is at least 1/(|S| — |Y]). So the collision probability is
at least D2 ) ) )

(), Q=DM _1 B p

Y| ISI=1Y] IS Y] S| = 1Y
which is obtained by substituting |Y'|/|S| + 8 for D(Y") and simplifying. This
expression is minimized when |Y| = |S|/2. In that case, the collision probabil-
ity is at least (1+43%)/]S| > (1+46%)/|S|, which contradicts our assumption.

a

Let M be a BPP-algorithm for a language L that requires exactly r ran-
dom bits to process an n-bit input. Let the probability of error be somewhere
between 1/4 and 1/3. (For technical reasons we must also place a lower bound
on the error.) So we have

2/3 < Pr(M(x) = 1] < 3/4,
vel= {1/4 < PriM(z) = 0] < 1/3;
1/4< Pr[M(z)=1]<1/3,
relL= {2/3 < Pr[M(z) = 0] < 3/4.
Let z1,23,...,x) be the sequence of pseudo-random numbers generated

by the method and hash functions described above. We want to study the
probabilistic behavior of the algorithm that uses the x;’s as random bits in &k
simulations of M, and then decides based on a majority vote whether x € L.
The bit sequence x1 s . . . 7y, is certainly not uniformly distributed {0,1}"*, it
isn’t even almost uniformly distributed, since only O(r + k%) genuine random
bits were used to generate it. So most of the 0-1 sequences cannot even occur,
and thus have probability 0. What is important for us is that the bit-sequence
b(x1)b(x2) ... b(xy), where

b(x;) = 1 if M with random number x; accepts,
70 if M with random number x; rejects.

approximates the distribution that one gets by running the algorithm M
k times using new random numbers for each simulation and noting the bit
sequence b1 bs ... bg.

Without loss of generality, we may assume that the input z € L, so
2/3 < Pr[b; = 1] = p < 3/4. Suppose there is a small number €, so that the
“real” sequence b1bs ...b; and the “simulated” sequence b(z1)b(z2) ... b(z)
are e-similar.

Ezercise 17.9.° 1If we use genuine random numbers we know that the prob-
ability of error of the majority voting algorithm is 2-%(*), Approximate how
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small the error bound ¢ must be (as a function of k) so that using pseudo-
random numbers instead of genuine random numbers still results in an error
probability of at most 27 2(%) <

Now we prove the following claim by induction.

Claim. For all i > 0, the distribution of b(x1)...b(x;)hair1, where ; is the
jth pseudo-random number as described above, is &;-similar (for some ¢; yet
to be determined) to the following distribution: The first ¢ bits are chosen
independently at random to be 1 with probability p and 0 with probability
1 — p; then h is chosen uniformly at random from H; this is followed by a
string chosen uniformly at random from {0,1}".

Proof (of the claim). If i = 0, we only need to consider the distribution of
hx;. In this case, this is uniformly distributed, so €9 = 0.

We also consider the case where ¢ = 1 separately, since it is instructive for
the inductive step. Let z; be chosen at random from {0, 1}". We must show
that the distribution of b(x1)hxs is £1-similar to a “correct” distribution (one
as is described in the statement of the claim, with ¢ = 1) for some small ;.
It is sufficient to show that b(z1)hh(z1) is similar to a distribution where
the first bit is chosen according to the (p, 1 — p)-distribution and h is chosen
randomly from H and the last s bits are chosen uniformly at randomly from
{0,1}? (independent of each other). Since ; is random, b(z1) is distributed
according to (p,1 — p). Under the assumption that b(z;) = a € {0,1}, we
must show that hh(z1) is nearly uniformly distributed on H x {0,1}°. This
is where the Leftover Hash Lemma helps. Under the given condition, we
still have p - 2" (or (1 —p)2"), so at least 2" /4 choices available for ;. The
statement of the lemma is satisfied if we put { = r —2. The lemma then yields

a bound of
g = 9—e 27(lfs)/2 — 27(7’7372)/2 .

Now comes the induction step. By the inductive hypothesis, the claim is
true for 7 — 1, so the distribution of b(x1) ... b(x;—1)hx; is €;—1-similar to the
correct distribution. We want to show the claim for ;. We need to compare
the distribution of b(z1) ... b(z;)hz;+1 with the correct distribution, which we
represent as by ...b;hz. It suffices to show that b(zy)...b(z;)hh(z;) is similar
to the distribution of by ...b;hv, where the b;’s are chosen independently
according to the (p, 1 — p)-distribution, A is chosen uniformly from H, and v
is chosen uniformly from {0, 1}*. The following claim is useful:

Let F, G, and H be random variables such that the distribution
of F'is §;-similar to the distribution of G. Furthermore, let ¢ be a
transformation such that the distribution of ¢(G) is d2-similar to H.
Then H and t(F') are d; + do-similar.

Sketch:
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FExercise 17.10. Prove this claim. <

Now we put

F = b(l‘l) .. b(xz_l)hxz 5
G:bl...bi_lhz,
H = bl .. .biflbih’l) .

and define a transformation ¢ by
Then we get

t(G) =by...bi_ 1b( ) ( );

With this choice of F', G, H, and t; F and G are €;_1-similar (by the inductive
hypothesis). Furthermore, ¢(G) and H are e;-similar, as in the case i = 1.
It follows that H and t(F') are (e1 + €;_1)-similar. But this is precisely the
inductive claim, if we set €; = ¢;,_1 + €1, i.e., €; = ie1.

From the claim with ¢ = k it follows that the bits b(x1),...,b(xy) are
ke, = k/2r=5=2)/2_similar to the distribution sets each bit to be 1 with
probability p and 0 with probability 1 — p

All that remains is to determine the degrees of freedom s. We do this
by setting (r —s —2)/2 = k, so s = r — 2k — 2. Then we get a bound of
k/2% = 279k on the similarity, which by Exercise 17.9 is good enough to
obtain the desired probability amplification. O

Remarks. The proof above is still missing one detail: somehow we need to
find the prime number p used in the definition of the hash function class H.
This requires another probabilistic test (which was previously known). Fur-
thermore, it is possible we may need to test several n-bit strings for primality
before a suitable candidate is found. This seems to require an unavoidable
number of random bits, which perhaps brings our upper bound on the num-
ber of random bits into question. Impagliazzo and Zuckerman, to whom this
method of recycling random bits is due, actually used another class of hash
functions that does not have this difficulty, but which is harder to analyze.
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Another interpretation of the result presented here is that the sequence
of pseudo-random numbers 1, ...,z appear to be genuinely random for
every statistical test that can be performed in polynomial time: the sequence
b(x1),-..,b(xy) of “test results” differ in their probability distribution only
minimally from the expected distribution b(z1),...,b(zx), where the z;’s are
genuine random numbers. (The only boundary condition is that the test
should not output 0 (or 1) too infrequently, cf. the Leftover Hash Lemma.)
Sketch:

mi ) Test — b(x)€{0,1}
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18. The BP Operator and Graph Isomorphism

The following results suggest that the Graph Isomorphism problem is not
NP-complete, since, unlike the known NP-complete problems, Graph Iso-
morphism belongs to a class that can be defined by means of the BP-
operator, an operator that has proven useful in many other applications
as well.

In this section we want to introduce a very useful operator notation that
arises out of the observations about probabilistic algorithms made in Topic 17
and that will make possible the main result of this topic, namely that the
graph isomorphism problem is not NP-complete unless the polynomial time
hierarchy collapses. This result originally came out of a sequence of results
in the area of interactive proof systems. We will not introduce these proof
systems here (but see Topic 20); instead, we will prove this result along a
more or less direct route using the BP- operator and some of its properties.

The transition from the class P to the class BPP (cf. Topic 17) amounts
to the addition of probability but retains many of the essential features of
the original class. We want to concentrate on this randomization step and
formulate its essential characteristics with the help of an operator that can
be applied to any class C to produce its probabilistic (or randomized) gener-
alization.

Definition 18.1. Let C be an arbitrary class of languages. We denote by
BP-C the class of all languages A for which there is a language B € C, a
polynomial p, and constants o € (0,1) and € > 0 such that for all strings x,

r€A= Pr[(z,y) € B]>a+¢/2,
r¢g A= Pr[(z,y) e B]<a—¢/2.

The probabilities are over all y with |y| = p(|x|), chosen uniformly at random.

As in Topic 17, a will be called the threshold value and € the probability
gap. Furthermore, it is clear that BPP = BP-P. By applying the BP- operator
to other complexity classes we can now form other classes as well, like BP-NP,
for example.
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Ezercise 18.1. Formulate a condition on the class C so that C C BP-C. <«

Now that we have generalized the BP- operator, we must rethink under
what conditions probability amplification — as discussed in Topic 17 — is
possible. This is possible if C possesses a certain closure property.

Exercise 18.2.° Formulate a condition on the class C that permits probability
amplification (cf. Topic 17). More precisely, by probability amplification we
mean that for every language A € BP-C and every polynomial g there should
be a language B in C such that

z€ A= Pr[{(z,y) € B] > 1—2 902D and
z ¢ A= Pr[{(z,y) € B] < 9—a(lz])

Again, y is chosen uniformly at random from among all strings of some suit-
able polynomial length (in |z]).

Hint: Closure of the class C under polynomial time Turing reductions would
certainly be a sufficient condition. But since we are particularly interested
in the class BP-NP and would like to be able to amplify probabilities for
that class, this condition is too strong: NP is probably not closed under
Turing reductions since that would imply NP = coNP. So the task here is to
find a sufficient but somewhat weaker condition than closure under Turing
reductions that applies to the class NP (among other classes). <

Exercise 18.3. Let C be a class such that probability amplification is possible
in the class BP-C. Show that BP-BP-C = BP-C. <

By applying probability amplification we are able to show the following
result about swapping the order of two operations on a class of languages.

Lemma 18.2 (Swapping Lemma). Let Op be an operator on complezity
classes with the following property: If D is an arbitrary class and A is an
arbitrary language in Op-D, then there is a polynomial p and a language
B € D so that the property x € A depends only on the initial segment of
B up to strings of length p(|x|). Furthermore, let C be a class for which
probability amplification is possible.

Then Op-BP-C C BP-Op-C.

Exercise 18.4.° Prove Lemma 18.2. <

Such operators with a “polynomial dependency region” include, for ex-
ample, co-, P(:), NP(-), and the polynomial quantifiers 3 and V used to define
the classes XF and IIF in Topic 16. Since we will make use of the polynomial
quantifiers again here, we repeat their formal definitions.

Definition 18.3. For a class C, 3-C denotes the class of all languages A for
which there is a polynomial p and a language B € C such that
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A=A{z|3y (vl =p(z|) A (z,y) € B)}.

The class V-C is defined analogously using universal quantification over
strings of length p(|z|).

A few of the obvious properties of these operators include

FP=NP, co-3C=V<co-C, coV-C=3coC.

Now that we have studied a few properties of the BP- operator, we want
to become familiar with a natural problem that is in one of the BP- classes.
The problem is the graph isomorphism problem, GI: given two undirected
graphs, determine whether or not they are isomorphic, that is, determine
whether or not there is a permutation of the nodes (node numbers) such that
when applied to the first graph it results in the second.

Ezxample. The following two graphs are isomorphic. One possible isomor-

phism is (1 234 5).

<

It is clear that this problem is in NP. Whether this problem is NP-complete
remains an open question, but most likely it is not. (See for example a dis-
cussion of this problem in the book by Garey and Johnson.) On the other
hand, no polynomial time algorithm is known for this problem either. So GI
is a candidate for a problem that is in NP but neither NP-complete nor in P.
(If P # NP, it can be proven that such problems exists, but it will probably
be difficult to prove that any “natural” problem has this property.)

Our proof of the following theorem, unlike the original proof, will be the
result of a more or less “direct attack.”

Theorem 18.4. The complement of the graph isomorphism problem (GI) is
in BP-NP.

Proof. We begin with a pair of elementary observations about isomorphism
of graphs. Let Aut(G) be the set (a group) of isomorphisms of a graph G,
that is, the set of all permutations of the nodes that map the graph to itself.
For example, (é f Z g g) is an automorphism of the first graph in the example
above.
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Ezercise 18.5. If the graph G has exactly n nodes and m = |Aut(G)|, how
many different graphs are isomorphic to G? <

Ezercise 18.6.° Given two graphs G; and G5, each having n nodes, define
a set X = X(G1,G2) of objects such that the objects in X can be generated
nondeterministically from the graphs G; and G2 in polynomial time and

G and G, are isomorphic = | X| = n!

G and G, are not isomorphic = |X| = 2(n!)

By forming the cross-product

Y=XxX,
we can increase the difference between these two numbers.

G, and Gy are isomorphic = |Y| = (n!)?

G1 and Gy are not isomorphic = |Y| = (2n!)? = 4 - (n!)?

Next we need a class H = H,, of universal hash functions. This class of
hash functions should map elements from a set U (for example, 0-1 strings)
with Y C U to the elements of the set M = [4(n!)?] = {0,1,...,4(n!)*> — 1}.
We require of this class of hash functions, H, the following;:

e Uniformity. For every y € U and a € M, if a hash function h is chosen at
random from H, then

Prih(y) = a]=1/|M]|.

e Pairwise independence. For all y,y' € U with y # y' and all z € M, if a
hash function h is chosen at random from H then

Prih(y) =z Ah(y') ==z]=1/|MJ* .

e Efficient computation. The random selection of a hash function h from
H = H, and the evaluation of h on an input y should be possible in
polynomial time with polynomially many random bits.

In what follows we will be interested in (an approximation to) the proba-
bility that for a randomly selected h, 0 € h(Y). Let G; and G5 be two input
graphs with n nodes each. If they are isomorphic, then |Y| = (n!)? and in
this case

Prl0e h(Y)]=Pr[dy €Y : h(y) =0]
<> Prih(y) =0]

yey
= [Y1/|M] = 1/4.
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If the graphs are not isomorphic, then |Y| =4 - (n!)? = |M|. In this case
we can give a lower bound for the probability by using the first two terms of
the inclusion-exclusion principle (cf. Kozen, page 194):

Prl0en(Y)]> Y Prlh(y) =0]— > Prlh(y) =0Ah(z) =0]
vey {y,2}CY

=iy - () paee
>1-1/2 = 1/2.

In summary,

G and G2 are isomorphic = Pr[0 € h(Y)] <1/4,
G1 and G are not isomorphic = Pr[0 € h(Y)] >1/2.

Since the predicate “0 € h(Y)” is in NP — guess a y, verify nondeterministi-
cally that y € Y, check that h(y) = 0 — this representation shows that the
complement of graph isomorphism is in BP-NP. (The constants are @ = 3/8
and e =1/4.)

We have yet to discuss the class of hash functions required. We could use
the class of hash functions introduced in Topic 17, but that choice brings with
it a number of technical difficulties, since it requires a nondeterministic check
for primality (which is possible) and because |M| is not necessarily prime.

We can define another class of hash functions H from {0,1}% to {0,1}°
as follows: A hash function h € H is described by a boolean a x b matrix
(hij). Let x = 21 ... 2, be a 0-1 string of length a. Then the jth bit of h(x)
is defined to be

a

i=1

Each of the 2%° such hash functions h can be chosen uniformly at random
from H, so ab bits are required to specify a hash function.

Ezercise 18.7.° Show that this class H has the pairwise independence prop-
erty, i.e., for all y,y’ € {0,1}* with y # ¢’ and for all z € {0,1}%, if h is
chosen uniformly at random, then Pr[h(y) = 2 A h(y') = 2] =272, <

A small technical problem is now that size of the range of the functions is a
power of 2. This relaxation of the desired number |M | is acceptable if we first
further increase the difference in the possible values of |Y'| (for isomorphic vs.
non-isomorphic pairs of graphs). Once this has been done, the proof follows
easily from what we have done above. O

* * * * *
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Since the complement of the graph isomorphism problem is in BP-NP,
GI € coBP-NP = BP-coNP, so it is “almost” in coNP. The following diagram
shows the relative position of GI.

coBP-NP

GI
The diagram suggests that GI is probably not NP-complete, since the NP-
complete problems should be thought of as being at the far left of the diagram,
as far away from P as possible.

Just as no NP-complete language can be in coNP unless NP = coNP (that
is, PH collapses to X{'), we will show now that if there is an NP-complete
language in coBP-NP, then PH collapses to X{. So if GI is NP-complete,
then PH = X7,

For this we need a method of simulating the BP- operator with sequences
of 3 and V.

Lemma 18.5. Let C be a class of languages that is closed under the operator
Pos (see page 285), so that in particular, BP-C permits probability amplifica-
tion. Then BP-C C 3V-C and BP-C C V-3-C.

Proof. Let A be in BP-C. We choose a language B in C so that for all x

r€A= Pr[(z,yyeB]>1-27",
v ¢ A= Prl(s,y) € B]<27",
where y is chosen uniformly at random from {0, 1}1’("”') and p is a suitable

polynomial.
With the help of the following claim, the proof proceeds easily:

Claim. Let E, F C {0,1}*™ with |E|, |F| > (1 —27")2?(")_ Then

Lo Fug, .. tp) Yo [ur Qv € E V-V uyp,) v € E], and
2. YUy, ..y Upn) 0 [ug DV EF A A upn) ©v € F.

All strings u; and v above have length p(n) and @ is the bitwise XOR-
function.

Let G = {y | {(z,y) € B}. Then we can apply the claim to either G or G,
depending on whether z € A or x € A, to prove the lemma:
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reA=(1) with E =G ={y | (z,y) € B},
rg A= (2) = ~(1) with F =G ={y | (z,y) ¢ B} ;
and

reA=(2) with F =G ={y | (z,y) € B},

rg A= (1) = ~(2) with E=G = {y | (z,y) ¢ B} .

The statements [uy @ v € EV -V oy ©v € E]land [u1 Qv € EA--- A
Up(n) Dv € E] with E = {y | (x,y) € B} are in Pos(C), and C is closed under
Pos, so A € 3'V-C and A € V-3-C.

This completes the proof of Lemma 18.5, modulo the proof of the claim,
which is done in the next two exercises. O

Ezercise 18.8.° Prove part (1) of the claim.

Hint: Show the existence of ui,...,u,,) by means of a probabilistic con-
struction; that is, show that a random choice of u;’s has the desired property
with non-zero probability, therefore, such u;’s must ezist. <

Ezercise 18.9.° Prove part (2) of the claim.
Hint: Use an indirect proof and a combinatorial counting argument. N

Several inclusion relations are now immediate consequences of this result.

Theorem 18.6. BPP C XF nI1f.

Proof. BPP = BP-P C 3-V-PNV-3P =X nmtl. O
Theorem 18.7. BP-NP C I,

Proof. BP-NP C V-I:NP = V-NP = I1¢. O

The following lemma, along with Theorem 18.4, is the key to the main
result of this section, namely that GI is “almost surely” not NP-complete.

Lemma 18.8. If coNP C BP-NP then PH = XF = 11X = BP-NP.
Ezercise 18.10. Prove Lemma 18.8. <
Corollary 18.9. If GI is NP-complete, then the polynomial hierarchy col-

lapses to the second level.

Proof. If GI is NP-complete, then GI is coNP-complete. By Theorem 18.4 it
follows that coNP C BP-NP. From this the collapse follows by Lemma 18.8.
O
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19. The BP-Operator and the Power of
Counting Classes

With the help of the BP- operator, Toda (1989) achieved an astonishing
result: the classes ©P and #P are, in a sense, at least as expressive as the
entire polynomial hierarchy.

The class ©P (read “parity-P”) consists of all languages L for which there is
a nondeterministic polynomial time-bounded machine M (so far this sounds
just like the definition of NP) with the following property:

x € L <= the number of accepting computations of M on input
z is odd.

The difference between this and the class NP is that the number of accepting
paths is required to be odd rather than merely non-zero.

This class represents a rudimentary form of counting (of the number of
accepting computations). In the full counting task, which we will discuss
shortly, one would like to know all of the bits of (the binary representation
of) this number; the languages in the class ®P are defined solely in terms of
the lowest order bit, i.e., the parity.

What can one begin to do with this parity information? Or in other words:
How powerful is the class @P7? It is clear that P is in ©P and that ®P is closed
under complement.

Exercise 19.1. Why? <

But how does this class compare with the class NP? The only immediate
conclusion is that P C NP N co-NP N ©P. The relationship between NP and
@©P is unclear. Most likely they are incomparable.
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Sketch:

NP

Each positive instance of an NP-problem can have a different number
(in general up to exponentially many) “witnesses” for membership in the
language. (More concretely, for a satisfiable boolean formula F,i.e., F € SAT,
there can be exponentially many satisfying assignments.) If we now restrict
NP to the languages for which each positive instance has at most polynomially
many witnesses, we obtain the class FewP. That is, a language L is in FewP
if there is an NP-machine that accepts the language L and has the additional
property that for each input z, there are at most p(|z|) accepting paths,
where p is a suitable polynomial.

Clearly, P C FewP C NP. It is not clear how much of a restriction it is to
require “few witnesses.” We do, however, have the following result:

Theorem 19.1. FewP C ©P,

FEzxercise 19.2. Prove this theorem.

Hint: Let m be the correct number of accepting computations of the FewP-
machine. Then Y7, (") = 2™ — 1 is odd if and only if m > 0. <

(3
Sketch:

NP
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It is an interesting coincidence that in the examples known to this point,
such as the prime number problem or the equivalence problem for tourna-
ments (see the book by Kobler, Schoning, and Torédn), the property of be-
longing to ©P seems to be connected with the property that faster algorithms
are known, with upper bounds something like O(n'°8"), than are known for
the NP-complete languages. (For the problems just mentioned it is not clear
whether they are in P.) It is unknown if there is a causal link between ®P
and the complexity O(n!°8").

In this sense one can interpret ©P has a “low” complexity class. In the
last chapter we applied the BP- operator to various complexity classes such as
P and NP and interpreted this as merely a certain probabilistic generalization
which did not significantly alter the properties of the underlying complexity
classes. The intuition that therefore BP-®P is a “low” class is, however,
completely incorrect: Valiant and Vazirani showed that NP C BP-®P, and
Toda extended this to show that even PH C BP-®P. This will be the main
result of this chapter.

We begin with a few observations about the class ©P. This class has com-
plete languages (under polynomial-time many-one reductions), for example,

®SAT = {F | F is a boolean formula with an odd number of satis-
fying assignments } .

This follows from Cook’s Theorem, which demonstrates the NP-completeness
of SAT, and the observation that the Cook formula has the same number
of satisfying assignments as the underlying Turing machine has accepting
computations.

We say that a language L has AND-functions if there is a polynomial time
computable function f such that

z1 € Land ...and z, € L < f({(z1,...,2,)) € L.

Analogously, we can define the notion of an OR-function and a NOT-function
for a language.

Ezercise 19.8. Show that SAT has AND-functions and OR-functions. Fur-
thermore, SAT has NOT-functions if and only if NP = coNP. <

What is the situation with ®SAT? We will see that ©@SAT has AND-,
OR- and NOT- functions. The AND-function for ®P is demonstrated (as for
SAT) by the function f((Fi,...,F,)) = Fi A---A F,, where the formulas F;
have disjoint sets of variables. Let a; be the number of satisfying assignments
for F;. Then the number of satisfying assignments for the formula Fi A---AF),
is precisely ;" , a;, which is odd exactly when every a; is odd.
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A NOT-function can be obtained by adding on a “dummy” satisfying
assignment: g(F) = (FAy)V (x1 A+ Az, AT), where z1,...,2, are the
variables that occur in F' and y is a new variable. The formula g(F') clearly
has exactly one more satisfying assignment than the original formula F'.

By combining these two formulas and using DeMorgan’s laws we imme-
diately obtain an OR-function:

Wy, .. zn) = 9(f(g(x1), .., 9(xn))).

Theorem 19.2. NP C BP-©P.

Proof. Tt is sufficient to show that SAT is in a certain sense probabilistically
reducible to ®SAT. More precisely, each input formula F' can be transformed
by a probabilistic, polynomial-time algorithm into a formula F' with the
property that:

F € SAT = Pr[F' € ®SAT] > L

p(|F])
F ¢ SAT = F' ¢ ®SAT ,

for some polynomial p.

Ezercise 19.4. Show that Theorem 19.2 follows from the preceding state-
ment.

Hint: For the required probability amplification use the fact that the language
@®SAT has OR-functions. <

Let the input formula F' have n variables z,...,x,. Let S be a random
subset of {1,...,n}, i.e., S is specified by n random bits, the ith bit deter-
mining whether i € S. We denote by [S] the boolean formula ;¢ x;. That
is, [S] is a formula that is true precisely when there are an odd number of
i € S for which x; = 1. The probabilistic algorithm now transforms F' as
follows:

INPUT F;

GUESS RANDOMLY k€ {0,...,n—1};

GUESS RANDOMLY subsets Si,...,Skr2 C{1,...,n};
OUTPUT F' = FA[S1]A -+ A [Sk+2]-

Intuitively, with each addition of a subformula of the form [S] to the con-
junction the number of satisfying assignments is approximately halved since
for each assignment b the probability is 1/2 that b([S]) = 0 (and 1/2 that
b([S]) = 1). (Without loss of generality assume that b # 00...0.) These
events are, however, not completely independent but only pairwise indepen-
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dent. This makes the analysis of the probabilities somewhat more difficult.
But it seems at least plausible that after one of these halving steps there will
be a non-negligible probability of having ezactly one satisfying assignment
left.

It is clear that if F' is unsatisfiable, then F’ is also unsatisfiable and
therefore has an even number (namely, 0) of satisfying assignments, so that
F' ¢ ®SAT. Now suppose that F has m > 1 satisfying assignments. With
probability at least 1/n, k will be chosen so that 2 < m < 2Ffl. Now
we show that with this choice of k, the probability that F' has ezactly one
satisfying assignment is at least 1/8. Thus the probability that F' € ©SAT
is at least (1/n)(1/8) = 1/8n.

Let b be a fixed satisfying assignment of F'. Since the subsets S; (i =
1,...,k+2) are chosen independently, the probability that b is also a satisfy-
ing assignment of F' (i.e., that it “survives” each halving) is 1/2¥+2. Under
the condition that b survived, the probability of any other satisfying assign-
ment b’ for F' also survives is also 1/2%+2, Thus the probability that b survives
but none of the other m — 1 satisfying assignments for F' survive is at least

1 1 m—1 1 ok+1 rts
=D g =g (U -ger) 2 g (L ) =12
b/

ok+2

So the probability that there is such a b that is the only satisfying assign-
ment for F' is at least

Z 1/2k+3 — m/2k+3 Z 2k/2k+3 — ]./8
b

With that Theorem 19.2 has been proven. O

Exercise 19.5. Show the following generalization of the preceding theorem:
3-©P C BP-®P. <

The preceding proof (and exercise) actually show not only that NP C
BP-®P (3-®P C BP-®P, respectively) but that for any polynomial ¢ with
a suitable choice of a ®P-language, L, the probability that F € SAT but
F' ¢ L can be made less than 2-9(%),

Toda showed that this inclusion can be significantly strengthened:
Theorem 19.3. PH C BP-©P.
Proof. We show by induction on k that the following claim holds:

Claim. For all k > 0, XF U II} is contained in BP-®P, and the error proba-
bility can be made to be less than 279(") for any polynomial q.
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The base case when k = 0 is trivial. Now we show the claim holds for
k 4+ 1 under the assumption that the claim holds for k. It suffices to show
that X[, is contained in BP-®P, since BP-®P is closed under complement.
Let L be an arbitrary language in 211;-1 = E'H,f, let p be the polynomial
that bounds the length of the existentially quantified strings, and let g be
an arbitrary polynomial which gives the error rate, 29" that must be
achieved. By the inductive hypothesis, L € 3-BP-®P, and an error rate of at
most 2~ (2 +2(M)+1) may be assumed. The BP- operator can be pulled to the
front (see previous chapter) so we get L € BP-3-®P with an error rate now
of at most 2~ (@(")+1) The previous exercise implies that L € BP-BP-®P, and
that the error rate of the second BP- operator can be chosen to be at most
2-(@(m)+1)  Now we can combine both BP- operators into one. In the worst
case, the error rates add. So we get that L € BP-®P with an error rate of at
most 29" as was desired. O

As a corollary to this result in combination with techniques from the
previous chapter we get the following immediately:

Corollary 19.4. If ®P is contained in the polynomial time hierarchy, PH,
then PH collapses. O

Exercise 19.6. Prove Corollary 19.4.

Hint: Use the fact that ©P has complete languages (like ©SAT, for example).
<

Ezercise 19.7. Prove that the class BP-®P has complete languages. (This
seems to be unusual for a BP--class, although, for example, BP-PSPACE =
PSPACE and, of course, PSPACE also has complete languages.)

Hint: Use the facts that ®P(®©P) = ©P (which we have already implicitly
shown) and that Theorem 19.3 relativizes, that is, for all classes C, PH(C) C
BP-®P(C). From this we can conclude that BP-@P C V-3:®P C PH(®P) C
BP-©P(®P) = BP-©P. <

* * * * *

Let accps be a function from X* to N that gives for each input x € X*
the number of accepting computations of M when run with input x. Let #P
be the set of all functions of the form accys for some NP-machine M.

We want to investigate the question of whether one can compute lan-
guages in the polynomial time hierarchy using the information given by a
#P-function. In fact, we will show that

Theorem 19.5. BP-©P C P(#P).
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From this it follows that PH C P(#P). Indeed, for any language A € BP-®P
we will show how to construct an NP-machine M such that from the value of
accys(x) we can determine whether or not € A by means of a simple arith-
metic computation (in polynomial time). Consider the following example:
A € BP-®P means that

x € A = for “many” strings y there is an odd number of strings z
such that (z,y,2) € B,

x € A = for only “a few” strings y is there an odd number of strings
z such that (z,y,z) € B,

where B is a language in P. For the sake of concreteness let’s assume that
there are 4 potential y-strings and 2 potential z-strings. “Many” could mean
in this case 3 or 4, “few” 0 or 1. Then the following tree represents a situation
where z € A. (An ‘@’ in the diagram represents that (z,y,z) € B.)

r €A

In this case there are 3 y’s with an odd number of z values.
In the next picture there is only one such y, so z € A:

g A

If we were to ignore the structural difference between y and z, however,
and view the entire tree as an NP-machine M with input x, then we could
not learn anything from the number of accepting paths, accys(x), since in
both cases accps(z) = 5.
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Now we want to modify the z-subtrees to z’-subtrees in such a way that
the following holds:

Odd number of z’s => the number of 2z’ is congruent to 0 (mod 8),
Even number of z’s = the number of 2z’ is congruent to 1 (mod 8).

The number 8 was chosen in this case because 8 > 4 and 4 is the number of
potential y’s. In addition it simplifies matters to choose a power of 2.
In the first example above we now get:
reA

(mod 8)  (mod8)  (mod8)  (mod 8)

'

=1 (mod 8)
And in the second case:
r g A
y :
ZI

—_— Y Y Y
=0 =1 =1 =1
(mod 8) (mod 8) (mod 8) (mod 8)

'

=3 (mod 8)

Now the total number g of accepting computations is sufficient to differ-
entiate the two cases: x € Aif g=0org=1(mod 8) andz ¢ A, if g =3
or g =4 (mod 8). In general: x € A if and only if g < 27U /2 (mod 27(1#D),
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where p is a large enough polynomial and g is the total number of accepting
computations. For an appropriate machine N, g =accy(z). So it turns out
that the determination of whether x € A depends only on a single bit of the
binary representation of accy(x), a #P-function. (Note: the proof of inclu-
sion BP-®P C P(#P) does not depend on the fact that the BP- operator has
a “gap” between the accepting and rejecting probabilities or that this gap
can be amplified; the inclusion would also be true if we had defined the BP-
operator without this gap — see the previous chapter.)

Our goal has now been reached, provided we can transform an arbitrary
NP-machine M into an NP-machine M’ such that for some (sufficiently large)
polynomial p we have:

accas () odd = accay (z) = 0 (mod 27Dy |
accys(z) even = accyp () =1

The polynomial p depends on the number of y in the preceding example.
(2°(™) should be larger than the number of potential y, i.e., p(n) must be
larger than the maximum possible length of such a y.) In order to fulfill
this property, it suffices to give a general construction that works for every
polynomial p.

For this consider the following “magic formula” (let p = p(|z])):

(accpr(z)? + 1)P .

Now we run through each case (accps(x) even or odd):

Case 1. accyr(x) even.

p

( accy(z) P + 1)7?

—_———

=0
(mod 2)
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Case 2. accy(z) odd.

p

( accy(w) + 1) p

————

=1
(mod 2)

~— —
=1
(mod 2)

=0
(mod 2)

=0
(mod 2P)
In each case the chain of implications is understood to go from top to
bottom.

Ezercise 19.8. In both cases we used the implications

=0 (mod b) = a” =0 (mod b”),
1

a
a =1 (mod b) = a” =1 (mod b).

Prove them. <

Exercise 19.9. Let M be an NP-machine. Show that the function

is in #P. <
This completes the proof that PH C BP-®P C P(#P). O

The diagram below summarizes the known inclusion relationships. The
language class PP, which appears in the diagram, is closely related to the
function class #P. Let M be an NP-machine and p be a polynomial such
that every computation on every input of length n runs in time p(n). Then
there are 2°(") different possible computations on each input of length n. A
language A is in PP if there is such a machine M and polynomial p for which
r € A < accy(x) > 2°UzD /2, ie., at least half of the computations on
input z are accepting. It is easy to see that NP C PP, P(#P) = P(PP), and
PP is closed under complementation.
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PSPACE
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20. Interactive Proofs and Zero Knowledge

In 1986 Goldwasser, Micali, and Rackoff introduced the notion of an inter-
active proof system. Using these systems, probabilistic generalizations of
the complexity class NP can be defined. A zero knowledge protocol is able
to provide convincing evidence that a proof of a statement exists without
disclosing any information about the proof itself.

In Topic 6, among other things, the relationship between efficient proofs and
the class NP was discussed. As we noted there, the class NP can be viewed as
the set of all languages that have polynomially long proofs in an appropriate
proof calculus.

Ezercise 20.1. Sketch a proof of this characterization of NP. (The definition
of a proof calculus is intentionally omitted; fix it appropriately for the proof.)
<

Here we want to consider such proofs more generally as a communication
problem between a prover who knows the proof (the prover) and a verifier who
does not know the proof but is supposed to be convinced of its correctness
(or perhaps only of its existence).! In our previous considerations, i.e., in the
definition of the class NP given above, the communication has been entirely
one-sided: the prover gives the verifier a complete proof, which the verifier
then checks in polynomial time.

We want to recast this now as a communication problem between two
Turing machines — prover and verifier. The verifier will be a polynomial time-
bounded Turing machine. Later we will also consider probabilistic verifiers
(cf. Topic 17). The prover, on the other hand, will have no complexity re-
strictions, which in some sense corresponds to the existential quantifier in the
definition of NP. These two machines communicate over a common communi-
cation channel (a Turing machine tape), and both machines also have access

! This idea follows the manner in which proofs were often written down in antig-
uity, namely in the form of a dialog between someone carrying out a proof and
another party who doubts its validity. In more modern form, such “dialog-proofs”
can be found, for example in

o P. Lorenzen: Metamathematik, Bibl. Inst., 1962.
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to the input, which in some sense represents the statement to be proven. Fur-
thermore, each machine has a “private” work tape for internal computations.

input
[T T TTTTI
/ tape \
y \

Prover Verifier
7y 4 7y
communication
[T T TTTTI
! tape v
[T T T T1] [T 1T T T11
work tape work tape

The computation proceeds in rounds. In each round, only one of the par-
ticipants is active. A round begins with the reading of the information on
the communication tape (or on the input tape) and ends — perhaps after
some private computations — with writing at most polynomially much new
information on the communication tape. The number of rounds is limited
to be polynomial in the length of the input. Since both participants can in
principle keep a complete log of all communication on their work tapes, the
newly computed information at each round can be considered a function of
the input and all previously communicated information. In the case of the
verifier, this function must be computable in polynomial time. The (prelimi-
nary) definition of the language A that is represented by such an interactive
proof system is the following: There must be a verifier-algorithm V' so that for
any z € A, there is a prover-strategy so that the verifier eventually accepts.
If x € A, then the verifier rejects, regardless of what strategy the prover uses.
Note that we have made no restrictions on the complexity of the prover.

Exercise 20.2. Show that using this apparently more general interactive
communication model, nothing more can be computed than the class NP. <«

The situation changes drastically (at least potentially) if the Turing ma-
chines (in particular the verifier) are allowed to work probabilistically. In this
case, the participants can make the execution of their computations depend
on the result of a random experiment. Furthermore, we relax the requirements
for x € A (and = ¢ A) somewhat. Our final definition goes as follows:

Definition 20.1. A language A is in the class IP if there is a probabilistic,
polynomial time-bounded Turing machine V' (the verifier) such that for all x:

z € A= JProver P: Pr[(P,V)(z) =1]> 2/3,

z ¢ A= VYProver P: Pr[(P,V)(z) =1] < 1/3.
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In the definition above, “(P,V)(z) = 1”7 means that the result for a given
prover P and verifier V is that x is accepted. This definition was introduced
by S. Goldwasser, S. Micali, and C. Rackoff.

The constants 2/3 and 1/3 are somewhat arbitrary. Because of the pos-
sibility of “probability amplification” in this model (cf. Topic 17), the exact
values of the constants do not matter as long as the first one has the form
1/2 4+ € and the second one the form 1/2 — ¢ for some constant € > 0. In
fac‘t,‘ one can choose the first “constant” to be 1 — 2~ 1%l and the second to be
22l 2

It is clear from the previous discussion that all NP-languages have interac-
tive proofs. In fact, they have trivial ones in which all of the communication
is from the prover to the verifier. So NP C IP. Since the verifier can compute
the languages in BPP without any communication from the prover, it is also
clear that BPP C IP.

Ezercise 20.3.° Show that IP C PSPACE. <

Exercise 20.4.° A language A is provable by an oracle if there is a polynomial
time-bounded, probabilistic Turing machine M such that for all «

€ A= Foracle B: Pr[M?(z) = 1] > 2/3,
¢ A= Yoracle B: PriM*(z) =1] < 1/3.

Show that A € IP implies that A is provable by an oracle. Give an argument
why the reverse direction might not be true. <

So just how large is the class IP? It is contained in PSPACE and contains
NP. How much more of PSPACE is in IP? A well-known example of a problem
in IP that is not known to be in NP is the complement of graph isomorphism,
G1I (cf. Topic 17): given two graphs G; and G» prove (interactively) that
they are not isomorphic. One interactive protocol that achieves this is the
following:

Prover communication | Verifier

Randomly guess ¢ €
{1,2} and a permuta-
tion 7 of {1,...,n},
where n is the number
of nodes in the graphs
G1 and G». Compute
the graph H = 7(G;).

— H <
Determine j € {1,2},
so that G; and H are
isomorphic.

—j—

Accept if i = j.

2 In fact, even more is true. It can be shown that the first constant can be chosen
to be 1; see the 1987 paper by Goldreich, Micali, and Sipser.
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Now if G; and G5 are not isomorphic, then a suitable prover algorithm
can always answer with the correct j — remember the prover is not computa-
tionally limited, and so is able to find any isomorphisms that exist — so the
verifier will always accept. That is,

(1 not isomorphic to G = 3 Prover P: Pr[(P,V)(G1,G2) =1]=1.

On the other hand, if the two graphs are isomorphic, then the prover
has at most a 50-50 chance of selecting the “correct” value i = j. So

G isomorphic to G2 = V Prover P : Pr[(P,V)(G1,G2) =1]<1/2.

Ezercise 20.5. For which provers is the probability exactly 1/2? What is the
probability in other cases? <

The definition of IP has not yet been satisfied, since the probability of error
is 1/2, which is greater than 1/3.

Ezercise 20.6. Modify the protocol above slightly (without changing the
“communication protocol”) so that probabilities 1 and 1/2 above are trans-
formed to 1/2+ ¢ and 1/2 — ¢, for some € > 0. <

Ezercise 20.7. How can the protocol be modified so that instead of the
probabilities 1 and 1/2 we get the probabilities 1 and 27%? <

So GI € IP. It is important to note that the protocol described above uses
only a constant number of rounds, namely 2. So GI € IP(2), where IP(k) is
the subset of IP where only & rounds are allowed. If we really make use of the
polynomially many rounds available, then we arrive at IP = PSPACE. This
was first shown by A. Shamir and will be the subject of Topic 21.

It appears at first glance to be significant that the verifier makes his ran-
dom choices (i and 7) on the private work tape, “out of sight” of the prover.
S. Goldwasser and M. Sipser showed (1986), however, that this secrecy is
not necessary. Every IP-protocol, like the one above, can be transformed into
one in which the verifier does nothing but generate random numbers and
communicate these directly to the prover — without subsequent internal com-
putation. This kind of protocol was introduced independently by L. Babai,
who called it an Arthur-Merlin game because the prover plays the role of the
wizard Merlin, and the verifier the role of King Arthur.

Ezample. The method used in Topic 18 to demonstrate that GI € BP-NP
can be recast as an IP-protocol with “public coins” as follows:
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Prover communication | Verifier
Randomly guess a
hash function h € H.

— h +—
Determine a y € Y
with h(y) = 0. Let b be
a “proof” of “y € Y”.

— y,b—

Accept if b is correct
and h(y) = 0.

For a discussion of the terminology and probability approximations in this
example, see the description given in Topic 18. In fact, it is the case that
BP-NP = IP(2).

x %k k%

Now we come to another interesting concept, also introduced by Gold-
wasser, Micali and Rackoff, namely zero-knowledge. This means that an IP-
proof can be carried out in such a way that the verifier does not obtain
any information about the proof itself, but is nevertheless convinced of the
ezistence of such a proof, since the IP-protocol is still correct.

The most famous example of this was given in a paper by O. Goldreich,
S. Micali, A. Wigderson and is the graph isomorphism problem, GI. In order
to convince the verifier that two graphs are isomorphic, the simplest thing
the prover could do would be to give the verifier an isomorphism (coded in
polynomially many bits), which the verifier could then easily check. But then
the whole secret would be revealed; the verifier could use this information to
tell a third party, etc. In certain contexts — cryptologists rack their brains
over such contexts — it may well be that it is not desirable that the proof be
revealed, but that the verifier must, nevertheless, be convinced that the prover
knows a proof (a graph isomorphism, in our example). A “zero-knowledge
proof of knowledge” is actually able to satisfy these apparently paradoxical
requirements.

Consider the following protocol for GI. Contrary to our previous exam-
ple, in this protocol it is the prover who begins, and the prover also uses
randomness.
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Prover communication | Verifier
Randomly guess 7 €
{1,2} and a permuta-
tion m of {1,...,n},
where n is the number
of nodes in the graphs
G1 and G2. Compute
the graph H = w(G;).

— H —
Randomly select a j €
{1,2}.
— J—
Determine o so that
o(G;)=H.
— o —
Accept if 0(Gj) = H.
Exercise 20.8. Show that this is an IP-protocol for GI. <

This protocol is unusual, however, in that it does not reveal anything
about the isomorphism (if one exists) between the graphs G; and G». The
protocol fulfills our definition of zero-knowledge: The information that is
transmitted on the communication channel (in this case H, j, and o) contains
(statistically) no new information for the verifier. The verifier would be able
with his computational resources to generate exactly the same probability
distribution for the triples (H,j,o) as would occur in a typical realization
of the protocol. Therefore, the verifier can learn absolutely nothing new by
viewing the communication log.

Definition 20.2. (Goldwasser, Micali, Rackoff) Suppose A € IP wvia a
prover-verifier pair (P,V). Then this protocol is a zero-knowledge protocol
if there is a probabilistic Turing machine M such that M on any input x
runs in polynomial time and if x € A, then M outputs a tuple (y1,...,Yk)
so that the distribution of such tuples is exactly the distribution that can be
observed on the communication channel of P and V on input .3

Exercise 20.9.° Show that the protocol given above for GI is a zero-
knowledge protocol. <

Ezercise 20.10. Some authors have criticized that since the prover in the def-
inition of IP has unbounded resources, these types of IP-proofs — of which the
zero-knowledge ones are most interesting — are not practically implementable.

But let’s modify the scenario slightly: Now the prover, like the verifier,
will also be a probabilistic, polynomial time-bounded Turing machine, but at

3 More precisely, what we have defined here is perfect zero-knowledge with fized
verifier, in contrast to other definitions of zero-knowledge that exist in the liter-
ature. Under weaker definitions, one can show that all NP-languages have zero-
knowledge IP-proofs, but this does not appear to be the case for our definition.
For more on this see the article by Brassard.
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the start of the protocol, the prover has some additional information, namely,
the “proof” is written on its work tape. (In our example, this would be an
isomorphism between the graphs G; and G, if one exists.) Show that the
protocol described above can be used in this situation so that the prover can
(in polynomial time) convince the verifier of the existence of an isomorphism
without revealing the isomorphism. That is, zero-knowledge proofs are still
possible with such modifications to the model. <
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21. IP = PSPACE

We present the surprising result of A. Shamir that the classes IP and
PSPACE are the same.

For a long time it was unclear how encompassing the class IP really is. The
conjecture was that this class represented only a “small” generalization of the
class NP (something like BP-NP, cf. Topic 18). It was not even clear that the
class coNP was contained in IP. In fact, there were oracle results that spoke
against this (cf. Topic 22).

Triggered by the observation of N. Nisan that by means of a certain
arithmetization technique and the use of Toda’s results (cf. Topic 19), one
could show that PH C IP (which implies, of course, coNP C IP as well), there
ensued a race toward the potential goal of IP = PSPACE. (Remember that
in Topic 20 we saw that IP C PSPACE.) This race took place by e-mail in
December, 1989, among certain “insiders” (see the article by L. Babai). This
race was eventually won by A. Shamir. We want to work through the proof
of this result in this chapter.

The strategy is to give an interactive proof protocol for QBF, a PSPACE-
complete problem, thus proving that QBF € IP. From this it follows that
PSPACE C IP, and, therefore, that IP = PSPACE. The language QBF consists
of all valid quantified boolean formulas with no free variables. Quantification
is over boolean variables ({0,1} or {FALSE, TRUE}).

Ezxample. The following formula is in QBF:
VoVy (Vv -yVIz((zAz)V(yAz))).

It will be important in what follows that we only allow formulas in which
the negations are only applied to variables. Let QBF' C QBF be the set of
all such formulas that have no free variables and are valid.

Ezercise 21.1.  Show that QBF <P QBF', so it is sufficient to prove that
QBF € IP . q

The goal of the desired interactive proof protocol is to get the prover to
convince the verifier that the input formula F' is valid; and if F is not valid,
then the verifier should reject with high probability.
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The trick is to interpret the formulas arithmetically. We do this in the
following way: We assume that the variables can take on integer values.
An AND-operation will be interpreted as multiplication (%), and an OR-
operation as addition (+). If the variable x; is negated, we interpret this as
1-— Tj.

It remains to show how the quantification can be arithmetized. For a
formula of the form Vz, every free occurrence of x in F' is replaced once with
0 and once with 1, and each of the resulting formulas is then arithmetized.
Let ag,a; € Z be the resulting values. The value of VxF' is then ag * a;.
For dzF we use ap + a; instead. Let bool(F') denote the boolean value of a
formula F' and let arith(F') denote its arithmetic value.

Ezample. We can compute the value of the formula in the previous example
as follows:

Va Yy (a:VﬁyVEIz((:U/\Z) \ (y/\z)))

=11 II (az+(1—y)+ Z((ﬂf*z)ﬂy*z)))

z=0,1 y=0,1 z=0,1
= II II @+ =9 +[@=0)+(y=0)+((x+1)+ (y= 1))
=] @G+@-0)+[z+0])* (z+ 1 -1)+[z+1])

z=0,1
= [[@+1)xQRe+1)=(1x1)x(3%3)=9.

z=0,1

Ezxercise 21.2. Show that

bool(F) = TRUE = arith(F) >0,
bool(F) = FALSE = arith(F) =0.
Hint: Use structural induction on the formula F'. <

Instead of convincing the verifier that the boolean value of a formula is
TRUE, the prover will instead first communicate to the verifier a value a € Z
and then try to convince the verifier that the arithmetic value is exactly a.
It is precisely this more difficult task, which demands more information from
the prover, that makes a correct interactive protocol for QBF' possible.

Now we come to our first technical problem: The arithmetic value a is
supposed to be communicated. The prover, with unbounded resources, can
clearly compute this number from the formula F', a task that (by the previous
exercise) is at least as difficult as QBF. But the value of a could be so large
that the binary representation of a doesn’t have polynomial length!
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Exercise 21.3. Show that for the following formula
F=Va; .. Vo,JyIz(yVz),
arith(F) = 4*". <

Ezercise 21.4. Show that if the length of a formula F' (as a string) is n, then
arith(F) < 2%". <

So we must find a way to reduce the arithmetic value of the formulas.
We can do this by computing modulo some number k of size 2°("), Then we
can represent ¢ mod k using only O(n) bits. But we must make sure that
the properties “a > 0” for valid formulas and “a = 0” for invalid formulas
continue to hold when this modular arithmetic is used.

It is the case, however, that for all @ with 0 < a < 22", there is a prime
number k in the interval [2",23"] such that a Z 0 (mod k).

Exercise 21.5.° Show this. You may use without proof the fact that for every
m there are at least \/m prime numbers < m, i.e. 71(m) > /m.

Hint: Chinese Remainder Theorem. <

In Topic 9 we gave lower bounds for w(n), but these were good only for
infinitely many n. The Prime Number Theorem actually says more, namely
that w(n) ~ n/Inn. But for the exercise above, the following weaker version
would suffice:

Ezercise 21.6.° Show that w(n) > v/n. <

Our desired protocol for QBF' € IP begins with the following information
being communicated from the prover to the verifier in the first round:

Prover Communication | Verifier
Compute n = |F], com-
pute a = arith(F) and
determine a prime num-
ber k € [27,23"] (if pos-
sible) with @ # 0 (mod
k). Let a = a mod k.
Find a “proof” b for the
primality of k.

—a,k,b—
Verify that a > 0, that
k € [2",2%"], and that b
is a correct proof that k
is a prime.

In the remainder of the protocol, the prover has the task of convincing the
verifier that the arithmetic value of F' (modulo k) really is a.

At this point it is not yet clear why the prover must convince the verifier
that & is a prime number, since even if k is composite, we can conclude from
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a > 0 that a > 0. So far, the only place primality has played any role has
been in the context of the Chinese Remainder Theorem above. But in what
follows it will be important for the verifier to know that {0,...,k — 1} =
GF(k) is a field. Otherwise, the prover would be able to “cheat,” as we will
soon see.

Nor have we discussed what b, the proof of primality, is like. It is in fact
possible to certify the primality of a number via a polynomially long (non-
interactive) proof, that is, PRIMES € NP. This fact was originally due to
V. Pratt, but we will not pursue the proof further here. (See the references
at the end of the chapter for more information.)

Another possibility is to have the verifier choose a prime number (from a
somewhat larger interval) at random in the first round. (Methods for selecting
a random prime can be found in the book by Cormen, Leiserson, and Rivest.)
If the verifier selects such a prime p at random, then with high probability,
a Z 0 (mod p).

Exercise 21.7.° In this alternative, how large must the interval from which
the prime number k is chosen be in order that for every a € [0,22"], the
probability is at least 1 — 27" that a Z 0 (mod k)? <

* * * * *

Now we come to the heart of the protocol, verifying that arith(F') mod
k = a, where F' is (for the moment) the input formula. This will require
multiple rounds. Each round will be associated with some claim of the form
form “arith(F) = a mod k,” where initially F' is the input formula and a
is the value communicated by the verifier in the first round. In subsequent
rounds, F' will be some (shorter) formula that occurs as a subformula or
instantiation of a formula F' from a previous round, and a will be the value
that the prover claimed was arith(F) mod k.

If, for example, F' has the form F = (F; A F3), then in the next round
the prover must give two numbers a; and a- along with proofs that a; is the
arithmetic value of F; (modulo k) and that as is the arithmetic value of Fy
(modulo k). (The verifier will check to be sure that ap * a; = @ mod k.) The
procedure for F' = (F} V F») is analogous, except that the verifier will check
that @ = a1 + a2 (mod k).

It becomes more interesting when F' has the form F' = Va G. The variable
x occurs freely in G, so the arithmetic value of G is not a number but a
function. In fact, it is a polynomial, since the only operations are +, —, and
x. The prover will now be required to tell the verifier the coefficients of this
polynomial, which we will call p¢, since this task is too difficult for the verifier.
The verifier then checks that pg(0) * pg(1) = a (mod k), selects a random
number z € {0,...,k —1} = GF(k), and communicates this number z to the
prover. The prover is now expected to provide a proof that the arithmetic
value of G (with the number z substituted for the variable z) is precisely
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pc(2). In the case of a formula of the form F' = 3z G everything proceeds
analogously, except that the verifier checks that pg(0) + pe(1) = @ (mod k).

Ezample. If F =VaVy(zV-yV3z((xAz)V(yAz))), as in our previous
examples, then

pa ()

II <I+(1—y)+ Z(($*2)+(y*2))>

y=0,1 2=0,1
=QRr+1)*xRr+1) =42 +4x+1.

Note that this gives more information than merely giving the values ps(0) = 1
and pg(1) =9.

So at this point the protocol is doing the following: In order to prove
that the value of F' is a, the prover must give the verifier the polynomial
pa- Now the task is to verify that the polynomial pg is correct. We will see
below that these polynomials have very low degree (in comparison to the size
of the underlying field GF(k)). For this reason, on substitution of a random
value, it is very likely that if the prover tried to cheat by giving an incorrect
polynomial (which for the moment will not be detected by the verifier) then
in the next round the prover will be forced to once again give an incorrect
polynomial — if he ever hopes to cause the the verifier to accept — but now for
a smaller formula G(z).! In the end, the prover’s deception will (with very
high probability) be found out.

Ezercise 21.8. Let d < k) be the degree of the polynomials p and p'.
Suppose the prover tries (or is forced to try because of previous rounds) to
show that p’ is the polynomial associated with G(z) when in fact it is really
p # p'. What is the probability that given a random choice of z (as described
above), p(z) # p'(2)? <

At the end of the protocol we arrive at the “innermost” parts of F', the
variables, which in the previous rounds have been replaced by random num-
bers. Now the verifier need only check that these random numbers agree with
the arithmetic value.

This concludes a description of the protocol by which the prover can
convince the verifier that the arithmetic value of a formula is exactly some
supposed value. Some comments about its correctness have already been
made. What is still missing is a rigorous approximation for the probability of
correctness and an argument that the degree of the polynomials is small. As
we saw in the previous exercise, the degree of the polynomial plays a role in
the probability arguments. Furthermore, the prover must communicate the
polynomials. The coefficients themselves come from GF(n) and so require
only O(n) bits since k < 23", so what we need is a polynomial bound on the

! Technically, G(z) is no longer a formula, since an integer has been substituted
for one of the variables.
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number of coefficients. In order for this to be possible, the degree should be
at most polynomial in n.

Without taking further precautions, the degree of the polynomial pg could
be exponentially large. It is the universal quantifiers that have the possi-
bility of drastically increasing the degree. If, for example, G has the form
Yy ... YymH(x,y1,...,Ym) and H is a quantifier-free formula that has (due
to nested ANDs and ORs) degree ¢ with respect to x, then the polynomial
pa has degree ¢2™. In order to maintain a low degree for the polynomials as-
sociated with a subformula G of F' (with some variables already instantiated
with random numbers), it is important that (already in F') the number of
universal quantifiers between an occurrence of a variable and the quantifier
that binds it be small. In what follows, we will only allow one such intervening
universal quantifier.

Definition 21.1. A quantified boolean formula without free variables is said
to be simple if for every variable that occurs, the number of universal quanti-
fiers that lie between any occurrence of the variable and its binding quantifier
s at most 1.

We denote by QBF" the set of simple formulas in QBF'.

Ezercise 21.9. Show that the degree of any polynomial that comes from a
simple formula F' of length n is at most 2n. <

Ezercise 21.10.° Show that QBF (or QBF’) is polynomial-time reducible
to QBF". Therefore, it suffices for our interactive protocol to consider only
simple formulas.

Hint: For every occurrence of the situation ...Qx...Vy...x ..., introduce a
new variable (to be a place holder for ). <

For the correctness of “QBF" € IP,” we still need to give a bound on
the probability of error in the protocol. If the input formula F' is valid, then
the prover can satisfy all of the verifier’s demands and produce the correct
arithmetic value and all the required polynomials. So in this case, the verifier
will accept with probability 1.

If, on the other hand, F is not valid, then there is only a very small chance
that the verifier incorrectly accepts. This can only happen if in some round
the verifier randomly chooses a number z such that the incorrect polynomial
previously given by the prover and the correct polynomial pg have the same
value on z. By the earlier exercises, in any given round this can only happen
with probability at most 2n/2". Since there are at most n rounds, we get the
following approximation for the probability that the prover can prosper by
cheating:

Prlerror] < 2n?/2" =0 (n — ) .

So the definition of IP is satisfied. It follows that IP = PSPACE | as was to
be shown. O
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Ezercise 21.11. Use Pr[error] = 1 — Pr[no error]| to get a better approxi-
mation. <

Finally, we note that in this protocol the numbers randomly chosen by
the verifier are given directly to the prover. So this protocol is, in fact, of
“Arthur-Merlin” type (cf. Topic 20).
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22. P # NP with probability 1

There are “worlds” in which P = NP and others in which P # NP. Fur-
thermore, if a “world” is chosen at random, the probability is 1 that it will
be a world in which P # NP.

If one is not familiar with the material that we are about to present, then
one would probably assume without further thought that if one could show
that P # NP, then from this fact (and a potential proof of this fact), it
would immediately follow that for any oracle pA # NP4, since although the
problem is “shifted” by the oracle, its fundamental structure seems to remain
the same. Similarly, if we assumed the (unlikely) case that P = NP, again we
would expect that by a similar argument one could show that that pPA = NPA
for all oracles.

Such a “relativization principle” does seem to hold in recursion theory.
Every known theorem can be “relativized” by the addition of an oracle mech-
anism and is in fact still true with any choice of oracle. But in complexity
theory things are different: T. Baker, J. Gill and R. Solovay showed that there
are languages A and B such that

P4 £NP* and PP = NPP.

Exercise 22.1. Show that any PSPACE-complete language can be used for
B. <

Now we want to show that for “almost all” choices of oracle, P # NP.
More precisely, what we mean is this: If we generate the oracle language
A according to a random procedure in which for every string « € {0,1}*
(independently of all other strings) is equally likely to be in or out of A (i.e.,
VaPrixz € A] =1/2) then

Pr[PA=NPA] = 0 ,ie, Pr[P*#NP*] = 1.

From this, of course, it follows that there ezists an oracle, relative to which
the classes P and NP are different.
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This result seems especially attractive: On a scale from 0 to 1, the needle
points all the way to the right. Could this be an indication of how the un-
relativized question is answered, i.e., that P # NP, unrelativized? This way
of thinking, namely that if a statement holds with probability 1 relative to a
random oracle then one can conclude (or better conjecture) that the unrela-
tivized statement also holds, is referred to as the Random Oracle Hypothesis.
It can be shown that in statements of this type (i.e., comparisons of com-
plexity classes) the probability will always be either 0 or 1 (Kolmogorov’s 0-1
Law). So the “needle” can only point all the way to the left or right of the
scale. This is very suggestive. Nevertheless, the Random Oracle Hypothesis
has been refuted by a number of counterexamples.

Our goal is to show that for a random A, Pr[P* = NP*] = 0. Let
My, Ms, ... be alisting of all polynomial time-bounded, deterministic oracle
Turing machine. That is, P* = {L(M) | i > 1}. Momentarily we will define
an oracle dependent language L(A). It will be easy to see that L(A) € NP4,
regardless of the oracle A. Thus, the only issue will be whether or not L(A) €
P4, We can approximate as follows:

Pr[PA = NPA] < Pr[L(A) € P?]

= Pr[3i (L(M{) = L(A))]
<Y PrL(Mf) = L(4)]

- ZPT‘[VZ‘ (x € L(MiA) OL(A))]-

(2

where ADB={z|x€ A&z € B}, ie, AODB=AAB.

First let’s define the language L(A). For this we imagine that the elements
of {0,1}* are arranged in lexicographical order. Whether = (with |z| = n)
is in L(A) or not, will be determined by the n2™ strings that follow z in
lexicographical order.

- ——— 0.1y

n2m

These strings are divided into 2" blocks of n strings each. z is in L(A) if and
only if there is at least one such block of n strings all of which are in A.

Exercise 22.2. Given a random oracle A, what is the probability that a string
x with |z| = n is in L(A)? To what value does this probability converge as n
becomes large? <
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Ezercise 22.3. Show that for any oracle A, L(A) € NP™, <

For every machine M;, let 1 < 2 < w3 < --- be a sequence of “widely
2

separated” strings. For example, if we choose njy1 = |zj41] > || = n},
then we are guaranteed that the regions of n;2" strings that determine the
membership of each z; in A are all disjoint and, therefore, that the events
“rj € L(A)” (j =1,2,3,...) are completely independent.

The events z; € L(M#) (i,j = 1,2,3,...), however, are not completely
independent, in particular because the machines M; can also make very short
oracle queries. But as we will see shortly, we do get “sufficient independence”
if we choose the z;’s to be so widely separated that n;;; > 2"7. In this way
we can ensure that (for large j) machine M; on input 2; cannot query strings
of length Njy1-

Now we can continue the approximation begun above.

Pr[P* =NP*|
< Pr{Ve (v € L(MA) O L(4))]

<Y Pr(Vj(z; € L(M{') D L(4))]
=Y [[Priz; € L(M?*) O L(A) | 2, € L(M;*) O L(A), k < j] .
toJ

The next step is to prove an upper bound on the probability of «; € L(MM O
L(A), (or, equivalently, a lower bound for the probability of a “mistake”:
zj € L(A)AL(M7)) under the condition that

zp € L(MA) O L(A) for all k < j .

We will refer to this condition as C, and in the probability considerations
below, we will always assume condition C', which has the effect of shrinking
the probability space of random oracles that we are considering. Essentially,
we consider the oracle A to be “fixed” on all strings that are responsible for
condition C, all of which will be much shorter than ;.

We can now sketch a partitioning of the probability space as in the dia-
gram below:
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xj € L(M{Y) xj & L(M{)
(1) (2) z; € L(A)
(3) (4) zj ¢ L(A)

By Exercise 22.2 we have

(1) +(2) = Prlz; € L(4) | C]
(3) +(4) = Prlz; & L(A) | C]

Pr[z; € L(A)] > 0.6,
Prlz; ¢ L(A)] > 0.3.

Now we approximate the conditional probability:

@ pr . A
(2)+(4)_P[J€L(A)| i & L(M;"),C]

= PT[CUj S L(A) |35j gL(MzA)] .

Topic 22

The important observation here, is that in the course of its computation on
input «;, the machine M; can only query polynomially (in m = |z;|) many
strings of the oracle. Let p; be a polynomial that bounds the number of

queries. For the purposes of our approximation, we consider these

at most

p;i(m) oracle strings to be fixed. These strings can lie in at most p; () different
blocks, so there are at at least 2™ — p;(m) blocks that are available for our
random experiment. For large m, p;(m) < 2™ /2, so just as in Exercise 22.2

we can approximate as follows:

Prizj € L(A) | z; ¢ L(M{)] > 1 — (1 - 1/2m)*" ~»i(m)
>1—(1—1/2m)>"/2
>1/3.

since (1 — 1/2™)2"/? converges to 1/1/e = 0.606... .

Now we want to show that the probability of error, (2) + (3), is greater
than 0. For this we consider two cases, depending on the probability of (3).

Case 1. (3) > 0.1.
Then the value of (2) + (3) is at least 0.1.
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Case 2. (3) <0.1.

In this case, since (3) + (4) > 0.3, we have (4) > 0.2. And since 12— >

)+
1/3 it follows that (2) > 0.1.
So in either case we have shown that Pr[z; € L(4) O L(M#)] < 0.9
Putting everything together we see that

Pr[P*=NP* <Y JJ09 = Y 0 =0,
i J i

and so we have proven that Pr[P* = NP4] = 0 or Pr[P* £ NP*] =1 |

Ezercise 22.4.° Show that Pr[NP* # coNP4] = 1. N
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23. Superconcentrators and the Marriage
Theorem

We want to study graphs with special, extreme connectivity properties,
prove that they exist, and approximate their size. In the next topic, the
existence of these graphs will be used to obtain certain lower bounds.

Definition 23.1. An n-superconcentrator is a directed, acyclic graph with
n input nodes and n exit nodes such that for every choice of k input nodes
and k output nodes (1 < k < n) there exist node-disjoint paths through the
graph that connect the k input nodes with the k output nodes (in any order).

The following sketch clarifies this for n = 5 and a specific choice of 3 input
nodes and 3 output nodes.

It is trivial that there are m-superconcentrators with O(n?) edges: the
bipartite graph with n input nodes, n output nodes and an edge connecting
each input node with each output node is an example.

Exercise 23.1.° It is also relatively easy to build n-superconcentrators with
O(nlogn) edges using a recursive divide-and-conquer algorithm. Do it. <

It was suspected that this bound is optimal (see, for example, Prob-
lem 12.37 in the book by Aho, Hopcroft, and Ullman). Interestingly, it is
possible to construct these graphs with only linear size (where the size is the
number of edges).

Theorem 23.2. There is a constant ¢ such that for every n there is an n-
superconcentrator with cn edges.

Proof. The remainder of this topic will present one possible construction. As
in Exercise 23.1, the construction will be recursive. But instead of building
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an n-superconcentrator out of two smaller superconcentrators, this time we
will use only one an-superconcentrator (for some « < 1) in the recursive
step.

Q O

©)

The diagram above indicates the construction. First, each of the n input
nodes is connected directly to its corresponding output node. In addition,
there is a “detour” through the graph G, which has n = 6m inputs, 4m out-
puts, and certain properties which we will describe below. The 4m output
nodes of GG are connected as inputs to the 4m-superconcentrator S , the out-
puts of which are connected to G', which is identical to G except that the
direction of the edges is reversed. (We ignore here and below the possibility
that 4m may not be an integer. For our asymptotic approximations this will
not play a role.) The focus of our attention will be on the graph G. It will be
possible to construct such a graph with linear size.

Ezercise 23.2. Assume that G has linear size and that the construction is
otherwise correct. Show that the size of the resulting n-superconcentrator is
cn for an appropriate constant c. <

In what follows, we will always assume that n = 6m. The desired graph
G will have the property that any set of k£ < n/2 = 3m input nodes can be
connected with node-disjoint paths to some set of k output nodes. The graph
G' has the dual property that for any choice of k¥ < n/2 = 3m outputs, there
are always k input nodes that can be connected to them by node-disjoint
paths.

Ezercise 23.3.° Assuming these properties of the graphs G and G', show
that the construction is correct.

Hint: How many inputs of the superconcentrator can be connected directly
to output nodes without going through the graphs G, S, and G'? <

The graph G will be a bipartite graph, that is, the nodes fall into two sets:
n = 6m input nodes and 4m output nodes, and the edges connect a node
from each set. We must determine how to arrange (linearly many) edges to
get the desired property.

For a given bipartite graph with edge set E, a subset M C FE is called
a matching, if M consists of edges that are pairwise not connected. We are
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interested in the maximal size of matchings. Before proceeding with the con-
struction of GG, we want to consider maximal matchings in isolation.

(5% O V1

Ezample.

U2 V2
U3 U3
Ug V4
Us Us

The thick lines indicate a matching M with |M| = 4. A matching with
5 edges is not possible since us, u4, us are only connected with nodes v,
and vy. Therefore, in any matching, one of the nodes us, uq, and uz must be
omitted.

Guided by this example, we arrive at the following theorem:

Theorem 23.3. Let G be a bipartite graph with n input nodes. Let S be a
subset of the input nodes with |S| < n. Then there is a matching starting
with S (and connecting the nodes in S to some |S| exit nodes) if and only
if for every subset S' of S, |S'| < |N(S")|, where N(S') is the set of nodes
connected to the nodes in S (i.e., the set of potential “partners” for the nodes

inS).

Ezercise 23.4.° Prove Theorem 23.3. <

Theorem 23.3 is called the Marriage Theorem after the following interpre-
tation. The input nodes are the women, the exit nodes the men (or vice versa),
and every edge means that the corresponding pair are “friendly,” so that a
marriage is not excluded. A maximally-sized matching is then a matching
up of the marriage partners that, at least seen globally, leads to the largest
amount of satisfaction. Theorem 23.3 says exactly when this is possible.

Now we return to the construction of the graph G. From the perspective
of matchings, G should have the property that every subset of n/2 = 3m
input nodes can be matched to some n/2 = 3m exit nodes. The theorem says
that is the case if and only if for every subset S of input nodes with |S| < 3m,
1] < IN(S)].

We “construct” G probabilistically as follows: We reserve for each input
node 6 out-going edges, and correspondingly for each exit node 9 in-coming
edges. Altogether this is 6 - 6m = 9 - 4m = 36m edges that we may place
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in G. We will choose the edges randomly under the uniform distribution in
the following sense: first we choose for the first edge leaving node 1 a partner
position on the exit side, for example the 7th edge entering node 13. So for the
first choice we have 36m possibilities. For the next choice, 36m — 1, etc. We
will show that the probability is > 0 that the resulting graph has the desired
matching property. From this we can conclude that such a graph must ezist.

Ezercise 23.5. How large is the sample space, that is, how many ways are
there to connect the 6m input nodes to the 4m output nodes in the manner
just described? <

We want to show that the number of “bad” graphs (graphs which do not
have the desired property) is strictly smaller than the number determined in
the preceding exercise. A graph G is bad if and only if there is a k-element
subset of S with the property that |N(S)| < k — 1, where k£ < n/2 = 3m.

First we note that this can only happen if k£ > 3.

Exercise 23.6. Why? <

So assume k > 3. If G is bad, then there is an integer k£ and sets S and
T such that |S| = |T| = k and N(S) C T'. The calculations below work out
somewhat better, however, if we also count situations where N(S) = T, even
though this does not imply that the graph G is bad. For each k there are
(6;”) choices for S and (4,2”) choices for T'. For a fixed pair S and T with
|S| = |T| = k, there are at most 9k%%(36m — 6k)! many ways to choose the
edge relations for G such that N(S) C T (for each of the 6k edges leaving S,
choose one of the 9% edges entering 7', then choose the remaining 36m — 6k
edges arbitrarily). We are using here the notation for “falling powers,” a% =
ala—1)(a—2)---(a—b+1). So, for example, (j) = a’/b!.

Thus to prove the existence of a graph G (and therefore also of G') that
is not bad, it is sufficient to show that

m 6m\ [(4m

> ( L ) ( L >9k%(36m—6k)! < (36m)! .

k=3

So it is sufficient to show that

% (e () Gr)
36m

k=3 ( 6k )

To prove this inequality we will use
36m S 6m\ [4m\ [26m
6k ) — \  k k 4k ) -

Ezxercise 23.7. Prove this formula. <

< 1.

Using this we see that it suffices to show that
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for large n.

Egercise 23.8.° Let Ly denote the term ;) /(*%") and analyze the behavior
of Li41 /Ly to conclude that Ly — as a function of k with fixed m — is a convex
function. Thus the largest summand Ly in the sum above is either the first

term (k = 3) or the last term (k = 3m), as in the following sketch:

| | k
3 3m

<

Finally, we show that it is sufficient to show that 3mLs and 3mLs,, are
both smaller than 1. (Note that 3m is an upper bound on the number of
summands in the sum.)

Exercise 23.9.° Carry this out to complete the proof. <

With that we have proven the existence of superconcentrators of linear
size and with a constant bound on the degree of each node. O
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24. The Pebble Game

The Pebble game is a model for successive execution of a computation
with the use of an auxiliary storage devise. The game can be used to
study trade-off effects between the memory use and running time for a
particular computation. We will show a lower bound originally proved by
Paul, Tarjan, and Celoni (1977) which says that certain graphs, based on
superconcentrators, require many pebbles.

The Pebble game is a one-player game on a fixed directed, acyclic graph. In
the course of the game pebbles are placed on or removed from nodes in the
graph according to the following rules:

1. A pebble may be placed on an input node (a node with no predecessors)
at any time.

2. If all predecessors of a node u are marked with pebbles, then a pebble
may be placed on node u

3. A pebble may be removed from a node at any time.

Note that rule 2 subsumes rule 1, but it is nevertheless useful to distinguish
the two cases.

A move in this game consists of the placing or removing of one of the
pebbles in accordance with one of the three rules. The goal of the game
is to place a pebble on some previously distinguished node v (usually an
output node) while minimizing the number of pebbles used, by which we
mean minimizing the maximum number of pebbles that at any point in the
game are simultaneously on the nodes of the graph, i.e., pebbles that have
been removed from the graph can be “reused.”

A strategy for the game is a sequence of legal moves that ends in pebbling
the distinguished node v.
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Ezxample. The following graph

@
(69

/

®

can be pebbled by placing pebbles on nodes 1 through 7 in order without
removing any pebbles. This takes only 7 moves but uses 7 pebbles. Another
strategy is represented in the following table:

place pebble
onnode |1 2 3 4 5 6 7

remove pebble
from node 1 2 4 )
number of pebbles
onthegraph [1 2 3 2 1 2 3 2 3 2 3

time |1 2 3 4 5 6 7 8 9 10 11

This strategy requires 11 moves but only 3 pebbles.

The pebble game is a model for the computation of some result v from
given input data. Consider the following machine model:

CPU

register memory

In this model, the use of a register (either to retrieve a value from memory
or to store an intermediate result) corresponds to the placing of a pebble
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in the pebble game. Rule 1 says that at any time a value may be loaded
into a register from memory. Rule 2 says that whenever all of the required
intermediate results for some operation are located in registers, then the
operation can be carried out and the result stored in another register. Finally,
Rule 3 says that at any time a register may be “cleared.”

The graph in the game indicates the dependency structure of the op-
erations to be performed. Such graphs arise, for example, in the design of
compilers. The use of as few pebbles as possible corresponds to the use of
as few registers as possible. With the help of the pebble game, certain time-
space trade-offs can be studied. As in the example above, often one has the
situation that it is possible to perform a pebbling task in relatively few moves
(in a short amount of time) but at the cost of using a large number of peb-
bles (large memory use). On the other hand, there may be another strategy
that uses far fewer pebbles but requires more time, since some of the pebbles
that are removed must later be “recalculated.” If a pebbling task cannot be
simultaneously solved with minimal space (pebbles) and time (moves), then
we say that the task exhibits a time-space trade-off.

We want to investigate how many pebbles are in general required to pebble
graphs with n nodes. We must restrict ourselves to families of graphs with
restricted in-degree. Otherwise, the number of pebbles will depend directly
on the in-degree of the graph.

For example, consider the family of pyramid graphs:

Y

The pyramid graph Pj, has 3% i = k(k+1)/2 = O(k?) nodes and k> — k =
O(k?) edges.

Exercise 24.1. Show that it is possible to pebble the pyramid Py with £+ 1

pebbles. Note that this is O(y/n) pebbles with respect to the number of edges,
n, in the graph. <

Ezercise 24.2.° Show that every pebbling strategy for Py (k > 1) must use
at least k£ + 1 pebbles. (Again, this is 2(y/n) pebbles expressed in terms of
the number of edges, n, in the graph.) <

* * * * *

Now we want to investigate how many pebbles are required for an arbi-
trary graph with restricted in-degree. We can restrict our attention to graphs
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of in-degree 2, since every graph with n edges and bounded in-degree d > 2
that can be pebbled with p(n) pebbles can be transformed into a graph with
at most 2n edges and in-degree 2 that can also be pebbled with p(n) pebbles.

Exercise 24.3. Why? <

We will need the following lemma:

Lemma 24.1. Every directed, acyclic graph with n edges and in-degree 2 can
be partitioned into two subgraphs G1 and G2 so that Gy contains between n/2
and n/2 + 2 edges and all edges between the two graphs go from Gy to G
(and none in the other direction).

We will let A denote this set of edges.

Sketch:
G>
edge set A
(o)
Ezercise 24.4. Prove Lemma 24.1. <

Now we want to show that every graph with in-degree 2 can be pebbled
with O(n/logn) pebbles. For this we will analyze the following recursive
pebbling strategy:

1. If the graph G is small enough (fewer than ngy edges), then pebble the
distinguished node directly. Else continue according to 2, 3, or 4.

2. If the distinguished node v is in graph Gy, then apply the recursive
procedure to graph GG1, since pebbling nodes in G5 cannot be useful.

3. If the distinguished node v is in G and A is small (JA| < 2n/logn), then
recursively pebble every predecessor node to A by applying the recursive
strategy in 1. Leave all of these pebbles in place, but remove all other
pebbles in (G; that were used along the way. This will allow us to pebble
any input nodes of G2, so now start a recursive strategy for pebbling v
in GQ.

4. If the distinguished node v is in G and A is big, (i.e., |4| > 2n/logn),
then start a recursive pebbling strategy for v in G, but every time this
strategy requires placing a pebble on an input node of G5 that has pre-
decessors in (G1, use the recursive strategy to pebble these nodes in G,
first, then continue.

For the various cases we get the following recursion relations, where P(n)
is the maximal number of pebbles required to pebble a graph with n edges:
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1. P(n) = O(1) for n < nyo.

2. P(n) < P(n/2+2).

3. P(n) <2n/logn+ P(n/2+2).

4. P(n) < P(n/2—2n/logn)+ P(n/2+ 2) + 1.

We need a solution to this recursion. Let’s try P(n) < cn/logn for a suitably
large constant c.

Ezercise 24.5. Confirm that cn/logn is a solution for cases 1 and 2. N
Ezercise 24.6.° Confirm that cn/logn is a solution for case 3. <

Ezercise 24.7.° Confirm that cn/logn is a solution for case 4.

Hint: Use the equality 21— = 1 e <

r—a z(z—a)”

With the aid of this result, it is easy to demonstrate the following inclusion
relationship between two complexity classes:

DTIME(t(n)) C DSPACE(t(n)/logt(n)) .

Ezercise 24.8. Show that there must be context sensitive languages that
cannot be be accepted in linear time.

Hint: The class of context sensitive languages is precisely NSPACE(n). N

* * * * *

Next we want to show that the O(n/logn) bound on the number of
pebbles needed to pebble graphs with n nodes is optimal. This means, we
must construct a family of graphs (G, )ner, |I| = oo, such that for every
constant ¢ > 0 and every n € I, at least c- |G|/ log |G| pebbles are required
to pebble the graph Gy,. (Note: this implies that the inclusion DTIME(t(n)) C
DSPACE(t(n)/logt(n)) cannot be improved.)

The superconcentrators from Topic 23 will prove very useful in obtain-
ing this result. The following lemma demonstrates an important property of
superconcentrators with respect to pebbling.

Lemma 24.2. If j pebbles are placed on any j nodes of an n-supercon-
centrator (0 < j < n) and A is a subset of at least j + 1 output nodes,
then there are at least n — j inputs that are connected to A along pebble-free
paths.

Exercise 24.9.° Prove Lemma 24.2. <

For every n let C1(n) and C3(n) be two copies of a 2"-superconcentrator.
By the results in Topic 23 there is a constant d with |C;(n)| < d2™. We
construct the family of graphs {G,, | n > 8} recursively beginning with Gs,
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which is chosen to be a 28 = 256-superconcentrator. Gy,1 is defined as
follows:
Ay Ay

O.0 O. O

Gpy1 has 2T inputs and outputs, divided into the sets By, F> and A;, As,
each of which has size 2". Each input is connected directly to its correspond-
ing output and is also routed through two copies of G, surrounded by two
superconcentrators of the appropriate size, which in a certain sense “decou-
ple” the inputs and outputs. The outputs of Cy(n) are identified with the
inputs of Gy(n), similarly for G;(n) and Ga(n), and Gz(n) and Cz(n). (In
his lecture at ICALP 82, Pippenger referred to these graphs as “super-duper-
concentrators.”)

Ezercise 24.10. Show that the size of the graph G,, is asymptotically ©(n2").
So it is sufficient in what follows to show that there is some ¢ such that at
least ¢2™ pebbles are required to pebble G,,. <

Ezercise 24.11. Show that a C(n) (a 2"-superconcentrator) and a G(n)
together still form a 2™-superconcentrator. <

The clever part of the following proof — which, as one expects, will be done
by induction — is to formulate an induction hypothesis that is strong enough
to be useful for the inductive step. It is not sufficient to merely assume that
c2™ pebbles are required to pebble G,, — although this is what matters in the
end — rather, we must also pack into the inductive hypothesis (and therefore
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also prove in our inductive step) some additional properties of the potential
pebbling strategies on G,,.
So what is this hypothesis?

Theorem 24.3. Let a(n) = 2"/256 = 2"=8. In order to pebble at least
14a(n) outputs of Gy, (n > 8) in any order, beginning with an initial configu-
ration in which at most 3a(n) nodes are pebbled, there must be an interval of
time during which at least a(n) nodes remain pebbled and during which time
at least 34a(n) inputs must be pebbled.

We note the outputs can be pebbled in any order, and that the pebbles
are not required to remain on the output nodes, so that the output nodes do
not have to be pebbled simultaneously.

Proof. The proof is by induction on n.

Exercise 24.12.° Verify the base case of the induction, that is, show that the
hypothesis holds for Gg.

Hint: Use Lemma 24.2. <

Inductive step: Assume that the hypothesis holds for G,; we must show
that it holds for G,+1. Consider an initial configuration on G,; with at
most 3a(n + 1) = 6a(n) pebbled nodes and assume that in the course of
the moves 1,...,t at least 14a(n + 1) = 28a(n) outputs are pebbled. We
will refer to this time period as the time interval [0,t]. We must show that
within the interval [0, #] there is a time interval during which there are always
at least a(n + 1) = 2a(n) pebbles on the graph and during which at least
34a(n + 1) = 68a(n) outputs are pebbled.

We distinguish four cases. In case 1-3 we assume that the pebble strategy
proceeds somehow “unevenly.” In these three cases, we are able to carry out
our proof without using the inductive hypothesis, which is only needed in
case 4.

Case 1. There is a time interval [t1,t2] C [0,¢], during which there are always
3a(n) pebbles on the graph and during which at least 7a(n) inputs of G (n)
are pebbled.

Let to be the last time before ¢; at which not more than 6«(n) pebbles
were on the graph. We apply Lemma 24.2 at time £y to the following two
subgraphs of G4+1.
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Cl (’I’L) Cl (n)
~———— ~———

E1 E2

So there is a time ¢y at which there are at least 2™ — 6a(n) = 250a(n)
pebble-free paths from E; to the 7a(n) inputs of G (n) (= outputs of Cy(n))
that are pebbled during the interval [¢1, t2]. The same bound holds for pebble-
free paths starting from Es,. So altogether there are 500« (n) pebble-free paths
and, therefore, that many inputs that remain to be pebbled during the time
interval [to, t2]. Similarly, during this interval there must be at least 3a(n) —
1 > 2a(n) pebbles on the graph. This establishes the claim for the interval

[to, t2]-

Case 2. There is a time interval [t1,t2] C [0,t], during which there are always
at least 3a(n) pebbles on the graph and during which at least 7Ta(n) inputs
of G2(n) are pebbled.

The proof in this case is analogous to the one given for case 1, but in this
case, we apply Lemma 24.2 to the following two subgraphs of G,,;1. Note
that each of these graphs is a 2™-superconcentrator (see Exercise 24.11), so
the lemma applies.

G1(n) G1(n)
Ci(n) Ci(n)
— —
El E2

Case 3. There is a time interval [t1,t2] C [0,¢], during which there are always
3a(n) pebbles on the graph and during which 14a(n) outputs of G,y are
pebbled.

During [t1, t2] we can assume without loss of generality that at least 7a(n)
outputs of A; are pebbled. Once again the claim can be established by a proof
that is analogous to the one used in case 1, this time applying Lemma 24.2
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to the two subgraphs of G,,4+1 depicted below, each of which is again a 2"-
superconcentrator (see Exercise 24.11).

A1 Al
—_— —_——
Cz (’I’L) 02 (n)

G2 (n) G2 (’I’L)
G1 (n) G1 (’I’L)
Ci(n) Ci(n)
— —
E1 E2

Case 4. None of the cases 1-3 is applicable.

Since we are not in case 3, there must be a time ¢; € [0, ] such that fewer
than 14a(n) outputs of Gp41 are pebbled during the time interval [0,]
and at time t; fewer than 3a(n) pebbles are on the graph. This means that
during the time interval [t1,t], at least 28«(n) — 14a(n) = 14a(n) outputs of
G,+1 are pebbled. Without loss of generality we may assume that 7a(n) of
these are in A;. By Lemma 24.2 (applied to C2(n)), at time ¢; there are at
least 2" — 3a(n) = 253a(n) pebble-free paths between these 7a(n) outputs
of A; and the outputs Gz(n). Thus during the time interval [t1,t], at least
253c(n) > 14a(n) outputs of Ga(n) must be pebbled.

By the inductive hypothesis, there is a time interval [t2, t3] C [t1, t], during
which at least 34a(n) inputs of G2(n) (= outputs of G1(n)) are pebbled and
during which there are always at least a(n) pebbles on graph Ga(n).

Since we are not in case 2, there must be a time t4 € [to,t3] so that
within the interval [ta, t4] fewer than 7a(n) inputs of G2(n) are pebbled and
at time t4, fewer than 3a(n) pebbles are on the graph. So during [t4,t3] at
least 34a(n) — Ta(n) = 27a(n) inputs of G2(n) (= outputs of G1(n)) must be
pebbled, beginning from a configuration with at most 3a(n) pebbled nodes
at time 4.
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By the inductive hypothesis, there is a time interval [ts, ts] C [t4, t3], dur-
ing which at least 34a(n) inputs of G1(n) (= outputs of C;(n)) are pebbled
and during which there are always at least a(n) pebbles on graph G;(n).

Since we are not in case 1, there must be a time t7 € [t5,tg] such that
during the interval [ts, t7], fewer than 7a(n) inputs of G (n) are pebbled, and
at time ¢7, fewer than 3a(n) pebbles are on the graph. So during [t7,ts] at
least 34a(n) — Ta(n) = 27a(n) inputs of G1(n) (= outputs C4(n)) must be
pebbled beginning from a configuration with at most 3a(n) pebbled node at
tr.

By Lemma 24.2, it follows that at time ¢; there must be at least 2™ —
3a(n) = 253a(n) inputs of Ej, and, correspondingly, at least 253ca(n) inputs
of Es, that are connected to these 27a(n) outputs of Cy(n) by pebble-free
paths. So this number of inputs must be pebbled during the time interval
[t7,t6]. Also, during this interval, there are at least «(n) pebbles on each of
G1(n) and Ga(n), so there must be at least 2a(n) pebbles on G,4;. This
demonstrates the claim for the interval [t7, tg]. a

Ezercise 24.13. Show that it follows from Theorem 24.3 that the O(n/ logn)-
bound is optimal. <

References

For the upper bound on the number of pebbles required see

o J. Hopcroft, W.J. Paul, L. Valiant: On time versus space, Journal of the
ACM 24 (1977), 332-337.

o K. Wagner, G. Wechsung: Computational Complezity, VEB Deutscher
Verlag der Wissenschaften, 1986.
For the lower bound see

o W.J. Paul, R.E. Tarjan, J.R. Celoni: Space bounds for a game on graphs,
Mathematical Systems Theory 10 (1977), 239-251.



25. Average-Case Complexity

In Topic 8, we noticed that the expected running time of an algorithm
depends upon the underlying distribution of the instances and may in
general be different from the worst-case running time. Now we want to
look more carefully at the notions of being easy or hard on average. As it
turns out, equating easy on average with polynomially-bounded expected
running time has serious drawbacks. But in 1984, L. Levin proposed an
alternate definition and demonstrated its robustness, thereby initiating the
study of average-case complexity.

Many NP-hard problems are of practical importance, but since there is no
known polynomial-time algorithm for any of these problems, other types of
solutions have been considered: approximation algorithms, probabilistic al-
gorithms, algorithms that work efficiently on an important restricted set of
inputs, etc. Another such alternative is to require that the problem only be
efficiently solvable on average rather than in the worst case, which for some
NP-complete problems may be very rare. Indeed, reductions to NP-complete
languages typically reduce instances of an NP-problem to instances of the
NP-complete problem that are not very “typical.” The natural question, of
course, is which NP-problems are easy on average and which are hard.

But before we can hope to answer these questions, we need to say what
is meant by easy and hard on average. Presumably, this will involve three
components: a class of distributions that we allow (the results of Topic 8
indicate that some restriction must be made), a definition of easy on average,
and a notion of reduction between (distributional) problems that can be
used to define hardness on average. We will restrict our attention to decision
problems, although similar things can be done for search problems as well.

For any strings x and y (over some ordered alphabet X), let < y denote
that « occurs before y in the standard lexicographical order, and let x — 1
be the predecessor of x in this order (A —1 = X). We introduce the following
definitions for distributions and density functions over X*:

Definition 25.1. A (probability) distribution p = (u', u*) can be described
by giving either

e a (probability) distribution function p*, i.e., a function p* : X* — [0,1]
that
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— is non-decreasing: v <y = p*(x) < p*(y), and
— converges to 1: lim, o u*(z) = 1;
e or a (probability) density function y', i.e., a function p' : ¥* — [0,1] such

that
Z p(r)=1.

zeXx

For any distribution p or distribution function p*, the associated density

function is
! _ V) ifw=A,
i) = {,u* (x) — p*(x —1) otherwise;

and for any distribution p or density function p', the associated distribution

function is
pr(x) =Y W (y).

y<z

A distributional problem is a pair (A, u) where A is a decision problem
(a language) and p is a distribution. For technical reasons we will assume
that p'(A) = p*(\) = 0. It seems natural that we should at least allow
distributions that can be computed in polynomial time. This leads to the
following definition:

Definition 25.2 (P-computable distribution). A distribution function p
is P-computable if there is a deterministic algorithm running in polynomial
time that on input x outputs the binary expansion of u*(x).

Note that if a distribution function p* is P-computable, then u' is also
P-computable, but that the converse may not be true, since to compute a
distribution from a density function requires an exponentially large sum.

Ezercise 25.1.° Show that if every P-computable density function p' induces
a P-computable distribution function p*, then P = NP.

Hint: It easy to check if a polynomial-time nondeterministic machine accepts
along a fixed path, but probably hard to tell if there exists a path along
which it accepts. Design a distributional problem where ' and p* reflect this
difference. <

Nevertheless, it is usually more convenient to express things in terms of the
density function, and we will write p instead of ' from now on. Note, however,
that for P-computability, we always mean P-computability of u*, not of u'.

If p is P-computable, then |u*(x)| is polynomially bounded. This implies
that it is not possible to place too much weight on the short strings, i.e.,
there is a polynomial p such that for large n the combined weight of all
strings of length n is at least 1/p(n). Of course, the definition of P-computable
distribution also rules out the universal probability distribution of Topic 8.
Later we will discuss a potentially larger class of distributions as well.

We are particularly interested in distributional versions of NP problems.
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Definition 25.3 (DistNP). A distributional problem (A,u) belongs to the
class DistNP if A € NP and u is a P-computable distribution. Another nota-
tion for this class is (NP, P-computable).

Typically, a distribution for such a DistNP problem is defined in terms of
a density function, which is usually designed to model a random experiment
of the following general type: First pick a size (length of string, an integer,
number of nodes in graph, etc.) for the instance, then randomly select an
instance of the given size according to some probabilistic experiment. Unless
we specify some other distribution, we will assume that the selection of a
size is done in such a way that the probability of selecting size m is roughly
proportional to 1/m?. This is an easy and natural choice, since )., 1/m
diverges and >, 1/m? converges. Of course, technically, we must scale the
probability by 1/c¢, where ¢ = Y 1/m?, to get a probability distribution,
but often in the literature this scaling is omitted, and one simply works with
probability distributions that converge to something other than 1.

Exercise 25.2. An alternative to scaling u(m) = 1/m? is to modify p slightly
1 1
SO that the sum iS ]. ShOW that mg>1 m = E —_— = ]. <

2
m>1 m

For ease of notation we will adopt the convention of writing 1/m? for this
density function instead of 1/m?.

Ezxamples. FEach of the following DistNP-problems is defined by giving the
form of an instance, the question, and a description of the distribution in
terms of a random experiment. For the first example we include an expression
for the density function as well.

e D-HALT
— Instance: A Turing machine (encoding) M, a string = and an integer k
written in unary.
— Question: Does M () halt within k steps?
— Distribution: Randomly pick sizes m, n, and k. Randomly choose a string
M of length m, and a string = of length n. So the probability density
function is

1 1 1
ky _ . JR—
Pl 1) = |M|2 - 21M1 )2 - 20l g2

e D-3COL

— Instance: A graph G.

— Question: Is there a 3-coloring of the graph G?7 (A 3-coloring is an as-
signment of one of three colors to each of the nodes in the graph in such
a way that no pair of adjacent nodes is assigned the same color.)

— Distribution: Randomly pick a size n. Randomly choose a graph with
vertices 0,1,...,n by selecting each possible edge independently with
probability 1/2.



216 Topic 25

e D-HAM
— Instance: A graph G.
— Question: Is there a Hamiltonian circuit in G?
— Distribution: Randomly pick a size n. Randomly choose a graph with
vertices 0,1,...,n by selecting each possible edge independently with
probability 1/2.

Thus far, the definitions have all been completely natural. Unfortunately,
the naive definition for easy on average has serious drawbacks. The obvious
definition would be the following: A is easy on average if there is a deter-
ministic algorithm for deciding membership in A with polynomially-bounded
expected running time, i.e., the running time ¢4 (x) should satisfy

> (@) - tale) < ent

lz|=n

for some integer constants ¢ and k. Here u, () denotes the conditional prob-
ability

(@) = plz |z € Z") = {g(ﬂ«“)/u(lxl =n) if|g =n,

otherwise.

Unfortunately, this definition has serious drawbacks.

Exercise 25.3. Find a function f : X* — R such that f has a polynomially-
bounded expected value, but f2? does not.

Hint: Let f be exponential (linear exponent) on a small set of inputs of each
length. Then f? will be exponential with a quadratic exponent on those same
inputs. <

This implies that a theory of average-case based on polynomially-bounded ex-
pected running time would have several significant drawbacks. Such a defini-
tion would be machine dependent, since there is a polynomial loss of efficiency
when converting between some models of polynomial time computation that
we normally regard as equivalent. Thus whether or not a distributional prob-
lem is easy on average might depend on the underlying model of computation.
Worse still, even for a fixed model of computation, the class of problems that
are easy on average would not be closed under operations like composition.
This would mean that an algorithm that is easy on average could not neces-
sarily be used as a sub-routine in another algorithm that is easy on average
(neglecting the time spent on the sub-routine calls). Using the naive defini-
tion of easy on average, this sort of composition of two algorithms that are
easy on average might result in an algorithm that is not easy on average.
Levin’s solution to these problems is the following definition:

! Throughout this topic, we will use the notation f" or f"(z) to denote [f(x)]"
and not the r-fold composition of f with itself.
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Definition 25.4 (Polynomial on u-average). A function f is polynomial
on p-average if there is a constant € > 0 such that

> ule)- @ :

= |z]

that is, the function f¢(z) is linear on u-average.

Definition 25.5 (AP). A distributional problem (A,u) is in the class AP
(average polynomial time) if there is an algorithm for A with running time
that is polynomial on p-average.

Exercise 25.4. Show that if f and g are polynomial on p-average, then so
are max(fag)afkaf_'_g; a‘ndf'g' <

Exercise 25.5.° Show that if the expected value of f is polynomially bounded
with respect to some distribution p, then f is polynomial on u-average.

Hint: Use the fact that a < 1+ a° for all § > 1. <

Thus AP has some of the nice closure properties that we expect of a robust
complexity class.

Even though the 3-colorability problem is NP-complete, its distributional
version, at least with the distribution we have presented, is in AP:

Theorem 25.6. The distributional version of the 3-colorability problem,
D-3COL, is in AP. O

Ezxercise 25.6.° Prove Theorem 25.6.

Hint: If a graph G has a copy of Ky, the complete graph with four vertices
and six edges, as a subgraph, then G cannot be 3-colored. <

Now we want to know if there are any DistNP problems that are hard on
average. For this we want to define a reducibility <,. between two distribu-
tional problems with the following properties:

o Closure: If (A, 1) <, (B,v) and (B,v) is in AP, then (4, u) is as well.
o Transitivity: <, is transitive.

If H is hard for DistNP under a reducibility with these properties, then
H € AP <= AP = DistNP .

It has been shown that if AP = DistNP, then NEXP = EXP, which is consid-
ered unlikely.

Once again, the simplest thing to try does not have the desired properties.
Polynomial-time many-one reductions may map very likely instances of (A, p)
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(on which an AP-algorithm must run quickly) to very unlikely instances of
(B,v) (on which an AP-algorithm may run very slowly); this would violate
the closure property. Thus we must design a reducibility that respects the
distributions in some way.

Definition 25.7 (Domination). Let p and v be distributions. Then p <
v (read p is dominated by v) if there is a polynomial p such that p(x) <
p(lal)v(z).

Let (A, p) and (B,v) be distributional problems and let f : A Sf; B. Then
i is dominated by v with respect to f, written p < v, if there is a distribu-
tion py for A such that p Xy and v(y) = v(range(f)) - 32—y 1 (2).

Definition 25.8 (Polynomial-time reduction). (A4, ) s polynomial-
time (many-one) reducible to (B,v) if A <P B via a function f such that
p =y v. We will denote this by f : (A, ) gf; (B,v). a

Lemma 25.9. The reducibility <P is transitive; and if (A, ) <P (B,v) and
(B,v) € AP, then (A, ) € AP.

Exercise 25.7. Prove that §§1 is transitive on distributional problems. <

Ezercise 25.8.° Show that AP is closed under gﬁ. <

Now we can give an example of a distributional version of an NP-complete
problem that is DistNP-hard. The problem we will choose is D-HALT, the
distributional halting problem. Although it is relatively straightforward to
show that the usual bounded halting problem is complete for NP, that proof
does not carry over directly to the distributional setting. In fact, it is not
immediately clear that there are any DistNP-complete problems. Certainly
there is a many-one reduction from any NP decision problem to the halting
problem, but this reduction may not respect the distributions. In particular,
we need to show that D-HALT, which has a fized distribution, is hard for all
NP problems with any P-computable distribution. To achieve this, we will
need to modify the reduction on instances of the decision problem for the
sake of respecting the distributions.

Theorem 25.10. D-HALT is SP—complete for DistNP.

m

Proof. For any NP-problem A there is a nondeterministic machine N4 that
decides membership in A in time p(n) for some polynomial p. We have already
noted, however, that the reduction

2 (Na,z, 17002

may not respect the distributions involved. Instead we will use a reduction
of the form
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x +— (Nay,code,(z), 1l=1°®

)

where Ny , is a machine that depends only on N4 and p (but not on x) and
code, () is an encoding of .

The success of the proof depends upon finding an encoding satisfying the
following lemma:

Lemma 25.11. Let p be a P-computable distribution. Then there is an en-
coding function code, satisfying the following properties:

e Compression. For every x,

1
code,(z)| <1+ min(|z|,log, —) .
code, (1) < 1+ min(a, log, —)
e Efficiency. The function code, can be computed in polynomial time.
e Uniqueness. The function code, is one-to-one, i.e., if code,(x) = code,(y),
then x = y. O

Exercise 25.9.° Prove Lemma 25.11.

Hint: Distinguish two cases. The case when p(z) < 27 1%l is easy. In the other
case, recall that p(z) = p*(x) — p*(x — 1), and define code,(z) based upon
a comparison of the binary representations of p*(z) and p*(z — 1). <

The reduction is now defined by
fro— (NA,N,codeN(x),w(\w\)) ,

where ¢(|z]) is a polynomial that bounds the sum |z|, the time required to
compute code,(z), and the time required to run N4 on input x; and Ny , is
a nondeterministic machine implementing the following algorithm:

INPUT y;

GUESS «z such that code,(z) = y;

IF N4(x) accepts THEN ACCEPT
ELSE REJECT;

END.

This nondeterministic algorithm runs in time g(|z|) on input y = code, (),
so f is a polynomial-time computable many-one reduction on instances. All
that remains is to show that u <; v, where v is the distribution of D-HALT.

Ezercise 25.10.° Show that p <y v. <

Distributional versions of several other NP-complete problems have also
been shown to be Sﬁ—complete for DistNP, including a tiling problem, the
Post correspondence problem, word problems for Thue systems and finitely
presented groups, and satisfiability.
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* * * * *

So what distinguishes distributional versions of NP-complete problems
that are hard for DistNP from those that are not? Y. Gurevich provided a par-
tial answer to this question when he observed that, under a plausible complex-
ity theoretic assumption, in many cases the distribution of a distributional
problem already determines that the problem cannot be DistNP-complete,
regardless of the question. This property of distributions that makes distri-
butional problems unlikely to be DistNP-complete is flatness.

Definition 25.12 (Flat distribution). A probability density function is
flat if there is an ¢ > 0 such that for all x € X*, p(z) < 271*I°. A dis-
tribution function is flat if its associated density function is flat.

So a distribution is flat if no long strings are weighted too heavily — none
of them juts out from the others.

Ezxercise 25.11. Show that the distribution of D-HAM is flat. <

Exercise 25.12. Show that the distribution of D-HALT is not flat. <

Theorem 25.13. No DistNP problem with a flat distribution is Sg-complete
for DistNP, unless NEXP = EXP.

Proof. Suppose (H,v) € DistNP, v is flat, and (H,v) is Si—complete for
DistNP. Since H € NP, H € EXP. Let A be an arbitrary decision problem in
NEXP. Then there is a polynomial p such that A € NTIME(2P(")). We want
to define a distributional problem (Ag, ) € DistNP that is related to A. For
this let @' = 2012"*"=(2+1) define 4y = {«' | # € A}, and let p be defined
by

(2) = |z|=22=12lif 2 = &' for some ,
M= =0 otherwise.
Ezxercise 25.13. Show that Ay € NP. <

Since Ag € NP, (Ao, 1) € DistNP; and since (H, v)) is complete for DistNP,
there is a reduction f : (Ao, 1) <P (H,v). This implies that there is a distri-
bution p; and a polynomial ¢ such that

f(z') can be computed in 292D time.
x € A if and only if f(z') € H,
u(z') < gq(l2'[)p (2'), and
v(f(2') = v(range(f)) D ().
f)=f(")

Now we put these pieces together. First, for notational ease, we will as-
sume that v(range(f)) = 1. The argument below can be easily modified if
v(range(f)) = ¢ for some constant ¢ < 1.
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ula') <q(le' D) <q(l2') - mlz) <allaDr(f())

f)=f(")

SO

G I i 1 —r(le)
v(f(a") > a2’ ~ q(7') > 2lel . z|2 - g(2v(2D) > 2 ’

for some polynomial r. But since v is flat, there is an ¢ > 0 such that
v(f(z") <2771 From this it follows that

[f (@) < —log(v(f(«"))) <r(z]),

so | f(«')| is polynomial in |z|. Thus A € EXP: z € A if and only if f(z') € H,
and we can compute f(z') in 29(¢(I2D) time, and then determine whether
f(z') € H in 2rolv(/ (D] = groly(lz])) time,

* * * * *

The theory of average-case complexity has been extended in several ways
from the results presented here. One generalization of the theory consid-
ers other, less-restrictive reductions between distributional problems. It is
fairly straightforward, for example, to generalize polynomial-time many-one
reducibility to polynomial-on-average many-one reducibility. All the results
presented here remain true in that setting as well. Similarly one can con-
sider other types of reducibilities, such as truth-table or Turing reducibility.
Finally, one can define a notion of randomized reduction. Roughly, a random-
ized reduction from (A, u) to (B, v) is given by a probabilistic oracle Turing
machine that on input « with oracle B and random bits r runs in time poly-
nomial on - po-average (where pg is the distribution on the random bits ),
correctly decides € A with probability at least 2/3, and asks queries in a
manner that respects the distributions (so that the reduction may not query
oracle instances of low weight too often). The random reduction is many-one
or truth-table if the Turing machine behaves in one of these more restrictive
ways. There are randomized many-one complete problems for DistNP that
have flat distributions.

A second generalization considers a larger class of distributions:

Definition 25.14 (P-samplable distribution). A distribution p is called
P-samplable if there is a randomized algorithm that takes no input (but flips
coins) and eventually outputs a string x (if it halts) in such a way that

e the probability that the algorithm outputs x is p'(z), and
e the running time is polynomially bounded in |z|.

Exercise 25.14. Show that all P-computable distributions are P-samplable.
<
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If certain cryptographic one-way functions exist (polynomial-time computable
functions that are hard to invert on most instances) then there are P-
samplable distributions that are not P-computable.

It can be shown that a version of the bounded halting problem with an-
other so-called universal distribution (not to be confused with the universal
probability distribution of Topic 8) is §§1—complete for (NP, P-samplable).
(Roughly, the universal distribution in this case amounts to randomly select-
ing a P-samplable distribution from an enumeration, and then sampling ac-
cording to that distribution.) Furthermore, in the setting of NP-search prob-
lems — where a solution must not only give the answer to an NP-predicate
but also provide a witness, and reductions must also preserve witnesses —
Impagliazzo and Levin have shown that every distributional problem that
is complete for (NP-search, P-computable) under randomized many-one re-
ductions is also complete for (NP-search, P-samplable) under randomized
many-one reductions. This is a pleasing result, since most natural problems
have P-computable distributions, and it says that in some sense, there is no
better way to find hard instances of a problem like SAT than to pick an
instance uniformly at random. A similar result holds for decision problems
under randomized truth-table reductions.
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26. Quantum Search Algorithms

Widespread interest in quantum computation was sparked by an algo-
rithm of P. Shor for factoring integers on a quantum computer. We inves-
tigate here a more recent quantum algorithm of L. Grover for searching a
database. This algorithm demonstrates a proven speed-up against the best
possible classical algorithm for the same task.

Up to this point, all of the computing devices and all of the complexity classes
we have considered have been based on classical physics. In the early 1980’s,
however, P. Benioff proposed a model of computation based on quantum me-
chanics. The model of quantum computation was subsequently formalized,
primarily due to the work of D. Deutsch. Widespread interest in quantum
computation was sparked in 1994, when P. Shor gave a feasible quantum
algorithm for factoring integers, a problem that has no known feasible classi-
cal algorithm, a fact which underlies many encryption schemes. Thus Shor’s
algorithm showed that quantum machines are able — at least in theory —
to perform an interesting and important task that classical (probabilistic)
machines — perhaps — cannot. There remain, of course, difficulties in imple-
menting such an algorithm on a physical device.

We want to consider here L. Grover’s quantum mechanical algorithm for
searching a database. This algorithm has the advantages of being somewhat
simpler to describe and analyze than Shor’s algorithm, since it does not make
use of as much number theory, and of demonstrating something that can
provably be done more efficiently on a quantum machine than on a classical
machine.

The database search problem in this context is defined as follows. Suppose
we have an unsorted data set with N = 2" entries, exactly one of which
matches our selection criteria. For example, the data set could be a phone
book from which we want to retrieve the name of a person with a particular
phone number. (Note that the usual sorting of a phone book does not assist
us in this query.) We will assume that we have a means (either by using an
oracle or an easily-computed function) of telling when we have located the
proper element in the data set, but we have no information about where in
the set this element is located.

Classically, of course, there is nothing we can do but look at each entry
in the data set until we happen to find the correct one.
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Exercise 26.1. What is the expected number of queries to the data set re-
quired by such an algorithm? <

Even randomization doesn’t help us here:

Ezercise 26.2. If a (randomized) algorithm queries m elements from the data
set, what is the probability that it will find the target element? <

Thus a classical (probabilistic) algorithm must query the data set in at least
N/2 = 2"/2 steps to have a probability of success that is greater than 1/2.
Grover’s quantum algorithm reduces this number to O(v/N), demonstrating
a quadratic speed-up versus any classical algorithm.

* * * * *

Before defining what we mean by quantum computation, let’s return for a
moment to classical probabilistic computation. A classical probabilistic com-
putation gives rise to a computation tree. Each node in the tree is labeled with
a configuration (instantaneous description of tape contents, head location(s)
and internal state) of the Turing machine. Edges in the tree are labeled with
real numbers in the interval [0,1], which correspond to the probability of a
transition from the parent configuration to the child configuration. Each level
of the tree represents one time step, so the depth of the tree represents the
running time of the machine.

Probabilities can be assigned to a node by multiplying the probabilities
along the path from the root to that node. The probability of the computation
being in configuration ¢ at time ¢ is the sum of the probabilities assigned to
each node at level ¢ that has been assigned configuration c.

In order for such a tree to represent a probabilistic computation, it must
meet two constraints:

e Locality. The probability assigned to the edge from one node to another
must correspond to the action of one step of a probabilistic Turing machine,
so in particular,

1. the probability is non-zero only if the underlying nondeterministic Turing
machine could actually make such a transition (thus, for example, the
only tape cells that can change are the ones that were under a head in
the parent configuration), and

2. the probability depends only on the part of the configuration that deter-
mines the action of the machine, and not on the rest of the configuration
or its location in the tree.

e (Classical probability. The sum of all probabilities on any level must be 1.

Exercise 26.3. Show that if the sum of the probabilities on the edges leaving
any node equals 1, then the classical probability constraint is satisfied. <

For the purposes of complexity considerations, it is usually sufficient to con-
sider probabilities from the set {0, %, 1}.
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The computation tree can be represented by a k x k matrix M, where k is
the number of possible configurations and M, the entry at location (a, b), is
the probability of going from configuration a to configuration b in one step.
M? then represents the transitions that occur in s steps. The probability that
a machine accepts on input z after s steps is

Z Pr[configuration ¢ at step s | configuration ¢o at step 0] ,
c€lgce

where [j.. is the set of all accepting configurations and ¢ is the initial
configuration corresponding to an input .

In a quantum computation, instead of assigning real-valued probabilities
to the edges, we assign complex-valued probability amplitudes (with norm
at most 1). The amplitude of a node in the computation tree is again the
product of the amplitudes along the path to that node, and the amplitude
associated with being in configuration ¢ at step t is the sum of the amplitudes
of all nodes at level ¢ labeled with ¢. Probability amplitudes correspond to
probabilities in the following way: The probability is the squared absolute
value of the amplitude.

As before, our labeling of the tree must satisfy two constraints:

e Locality. This condition is the same as before: the labeling of the tree must
correspond to the action of a Turing Machine.

e Quantum probability. If one represents the quantum computation by a ma-
trix M, then M must be unitary, which means that its inverse is equal to
its conjugate transpose.

This quantum probability condition implies that the sum of the proba-
bilities on any level will be 1 (3" |a.|*> = 1). This time, however, it is not
sufficient to merely require that the sum of the squares of the amplitudes
leaving any node be 1. This is due to the effects of interference (canceling)
among the configurations.

Ezercise 26.4. Give an example of a labeled tree where the sum of the
probabilities leaving each node is 1, but the sum of the probabilities at some
level is not.

Hint: Two levels suffice. <

Ezercise 26.5. Show that if all of the entries in M are real numbers in [—1, 1],
then M is unitary if and only if it is orthonormal, that is, the dot product of
any two distinct rows or columns is always 0, and the dot product of a row
or column with itself is 1.

Hint: Some notation and definitions are perhaps in order here: If M is a
matrix, we denote the entry in the ith row and jth column by M;;. The
transpose of M is denoted by M* and defined by M}; = Mj;. In the conjugate
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transpose M*, M is the complex conjugate of Mj;. So if the entries are
all real, then the transpose and conjugate transpose are the same matrix.
The inverse of a matrix M is denoted by M ! and is a matrix such that
M-M1'=M"1'-M=1I, where I is the identity matrix, which consists of
1’s down the major diagonal and 0’s elsewhere. To have an inverse, a matrix
must be square, but not all square matrices have inverses. <

Note that a unitary matrix M has an inverse, which means that, unlike
classical computation, quantum computation is necessarily reversible.

For many purposes, it is not necessary to use a particularly rich set of
complex numbers; usually rationals and square roots of rationals are more
than sufficient. In fact, for the definitions of BQP and NQP, defined below, the
set {0,+3/5,4+4/5,+1} is sufficient for the local transformation amplitudes.

Although the definitions and mental images for probabilistic computation
and quantum computation are in many ways similar, there are important and
powerful differences. Unlike a probabilistic machine, which we think of as be-
ing in one of a set of configurations (with certain probabilities), we consider
a quantum machine to be in a superposition of configurations. This is some-
thing like saying that a quantum machine is simultaneously and to varying
degrees in several configurations at once. Upon observation of a quantum
mechanical device, the superposition collapses to a single configuration. The
probability with which each configuration is observed is determined by its
amplitude in the superposition.

We denote a configuration (also called a gquantum state) by |c), and a
superposition of such states by

) =D acle)

cel’

where «. is the amplitude of |¢). Algebraically, the states |c), for all configu-
rations ¢, form an orthonormal basis in a Hilbert space. Since the basis states
|c) are mutually orthonormal, the amplitude . of |¢) in a superposition |p)
is the inner product of |¢) with |p), denoted by (c | ¢).

If « is the amplitude of |c) in a superposition |¢), then |a|? is the probabil-
ity of observing ¢ when the machine is in superposition |¢). The probability of
accepting is defined as for the probabilistic computation: it is the probability
of observing an accepting state at a certain time ¢.

The important added wrinkle (which provides the added power) in quan-
tum computation is the fact that probability amplitudes can cancel (see Ex-
ercise 26.4). For example, there may be two paths in the computation tree
that both lead to the same configuration ¢, but one may have probability
amplitude a and the other —a. So, for example, after some number of steps
the superposition may have the form

ale) — ale) + Z aulc'y .

c'#e
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In this case, the probability of being in state |c) is 0. The heart of most
quantum algorithms consists in using superposition to “try out” a number of
possibilities and using cancellation to reduce the probability of “bad” possi-
bilities while increasing the probability of “good” possibilities.

The classes NQP and BQP can be defined analogously to the classes NP
and BPP by replacing the probabilistic machine with a quantum machine:

Definition 26.1. A language L is in NQP if and only if there is a quantum
Turing machine @ and a polynomial p such that

z €L < Pr[Q accepts x in p(|z|) steps] #0 .

A language L is in BQP if and only if there is a quantum Turing machine Q
and a polynomial p such that

z € L < Pr[Q accepts x in p(|z|) steps] > 3/4,
x ¢ L < Pr[Q accepts x in p(|z|) steps] < 1/4.

It is not known if BQP is equal to some classical complexity class. It
contains BPP, but results of Fortnow and Rogers have led them to “con-
jecture that BQP contains no interesting complexity classes outside BPP.”
Even if this conjecture holds, BQP-type algorithms will remain interesting,
since they can provide a significant increase in speed for some problems (like
searching, as we will see shortly) and at least have the potential to solve
interesting problems that are probably neither NP-complete nor in P, like
Graph Isomorphism (see Topic 18).

NQP, on the other hand, has been exactly characterized in terms of clas-
sical counting classes: NQP = coC_P, where C_P is the class of languages
where acceptance is defined by a nondeterministic machine that has an equal
number of accepting and rejecting computations.

* * * * *

So how does one use quantum computation to speed up a search? First
we give a formal definition to the search problem. Let f(i) be a function that
tells if the ith item in the data set is the item we seek, i.e., there is exactly
one target t € [0, N) such that f(t) = 1, otherwise, f(i) = 0. We would like
to design a quantum algorithm that after a certain number of steps with
high probability (greater than 1/2 in any case) will be in a configuration that
identifies ¢. That is, imagine that for each i € [0, N) there is a configuration
|c;) that represents that the item sought is item number ¢ of N = 2". Then we
want the probability of |¢;) to be high at the time we observe our computation.
For concreteness, let ¢; be the configuration that has ¢ written (as a string of
length n) on its work tape and is otherwise uninteresting (the head is at the
left of each tape, all other tapes are empty, the internal state is some fixed
state o, etc.).
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The quantum algorithm has two main components. The first is used to
generate all possible keys (in superposition) and the second is used to separate
the value ¢ for which f(¢) = 1 from the others and amplify its amplitude.

We begin with the first component. Suppose for a moment that we were
designing a probabilistic machine instead of a quantum machine. Then we
might choose to flip a coin n times and use the outcome of the coin to
set the bits of the string on our work tape. More precisely, for each bit in
succession, with probability 1/2 we leave the bit as it is (initially a 0) and
with probability 1/2 we change it to a 1. Now we want to do a similar thing
with our quantum machine. If we focus on a single bit, then we are looking
for a unitary transformation

10) — a0) + b|1)

[1) = ¢|0) + d|1)

(ie., a unitary matrix M = [CCL Z]) such that |a|*> = |b]* = 1/2.

FEzxercise 26.6. Find such a matrix.
Hint: It suffices to use real values. <

Let W be the matrix (transformation) that is the composition of M ap-
plied to each of the n bits in succession. (As a matrix, W is roughly block-
diagonal, with copies of M located at appropriate positions near the diagonal,
1’s elsewhere on the diagonal and 0’s filling the rest of the matrix.)

Ezercise 26.7. What superposition results from applying W to |co)? <

Ezercise 26.8. 'What superposition results from applying W to |c;)? <

The transformation W is known as the Walsh-Hadamard transformation,
and it (or a related operation known as the Fourier transformation) is a
component of many quantum algorithms.

Now that we have in some sense generated all the possible keys, we need
to do something to distinguish the target ¢. This is the second component of
the algorithm. For this we will simply flip the sign of the amplitude of the
target ¢t. Note that any diagonal matrix with 1’s and —1’s along the diagonal
is unitary, so that this kind of sign flipping (on any set of states) can be
done, provided we know where to place the 1’s and —1’s. For this we need
to know f(i), which we can assume is determined by an oracle call or some
simple, deterministic algorithm. It is known that deterministic computation
can be done reversibly, and this fact has been used to show that deterministic
computation can be simulated on a quantum machine. Let F' denote the
transformation that determines f(i) and flips the sign of the amplitude if

fii) = 1.
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Finally, these two components are combined to form what Grover refers
to as the diffusion transformation D. The purpose of D is to amplify the am-
plitude of the state corresponding to the target. Let F' be the transformation
that flips the sign of all the states except |cp), that is,

0 if i # j,
-1  ifi=j#0.

The diffusion transformation is D = WEW.

Ezercise 26.9. Compute D;; for arbitrary ¢ and j. <

The transformations F' and D form the heart of the algorithm, and W is
used once at the beginning as a sort of initialization. With this background
laid, the description of the algorithm is relatively short:

1. Initialize by applying W to the initial state |co).

2. Repeat the following O(v/N) times. (We will determine the constant in
the O-notation as part of the analysis. It will turn out to be important
to do this the correct number of times.)

a) Apply F. (Flip the amplitude on the target.)
b) Apply D. (Diffusion)

3. Observe the state of the quantum machine. The probability of |¢;) will

be at least 1/2.

Now we need to show that the algorithm behaves as claimed. In particu-
lar, we need to understand what the diffusion transformation is doing. The
diffusion transformation can be interpreted as an inversion about the average
in the following sense: Suppose the quantum machine is in the superposition

o) = Y aile).
i€[0,N)

Let a = % >_; @; be the average amplitude over all the states. Then the result
of applying D to |p) is to increase (or decrease) each amplitude so that after
the operation it is as much above (or below) the average as it was below (or
above) the average prior to the operation. That is,

> aile) =Y Biler)
where 8; = a + (o — a;) = 2a — q;.

Lemma 26.2. The diffusion transformation D is unitary. Furthermore, it
performs an inversion about the average as described above.

Proof. For the proof it is useful to have another representation for D. Let P
be the projection matrix P;; = 1/N. Then D = —I + 2P (see Exercise 26.9).
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Exercise 26.10. Show that D is unitary.
Hint: First show that P? = P, <

Exercise 26.11. Show that D performs an inversion about the average.
Hint: Let z be a vector, what does Pr compute?

a

Now we introduce some notation for the superpositions that occur in this
computation. Let
@ (k1) = Kle) + ) llea) -
i#t
We want to express the effects of Grover’s algorithm using this notation. By
Exercise 26.7, step 1 (the initialization) of the algorithm amounts to

W s feo) o [0 ( s ) -

And by Lemma 26.2, each iteration of step 2 is
1O (k1)) & |@(—k, 1)) B [0 (Ne2p 4 281y N2y 2 gy

Note that after one iteration, k; is still very nearly 1/v/N (since the average
amplitude prior to applying D was very nearly 1/v/N), but I; is approxi-
mately 3/v/N. The hope is that each iteration increases k by £2(1/v/N), so
that after O(v/N) iterations, k = 2(v/N - ﬁ) > \/LE

Let ¥; = |¥(kj,l;)) denote the superposition after j iterations. In the
paper where Grover originally presented his algorithm, he proved that there
was a number of iterations j < /2N such that kf > 1/2. His proof followed
from a sequence of lemmas about the transformation D, culminating in the
following lemma:

Lemma 26.3. If0 < k; < % and lj > 0, then Ak = kji1 —k; > and

1
7 N
lj+1 > 0.

The problem with this argument, however, is that Lemma 26.3 only
provides a lower bound on Ak. Thus while we know there is an iteration
m < V2N after which k%, > 1/2, we don’t know what m is. In fact, after ex-
actly v/2N iterations the probability is less than 9.5% that we will observe the
target. From there it continues to decrease to a negligible probability before
it eventually increases again. Thus it is important to know m explicitly.

In order to know precisely when to make our observation, we need a
tighter analysis. This was provided in a paper by Boyer, Hoyer and Tapp,
where explicit formulas are given for k; and [;. Using standard techniques
(and some patience), the recurrence for k and I can be solved, giving explicit
formulas for k; and [;.
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Lemma 26.4. Let k; and [; be defined as above, then
k; =sin((2j +1)0) ,

l; = cos((2j + 1)) ;

1
vN -1
where 6 is chosen so that sin®(8) = 1/N.

FEzxercise 26.12.° Prove Lemma 26.4.

Hint: Although it is a bit arduous to solve the recurrence relations to get the
explicit formulas of the lemma, it is straightforward to prove by induction that
the formulas are indeed correct. Readers who have forgotten the trigonometric
identities may need to refer to an undergraduate calculus text. N

From this it follows that k,, = 1 when (2m + 1)§ = 7/2, i.e., when
m = (m—26)/46. Of course this is probably not an integer, but the probability
should be almost 1 if we perform approximately this many iterations. Since
for small 6, sin(f) =~ €, the number of iterations needed is approximately

(m — 20) /46 ~ 748 ~ %\/ﬁ .

In fact, after we have generalized the problem slightly, we will prove the
following lemma:
Lemma 26.5. After L@J iterations of Grover’s algorithm, the probability

of failure is less than 1/N. After L@J iterations of Grover’s algorithm, the
probability of failure is at most 1/2.

TVIN
2

However, if we iterate twice as many times (about iterations), the prob-

ability of success is negligible!
S N T

Before proving Lemma 26.5, we want to generalize the algorithm to handle
more than one target. Suppose there is a set of targets 7" such that

L1 terT,
f(z):{o tgT.

Grover’s algorithm (or at least his analysis) dealt only with the case that
|T| = 1.
What happens if we apply the same algorithm when |T'| > 17 Define

Bk, 1) = Klei) + > 1) -

i€T igT

Then each iteration of Grover’s algorithm has the effect
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Bk, 1)) s |@(NalLl g 4 28Ty N2 20Ty

Once again, this recurrence can be solved, this time yielding

sin((2j + 1)0)

T

_cos((2j +1)8)

I =
SRVARTI

k; =

where sin®(6) = |T|/N.

The probability of success is greatest when [ is smallest, and [; = 0 if
m = (m — 26)/46, but that may not be an integer. Let m = |7/46| instead.
Note that |m — m| < 1/2. So |(2m + 1)6 — (2 + 1)8] < 4. But, by the
definition of 7, (2 + 1)8 = 7/2, so |cos((2m + 1)8)| < |sin(@)|. Thus the
probability of failure after m iterations is

(N — |T)i2, = cos®((2m + 1)8) < sin*(0) = |T|/N .

Since 6§ > sin(f) = /|T|/N, m < 5 < & %, the algorithm requires

O(\/N/|T) iterations. The expected running time until a target is found
can be improved slightly by running the algorithm for fewer iterations (at a
cost of a lower probability of success) and repeating the entire algorithm if
unsuccessful. This is because the sine function is quite flat near its extreme
values, so that the last iterations do less to increase the probability than the
earlier ones.

The case where |T| = N/4 is particularly interesting. In this case, sin® 8 =
1/4, 50 8 = 7/6, and

t
I} = ————=co0s(30) =0.
TN T (39)
This means that the probability of success is 1 after just one iteration. It
should be mentioned, that this really involves two queries to the data set,
one to determine if there is a phase shift (sign flip) and one as part of the
“uncomputation” which makes this reversible.

Exercise 26.13.  What is the expected number of queries required by the
naive classical probabilistic algorithm when |T'| = N/4?7 <

Ezercise 26.14. What is the worst case for a classical algorithm? (Imagine
that an adversary is determining the outcome of your coin tosses.) <

Thus the quantum algorithm uses only half of the number of queries
expected for a classical probabilistic algorithm, and exponentially fewer (in
n) than a classical algorithm uses in the worst case.
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* * * * *

There have been other generalizations of Grover’s algorithm, a few of
which we summarize briefly here. The first two generalizations deal with the
case when |T'| is unknown. Suppose first that we want to locate one of the
targets ¢ € T, but we don’t know how many targets there are. If we use
%\/N iterations, we will almost certainly find the target ¢ if it is unique.
But if |T'| = 4, then the probability of success after this many iterations is
nearly 0. Boyer, Hgyer, and Tapp give an algorithm with expected running
time O(v/N) for finding a target in this case as well. The main idea is to
randomly select m, the number of iterations (from some set M, where initially
M = {1}), and then to run Grover’s algorithm for that many iterations. If
this is not successful, it is done again, but with a larger set M.

Brassard, Hgyer, and Tapp also consider the problem of approximating
|T'|, rather than finding an element of T'. In their recent paper they give an
algorithm that demonstrates a trade-off between the accuracy of the approx-
imation and the running time of the algorithm. Furthermore, they show that
their algorithm is in some sense optimal. This paper also considers the prob-
lem of amplitude amplification, the key ingredient in Grover’s algorithm, in
a more general setting. This allows them to demonstrate a speed-up between
quantum and classical search algorithms even in the case where better than
brute force methods exist classically.

All of the algorithms above begin from a superposition with only one non-
zero amplitude. Another way to generalize the problem is to consider other
possible initial superpositions, such as might occur if quantum searching were
used as a subroutine in a more complicated quantum algorithm. Results of
Biham, Biham, Biron, Grassl, and Lidar show that the optimal time for
observation can be determined in this situation as well and that it depends
only on the means and variances of the initial amplitudes on 7" and 7.

Finally, we make two comments on Grover’s algorithm. One might ask if
there are even better quantum search algorithms which require, say, O(log V)
queries to the database. But this is not possible. Grover’s algorithm is op-
timal in the sense that any quantum algorithm for searching must make at
least £2(v/N) queries to the database. Also, the reader may have noticed
that we have assumed throughout that IV is a power of 2. This assumption
simplifies the arguments and notation somewhat, but it is not an essential
restriction. It can be avoided by replacing the Walsh-Hadamard transforma-
tion by any transformation in a large class of transformations, of which the
Walsh-Hadamard transformation is the simplest when N is a power of 2.
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Solutions

1.1. For every decidable language A and any (arbitrary) language B, A <p
B.

1.2. The halting problem H = {(z,y) | y € W, } is m- (and therefore also
T-) complete for the class of computably enumerable languages. For if A
is computably enumerable then there is an i such that A = W;. The map
y — (i,y) is an m-reduction from A to H.

Now let A be a language which is T-equivalent to the halting problem
and suppose there is a language B which is computably enumerable and T-
incomparable to A. Since B is computably enumerable, B <; H and since
H <7 A, it follows that B <7 A. Contradiction.

1.3. If there are two Turing incomparable, computably enumerable lan-
guages, then neither one can be computable (exercise 1.1). But by the claim
one would have to be computable if the incomparability could be demon-
strated effectively.

1.4. It is sufficient to show that if A is computably enumerable and h is
computable, then h~1(A) is computably enumerable.
The following procedure enumerates h=1(A):

FOR all pairs of integers (i,j) DO
IF h(i) = j-th element enumerated into A THEN OUTPUT gi;
END

END

This can be shown even more simply, but this method shows B is many-one
reducible to A via go f. Since A is computably enumerable it follows that B
is computably enumerable.

1.5. The element with highest priority, (0,z) € L4, reaches its final location
at the very beginning.

The element with the second highest priority, (0, z) € Lg, can be removed
from of L, and “slid over” at most one time. So there are at most two
“incarnations” for this element.

The element with the third highest priority, (1,z) € L4, has at most three
possible “incarnations.”
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In general the number of incarnations satisfies the recursive formula:
f(n) =1+f(n=1)+f(n=3)+f(n=>5)+ -+ f(a), where ais O or 1, and f(0) is
defined to be 1. This results in the Fibonacci sequence 1,1,2,3,5,8,13,21, ...
since

fn) =fln=1)+ f(n—2)
=fln=1)+fn=3)+f(n—4)
=f(n =1+ fn=3)+f(n—35)+ f(n—-06)
=fn-D+fn=3)+f(n=5)+f(n=-7)+f(n -8

2.1. The numbers a and b must be relatively prime.
2.2. The given system of equations has a solution if and only if

k

Z(fi(x1,---,xn))2 =0

i=1
has a solution.
2.3. This problem can be reduced to the solution of the equation

k

Hfi(azl,...,:nn):o,

i=1
2.4. f(x1,22,...,x,) = 0has asolution if and only if one of the 2" equations

f(mlaxb"';mn) =0
fl=z1,29,...,2,) =0
flzy, —xa,...,2,) =0

f(_xla_xb"';_xn) =0

has a solution in N. This demonstrates the existence of a Turing reduction
between the two problems.

With the help of the previous exercise, this disjunction can be converted
into a single equation. That gives a many-one reduction.

2.5. Every natural number x can be written as x = u? + v + w? + 2% with
u,v,w,z € Z. So f(x1,...,x,) = 0 has solutions in the natural numbers if
and only if
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Fluf +0f +wf + 27, up o +wy +27) =0
has integer solutions.
2.6. The register R; can be set to zero by:

a:1F R; =0GOTO d
b: DEC R;
c¢: GOTO a
d:
The instruction R, := R; can be simulated by:
YRy =07
YRy =107
:IF R; =0 GOTO h
: DEC R;
:INC R,
:INC R,
: GOTO ¢
IF R, =0GOTO (
:DEC R,
: INC R;
: GOTO h

TR TR0 A0 TR

2.7. If the register R; has the value 0, that is, W} has a 0 in the appropriate
place in the sequence-number coding (where N; has a 1), then there will be a
1 in the corresponding bit of B -T — 2 - W at the next step. So N;;+1 cannot
have a 1 there but rather must have a 0. Because of the previous equation,
B - N; <* N+ N;;1, N; must have a 1 there, so the next instruction to be
executed will be instruction [, as desired.

If the register R; contains a value > 1, then B -1 —2-W; has a 0 in the
bit corresponding to the next step. (This explains the factor of 2 — to avoid
changing the value of the bit at the current time step. This is also why we
needed the condition B < 2-S5.) So N;;+1 must have a 1 and N; a 0 at that
position. Thus, the next instruction to be executed will be instruction ¢ + 1,
as desired.

2.8. The exercise follows immediately from the hint and the observation
0 1 1 0
that (0) = (0) = (1) =l and (1) =0.
The hint can be proven as follows: (Y) is the coefficient on the term 7% in
the expression (1+7)%. Mod 2, these coefficients can be computed as follows:
n
(1+T) =1 +T)r v = [J(+1)* ¥
i=0

i ()

J

I
'»:1
+
'ﬁ

i:O i=0
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In the product on the right side there is exactly one choice of terms which
when multiplied together give a term 7'®. This term is obtained by setting
j = yi in each sum. Thus, we get (¥) = [T, (2') (mod 2), which is what we
wanted to prove.

Note: the computation above would be correct modulo any prime number

p. (Use p' instead of 2¢.)

2.9. We reduce Dioph(N) to the problem in question. f € Dioph(N) if and
only if f? € Dioph(N). The polynomial f2 has only non-negative values. The
polynomial f? can be written as f2 = g — h, where g has all the terms of
f? with positive coefficients and h has all the terms with negative coeffi-
cients (once more negated). The polynomials g and h then have only positive
coefficients. Furthermore, since f2 > 0, we have g > h. So we get:

f € Dioph(N) <= f? € Dioph(N)
< Vz h(z) < g(x)
= Vz h(z)+1<g(z).

The map f+ (h + 1, g) yields the desired reduction.

2.10. We imagine the polynomial f as a tree structure. The leaves of the
tree are labeled with the variables z1,...,z, and the coefficients, and the
internal nodes of the tree are labeled with the operations + and *. The root
of the tree represents the function f.

Every internal node is now assigned a new variable yg, ..., ¥k, Yo being
assigned to the root. Then f = 0 is equivalent to requiring that yo = 0 and
that for each branching of the form

op Yi

u v

y; =uop v (i.e., y; — (v op v) = 0), where op € {+,*} and v and v may be
new variables (yo,...,yr), original variables (x1,...,x,), or coefficients.

None of the Diophantine equations f; has a total degree greater than two.
Therefore, the Diophantine equation that is equivalent to the conjunction of
all of these equations (namely, > f? = 0) has total degree at most four.

3.1. Assignment statements have loop-depth 0. If R is a LOOP-program of
the form P;(Q where P and ) have loop-depth p and ¢, respectively, then R
has loop-depth max(p,q). If R is a program of the form LOOP X DO P END
and P has loop-depth p, then R has loop-depth p + 1.
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3.2. The following program simulates subtraction (=):

Y :=0; Z:=0;
LOOP X DO Y :=Z; Z := Z + 1 END;
X:=Y

3.3. The following program simulates “IF X = 0 THEN P’ END”:

Y =0;Y =Y +1,;
LOOP X DO Y := 0 END;
LOOP Y DO P END

3.4. In the following, instructions that appear in quotation marks indicate
suitable LOOP(1)-programs, which exist by the previous exercises.

“Z=X=FkK3Y =1,

LOOP Z DO Y := 0 END;
“W=X-=-m";(m=k—-1)
U :=0;

LOOP W DO U := 1 END;
LOOPU DO Y :=Y + 1 END;
Y=Y =17

LOOP Y DO P END

3.5. Let the input register of 4,, be S and the output register 7'.

A=1,X:=mn;
LOOP S DO D,, END;
T:=1;

LOOP A DO T :=0 END
D,, must be a LOOP(1)-program so that A, will be a LOOP(2)-program.
3.6. The following program simulates w:

Y = Xy;
LOOP X, DO Y := 0 END
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3.7. A LOOP(1)-program for x MOD k:

Z1 = 0,
Zy = 1;

Zy =k —1;

LOOP X DO
Zyy1 = Zy;
Zl = Z2;
Z2 = Z3,

Zy := Zrya;
END;

?

Y = X1
A LOOP(1)-program for « DIV k:

Zl = 0,
Z2 = 0,

Zk = 0;

LOOP X DO
Ziy1 := Z;
Zy i= Zg1;

Z2 = Zl + ].,
VAR WANRE
END;
Y = Xl

3.8. A LOOP(0)-program can only consist of a sequence of instructions of
the form X := 0, X :=Y and X := X + 1. From this it is clear that only the

given functions can be computed.
3.9. w(f7 ZL”) + w(g; w(]-a CU))

3.10. ki +---+ ki MOD ¢) = w(ki, ( MOD ) = 1) + w(kz, (z MOD t) =
2) + - +w(ki—1, (@ MOD t) = [t — 1))

3.11. For each index position ¢ € {1,...,n} one has M + K many different
equivalence classes, so altogether there are (M + K)™.

3.12. Case 6: Let M = max(My, M) + K and K = K, - K. Let
i € {1,...,n} be arbitrary. It suffices to show that w(f(x),g(x)) and
w(f(x"),g(x’)) differ by a constant v (independent of x), where & =
(1,...,2y) and
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, N
T = (331,---,371',1,331‘+K,£L"i+1,.--,ﬂfn),

and each z; > M. By the inductive hypothesis, there are constants 3; and (;
such that R

fi@) = fule) = Kz - (K1 - i) = K- 3
and .

@) - folz) = K1 - (K2 - ) = K - ;.
If 3, > 0, then by the choice of M (and because z; > M), fo(x) and f(x’)
are both strictly greater than 0. Thus, the value of the function w is 0 at
both places. So in this case, v = 0. If 8 = 0 and fa(x) > 0, then we also
have v = 0. In the case that 8} = 0 and fo(z) = 0, the value of w is given by
fl;SO’Y:KlKZ/gAi:Kﬂi- .

Case 7: Let M = M and K = k- K. Let i € {1,...,n} be arbitrary. It

is sufficient to show that f(ax) DIV k and f(«’) DIV k differ by a constant
(independent of x), where = (x1,...,z,) and

;L N
T = (xl,...,xi_l,xi-I-K,xH_l,...,xn),

and z; > M. By the inductive hypothesis, there are constants §; and 3} such
that f(x’) — f(x) =k - K - 8; = Kf;. So we have

f(z') DIV k — f(x) DIV k = K; = K% :
3.13. By Lemma 3.4, the value of f(x) for z € N" can be determined in
the following manner: First, one repeatedly reduces each component z; of x
(provided z; > M) by K until one gets two points 2\ and xgl) that lie in

i
the interval (M, M + 2K] as sketched in the diagram below.
0 = 2 ook zi

I L L L >

I
I I I LI I o

AL A A AL A
K K K K K K

Clearly, xEO) = M + (x; MOD K), xgl) = xgo) + K, and z; = xEO) +tK
for an appropriately chosen integer constant ¢ > 0. Now let
ﬁi = f(xla"'am@('l);"';xn) - f(mla"wm@('());"':xn)'

Then

0), ey Tp) + ﬂi(xgl) — x(»o))

(3

f(@) = f(ar,....a}
0

= f(xla"wm@(' );"'73771) +ﬁth

By reducing each component x; in this manner, we arrive at an f-value for

a point in (. Thus, if the two functions are different, they must differ on a
point in Q.
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3.14. Let M = max(My, M,) and K = K;-K». The equivalence relation MéK

1_7K1 Mg_,Kz

refines both M_ and . This means that the two given functions f; and
f2 agree if and only if all multi-linear functions on the common equivalence
classes agree. As in the previous exercise, these functions are completely
characterized by their values on points * with z; < M + 2K.

3.15. Logical NOR can be used to simulate the boolean functions AND,
OR, and NOT:

NOT(z) = NOR(z,z)
AND(z,y) = NOR(NOT(z), NOT(y))
= NOR(NOR(z,z), NOR(y,v))
OR(z,y) = NOR(NOR(z,y), NOR(z,y))

So it is sufficient to give a LOOP(1)-program for NOR:

Y :=1;
LOOP X; DO Y := 0 END;
LOOP X, DO Y := 0 END

3.16. We can simulate n input variables Xi,...,X,, with a single input
variable X by adding the following preamble to our program:

X1 := X MOD 2;
X, := X MOD 3;
X3 := X MOD 5;

X, := X MOD py;

where p,, is the nth prime number. By the Chinese Remainder Theorem, we
know that there is a suitable value for X for any choice of Xj,... X,.

4.1.
INPUT z;
k= f(|x]);
p:=0;

FOR y € X*, |y| = |z| DO
[fan o0
IF M accepts THEN
IF y =2 THEN REJECT END;
p=p+1
END;
END;
IF p =k THEN ACCEPT ELSE REJECT END.
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Note: The boxed portion of the algorithm is nondeterministic.

If x € A, then there is a nondeterministic computation of this algorithm
that accepts on input x: at each pass through the for loop, if y € A a path
must be chosen that causes M to accept y. In this case, at the end of the
loop we will have p = k.

If, on the other hand, there is a nondeterministic computation that causes
this algorithm to accept x, then since at the end of the loop p = k, all of the
strings y such that |y| = |z| and y € A were discovered, and none of them
was x, so & € A.

4.2.  Time complexity:  t;(n) + 290 - tyr(n);
Space complexity:  sy(n) + O(n) + sa(n).

4.3. It is sufficient if the nondeterministic machine computes f in the fol-
lowing sense:

1. Every nondeterministic computation is either “successful” and outputs a
numeric value or is “unsuccessful” and outputs nothing.

2. At least one output is successful and, therefore, produces an output.

3. All successful computations produce the same output value, namely f(n).

4.4. One can modify the algorithm given in Solution 4.1 to use g instead of
f, to loop over all y interpreted as expressions, and to “verify that S = y”
instead of “starting M on y.”

4.5.

{ Assume k = |T"| }
p =0
FOR y e (VUX)*, |yl <n DO
f = FALSE;
m = 0;
FOR z € (VU X)*, |z <n DO

IF |S ¢ z| THEN
m = m+ 1;
IF (2 =5 y) OR (2 = y) THEN f := TRUE END;
END;
END;
IF m < k THEN REJECT END:;
IF f THEN p :=p+ 1 END;
END;
{ Now p = |T}3,] }

Note: the boxed portion of the algorithm is nondeterministic.

In the inner loop the counter m is compared against k to check that the
nondeterministic choices were made correctly. The computation only con-
tinues to the outer loop if this is the case. In this way we can be certain
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that the number p is correct at the end of the algorithm (in the case that a
nondeterministic computation reaches that point without rejecting sooner.)

5.1. L- and NL-machines are off-line Turing machines, which means that
their specially designated input tapes can only be used to read the input.
For the purposes of this exercise, let a configuration of such a machine be
an instantaneous description of the current state, the head position on the
(read-only) input tape, the head position on the work tape, and the contents
of the work tape. Let Z be the set of all such configurations, and A the
alphabet. Then a c - logn space-bounded Turing machine has at most

a=|Z]-(n+2)-(c-logn) - [A]"" = O(n")

many different configurations, where k is an appropriate constant. So if the
computation runs for more than a steps, some configuration must be re-
peated. But then the machine must be in an infinite (non-terminating) loop,
and, therefore, does not accept.

To see that NL C P, consider the following procedure for some fixed
N L-machine: On input z, systematically generate all configurations that can
be reached from the starting configuration until a halting configuration is
reached or all reachable configurations have been generated. Since the number
of configurations is bounded as above, this can be done in polynomial time.

5.2. Let M; and M> be two log-reduction machines. On input z, it is not
possible to simply let the machines run one after the other, since M; may
output a string that is polynomially long in the length of x and, therefore,
cannot be stored in logarithmic space. Instead we proceed like the pipe con-
cept in UNIX: We start My as the main process (on an empty tape), but
whenever M, tries to read an input tape symbol we start M; on input x as
a sub-process to generate this symbol. (All other output symbols produced
by M; are immediately erased.) Since M; requires only logarithmic space
(which can be reused each time the process is run) and polynomial time,
the total space devoted to process M; is logarithmic and the time for M; is
polynomial.

5.3. It is clear that PATH € NL: Nondeterministically guess a path from
a to b. This can be done by nondeterministically generating a sequence of n
nodes in the graph and checking to see if adjacent pairs in the sequence are
adjacent in the graph and if both a and b occur in the sequence. The only
space needed is the space to store a pair of nodes and a counter.

Now let A be in NL via a O(logn) space-bounded machine M. By Exer-
cise 5.2, this machine has at most polynomially many configurations on an
input of length n. The desired reduction of A to PATH outputs for any x the
graph in which each such configuration is a node, and the there is an edge
from ¢; to ¢; if ¢; is a configuration that could follow ¢; in the computation on
input x. This can be done, for example, by producing for each configuration
the finite list of possible successor configurations.
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The start node a in the PATH-problem is the start configuration of the
Turing machine. The end node in the PATH-problem is a unique accepting
condition. (The machine M can be modified so that there is always one
unique halting configuration.) Since each configuration can be written down
in O(logn) bits, this reduction is logarithmically space-bounded.

5.4. A configuration can, in general, have more than one predecessor config-
uration. If the graph described in the solution to Exercise 5.2 is interpreted
as an undirected graph, then it may be possible on some input x that is not
in the language to nevertheless reach the halting configuration by traveling
some of the edges “backwards,” that is, by traveling from a configuration to
a possible predecessor rather than to a successor.

5.5. Consider the following algorithm on an input of length n.

Success := FALSE;
WHILE NOT Success DO
Choose one of a) and b) with equal probability:
a) Move the read-only head on the input tape one cell to the right.
IF the end of the input is reached THEN Success := TRUE;
b) Move the read-only head on the input tape
back to the first input symbol;
END

The probability of successfully reaching the end of the input on the first
attempt is 27". Each additional attempt costs at least one step, so the ex-
pected value of the time until the algorithm successfully halts is at least 2.

5.6. For the following directed graph the same statements are true as were
made in the preceding exercise.

@D - —O
Nt J

So if we choose a = 0 and b = n, then the expected length of time to get
from a to b is exponential.

5.7. If the edge probabilities are not all the same, then there must be edges
with probability greater than 1/2e and others with probability less than 1/2e
(since the sum of all probabilities is 1). Let pyax > 1/2e be the maximal edge
probability that occurs in the graph. There must be at least one edge (u,v)
with this probability that has an adjacent edge (v, w) with a strictly smaller
probability. (Since G is connected, if this were not the case, every edge would
have probability ppax, but then the sum over all edges would be greater
than 1.) All other edges adjacent to (u,v) have probability at most ppax. So
Ply,0) = Pmax must be strictly larger than the weighted sum of the adjacent
edges’ probabilities, i.e.,
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1
Pluw) > d(v) ) § : Plow)
(v,w)EG

as was to be shown.

5.8. Let Y be the following 0-1-valued random variable

1 if X >a,

0 it X <a.
Then X > a-Y. From this it follows that E(X) > E(a-Y) = a- E(Y) =
a-PriX >a.

5.9. On average, we must visit node u d(u) times until v occurs as the
successor node. So E(u,v) can be bounded above by d(u) - E(u,u) = d(u) -
2e/d(u) = 2e. (This is in general a very crude approximation, since it possible
to get from u to v via some other route that does not use the edge (u,v).)

5.10. We proceed by induction on n, the number of nodes in the graph. The
statement is clearly true for graphs with only one node. Let G be a connected
graph with n + 1 nodes. There must be a node that can be removed without
destroying the connectivity of the graph. In the remaining graph, by the
inductive hypothesis, there must be a path of length 2n. The removed node
was attached to this path by at least one edge. By traveling this edge once in
each direction, we obtain a path of length at most 2n + 2 that includes this
node as well.

5.11. Let X be the number of steps in a random walk from a to b. By Markov
inequality (letting a = 2E(X)) we get Pr[X > 8en] < Pr[X > 2E(X)] <
E(X)/2E(X))=1/2.

5.12. For each of the n nodes we must determine a first, second, etc. up to
dth adjacent node. Each time we have (roughly) n possibilities. So for each
node we have no more than n? possibilities, and altogether there are no more
than (n?)” = n possible ways to specify such a graph.

6.1.

8
-
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8
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Unsatisfiable!
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6.2. Correctness: The last clause () in a resolution proof is clearly unsatis-
fiable. Now we work inductively from back to front and show that the set of
input clauses to a resolution proof is unsatisfiable. Let K, K5 be two resolv-
able clauses with resolvent K3 = Ky UK, — {z;,T;} that occurs in portion of
the proof already considered (at which time it represented an input clause).
Suppose that the set of input clauses to the resolution proof, now augmented
by clauses K; and K is satisfiable via an assignment «. Then, in particular,
« must satisfy K; and K. The variable x;, on which the resolution occurred,
is true in one of these clauses, its negation in the other false (or vice versa).
Thus in one of the clauses, a different literal must be true under «. This literal
remains in the resolvent K3, so K3 is also true under a. But this contradicts
the inductive hypothesis.

Completeness: For an unsatisfiable set of clauses with one variable there
is an obvious resolution proof. Now assume completeness for sets of clauses
containing up to n variables. Consider an unsatisfiable set of clauses M with
n + 1 variables.

First put z,,41 = 0 (all occurrences of ,4+1 can now be stricken, and for
each occurrence of T, 77 the entire clause in which it occurs can be stricken).
This results in another unsatisfiable set of clauses My. Analogously form My
by putting xn+1 = 1. By induction there are resolution proofs for My and
M, . Now we reconstruct the original clauses from M — that is, we reintroduce
ZTp41 in My and Z,, 57 in M; and also in the corresponding resolvents in both
resolution proofs. Either one of the resulting resolution proofs still contains
the empty clause (now derived from M), in which case we are done, or we
have the resolvents {x,1} and {Z, 11}, from which we can derive the empty
clause in one more resolution step.

6.3. We construct the path from back to front, starting at the empty clause.
If we are at a clause K in the path with a(K) = 0, then exactly one of the
predecessors of this clause is true under «, the other false. We select the one
that is false under a and continue the construction from there.

6.4. The existence of a SUPER proof system for refutation is equivalent to
the existence of a nondeterministic, polynomial time-bounded algorithm for
SAT, so SAT € NP. Since SAT is NP-complete, SAT is coNP-complete. By
the closure of NP under polynomial reductions coNP C NP, so coNP = NP.

In the other direction: If NP = coNP, then SAT € NP, so there is a
nondeterministic, polynomial time-bounded Turing machine for SAT. The
“possible next configuration calculus” of this machine is then a SUPER proof
system for refutation.
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6.5.
Type 1-clauses:
D D b D
D S” S”, S”
D S, b S,

Type 2-clauses:

SIS o © © O 00 e 9 09
SIS} SENS © O SIS} SIS/ SIS/
SIS o O CHS) SIS o 9 o9

6.6. Empty positions in the diagram below are understood to be 0’s.

1

6.7. (n+1)!

6.8. The type 1 clause that has the 0-column of « filled with &.

6.9. The same clause as in the preceding exercise.

6.10. A © in the 0-column would cause the clause to be true under a.

6.11. Since « is critical, the diagram for « must have n 1’s, each in a different
row. Since n/2 @’s occur in the 0-column, n/2 possible rows are ruled out.
Since S has already fixed n/8 1’s, that rules out (in the worst case) another
n/8 positions. So at least n — (n/2 + n/8) = 3n/8 possibilities remain.

6.12. If there were two &’s in one column then at least one would have to
be in a position where there is a 0 in «. From this it would follow that the
clause is true under «.

6.13. The alteration from 0 to 1 (in the original 0-column) has no effect,
since that position of K does not contain @. The alteration from 1 to 0
(in one of the 3n/8 1-positions) has no effect, since that position of K (by
assumption) does not contain ©.
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6.14. Suppose fewer than W

the position was chosen maximally, in every other position strictly fewer than
W -t ®’s occur. Now we sum over all positions in the clauses and
obtain an upper bound on the number of ®’s in all ¢ clauses together: there
are strictly fewer than (3n/8 + 1) - (n/2) - t. This is a contradiction, since we
have argued that each of the t clauses that is input to the greedy algorithm

has at least (3n/8+1) - (n/2) ®’s.

- t clauses are taken care of. Since

7.1. A tautology has a model of every size, so choose something like F' =
(P V —P), where P is 0-ary.

7.2. We let F express that there are at least 3 different elements in the
universe, but that in any set of 4 elements, two of them are the same:

F =3z3y3z (~(z =y) A-(z=2) AN=(y =2))
AVYuVaVyVz (u=xVu=yVu=zVe=yVer=zVy=2z).

7.3. We describe a recursive procedure that evaluates F' using A. L represents
a list of variable conditions, which is initially empty.

PROCEDURE eval (F,A,L) : BOOLEAN;
VAR b : BOOLEAN;
BEGIN
IF F = (G o H) THEN { o is a boolean operation }
RETURN eval(G,A, L) o eval(H,A, L) END;
IF F =3Jx G THEN
b:= FALSE;
FOR w:=1TO |A| DO
b:=b OR eval(G,A, LU {(z,w)})
END;
RETURN b;
END:;
IF F =VYzG THEN
b .= TRUE;
FOR w:=1TO |A| DO
b:=b AND eval(G,A, LU {(z,w)})
END;
RETURN b;
END:;
IF F = P(zy,...,&y) { where (z;,w;) € L}
THEN RETURN The value of the relation corresponding to P
on the tuple (wy,...,wy)
END;
IF F = (z; = ;) THEN RETURN w; = w; END;
END
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The running time of this algorithm is polynomial, the degree of the polyno-
mial depending on the number of quantifiers in F'. (Remember F' is not part
of the input to the algorithm but fixed.)

7.4. An NP-algorithm for a given formula F' on input 1" guesses nonde-
terministically a structure A appropriate for F'. This can be written down
using polynomially (in n) many bits; the polynomial depends on F'. Then the
algorithm tests as in the previous exercise whether A is a model for F'. This
shows that the problem is in NP.

On input of a binary representation of n everything works just as above,
but the running time is increased to (2"’)’c = 257" with respect to the new
logarithmically shorter input length n'.

7.5. An NP-algorithm for a given formula F on input A = (M; R) — coded
as a string — nondeterministically guesses relations R; on the universe for
each P; in the formula. These can be written down using polynomially many
bits. Then the algorithm tests, as in the previous two exercises, whether
A'= (M;R,Ry,...,R,,) is a model for F. This shows that the problem is in
NP.

7.6.

Y xVy ( /\Min(yi) —
i=1

( /\ Min(z;) A Min(z1) — (E(x1) = Ppey 1) (@, y)
= NCE(m1) = Py (@, 1)) )

A (/\ Min(z;) A -Min(z1) — (E(z1) — Pi(z,y)
= N=E(@) = Po(@,y)))

7.7. Va:Vy /\ /\ _‘(Pa(way)/\Pb(ajay))
ael bel
b#a

k
7.8. Vavy ( A\ (Min(z;) A Max(y;)) — P(Ze,\_,)(w,y))

i=1
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7.9.

F = Vz-(z<u)
AVaVy (z <y — =(y < x))
AYaVyVz ((z < y) A (y < z) = (z < 2))
AVaVy ((z <y) vV (y <z)V(z=1y))

7.10. Suppose NP; is closed under complement and let L € NEXP. Then

the language
t(L) = {1" | bin(n) € L}
(where bin(n) is the binary representation of n) is in NP. By our assumption,
t(L) € NP. From this it follows that L € NEXP.
In the other direction, suppose NEXP is closed under complement, and

let L € NP. Then the language

b(L) = {bin(n) | 1" € L}
is in NEXP. By assumption, b(L) is in NEXP. From this it follows that L € NP.
This result originated with

o R.V. Book: Tally languages and complexity classes, Information and
Control 26 (1974), 186-193.

8.1. Since the Kolmogorov complexity of a string is the length of some
program, it is clear that this must be > 0. The length of a program that
has a “dummy” input instruction and then proceeds to output x without
making any use of the input provides an upper bound for K(z | y), ie.,
K(z | y) < K(z). For any string 2 € {0,1}*, “OUTPUT ‘2z’ ” is always a
possible program that outputs . This program has length |z| + ¢’ for some
constant ¢'. So K(z) < |z] + ¢

8.2. The program “INPUT v; OUTPUT v”, where v is a variable, has
constant length, so K(z | z) < ¢ for all z.

8.3. There is a program of fixed length that, by means of a suitable approx-
imation algorithm, on input n produces the first n digits of 7. Let ¢ be the
length of such a program. Then for all n, K(m, | n) < c.

8.4. In the worst case, the K-values of the 2" strings of length n are dis-
tributed as follows: K = 0 once , K = 1 twice, K = 2 four times, ... K =n—1
27~! times, and finally K = n for one string. If we add these values and divide
by the number of strings (2") we get
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The same argument also holds for E(K (x | y)), where y is arbitrary.

8.5. Suppose © — K (z) is computable via a program M (which halts on all
inputs). We can use M as a sub-routine in the following sequence of programs
P, P,,..., where P, is

=\
REPEAT
T := successor of z;
UNTIL M (x) outputs a value > m;
OUTPUT =z

Notice that the the constant m is a parameter in this program. The length of
P, is O(1) + log m; furthermore, each program m describes some string x,,
namely the lexicographically first string such that K(z) > m. But since P,
describes @y, , K(xy) < |Py| = O(1) +1logm. For large m, O(1) +logm < m,
which is a contradiction, since K (x;,) > m. Thus the function z — K(x)
cannot be computable.

(This proof resembles the Berry Paradox; see page 7 of the book by
Machtey and Young.)

8.6. The argument here is similar to that used in the Exercise 8.4.

n—1

Z 2—2K(z|n) S 2—2n + Z2i2—2i

{z:|z|=n} =0
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n—1
—9—2n + Z 271’
i=0

<2.

8.7. There are at most 1 +244+---42l0sm—k=1 _glogm—=k _ 1 _ o=k ]
programs of length < logm — k. Each one describes at most one string « with
K(z|y) <logm—k. So there must be at least m—m2 *+1 =m(1-27%)+1
strings left over.

8.8. There are only (377/4) = (n74) strings of length n with 2n 1’s and in
0’s. By Stirling’s formula (n! ~ v/27n - (£)"), we get:

(1a) = - o
o8 <§>3n/4 g/

3mn

8
=4/ —— - (1.7547..)"
S " (LTOAT)

There is an algorithm of length O(1) + logi that outputs the ith string of
length n with the property that it has %n 1’sand %n 0’s. Since log i is bounded

by log 1.7547... < (0.8112...) - n, this length is strictly less than
37rn

n. So such a string cannot be Kolmogorov-random.

The approximation above can also be obtained via the Binomial Theorem:

1 3\"
1=(>+°=%
(i+3)

n

=3 (})amier-

4
( n/4

> ey (1)

. )
i=0

(Y
s -
= 1
PN

> (1/4)'(3/4)"~

e

s -
|
= o

=0

From this it follows that Zn/4 (") < 4n/*.(4/3)3n/* = (1.7547...)". In general,
it can be shown in the same manner that Z?ﬁo (7;) < 2 HN) | where 0 <
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A <1/2and H(A\) = —[Alog A+ (1 — A\) log(1 — A)] is the entropy function.
See

o D. Welsh: Codes and Cryptography, Oxford University Press, 1988, p. 39.

8.9. Let T'4(x) be the running time of algorithm A on input z. Then
TH(n) = max{Ta(z) : |z| =n}
is the worst-case complexity of A, and

Ty )= Y p@)Ta(e)
{z:|z]=n}
is the average-case complexity under the universal distribution p. We have

already seen that Ta(z,) = TH°(n) and p(z,) > « for some constant a.
From this it follows that

T = Y W)
{z:[z|=n}
> p(@n)Ta(zn)
= p(@n)TH(n)
Z a - TXc(n) )

as was to be shown.
9.1. Since p; > 2, n; < log, n. So |[bin(n;)| < loglogn and the length of the
encoding of the finite sequence ny,...,n; is O(kloglogn) = O(loglogn).

9.2. Suppose we have shown that p,, < mlog2 m. Then we can put n <
7(n)log® w(n) and solve for m(n):
n

w(n) > - -
() = log? w(n) ~ log*n

since 7(n) <n .

9.3.

INPUT (m, k);
Determine the mth prime number. Call it p.
Compute n := p*x k and OUTPUT n;

9.4. We can determine the length of w from the initial portion of the coding
string (the end of which is marked with a ‘1’); then we can read w. Since we
know how long w is, this is self-terminating.

The length of the coding is given by

|code(w)| = |w| + 2log |w|.
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We get the bound on p,, by plugging in:
logn < K(bin(n)) < logm + 2loglogm + logn — logp,, ,
from which it follows that

log pr, < logm + 2loglogm

Pm < mlog®m .

9.5. If we let code’(w) = code(bin(Jw|))w then the length of an encoding of
a string of length n is n + logn + 2loglogn. This can be iterated further to
give an encoding of length n+logn +loglogn +logloglogn+---+2 log(m) n.
By using code’ instead of code, our approximation is improved to
n

>
m(n) 2 log n(loglogn)?

9.6. If n is prime, then it can be described by giving its index in the increas-
ing sequence of prime numbers. This leads to the following contradiction:
K(bin(n)) < logm(n) <logn — 2(loglogn).

9.7. Weget: 2" < K < g-(c+2log(g+n))+d. Since every n-place boolean
function can be computed with O(2") gates, log(g + n) = O(n). Plugging in
yields: g > 2™/O(n) = 2(2"/n).

9.8. A formula corresponds to a binary tree in which all interior nodes
(the gates) have exactly two children. In such a tree it is always the case
that the number of interior nodes is 1 less than the number of leaves. So
the number of times an input is mentioned is 1 4+ g. The postfix code for
a formula consists of 1 + ¢ inputs, each requiring about log(n) bits, and ¢
operations, each requiring a constant number of bits. So the length of an
encoding of a formula with g gates using postfix notation is bounded above
by O(g) + O(glogn) = O(glogn). From this it follows as in the previous
exercise that 2" < K < O(glogn), so g = £2(2"/logn).

9.9. Every state that appears in one of the crossing sequences occurs at
some point in the computation and, therefore, contributes 1 step to the total
running time. On the other hand, every state that occurs at some point in
the computation must appear once in some crossing sequence.

9.10. If the crossing sequences (at i) are identical, then both computations
behave exactly the same in the portions of the computation during which the
tape head is left of i. But by our assumption that Turing machines only halt
with the tape head at the left end of the tape, they must either both accept
or both reject.

9.11. See above.
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9.12. We can paste together the portions of the computations (left and right
of position 7) and we see that the computation remains essentially unchanged.

9.13. Suppose the crossing sequences are identical. Apply the lemma from
Exercise 9.12 to show that the crossing sequences (at position 4) of w0!®lw
and w0!*lw’ are also identical. Now apply the lemma from Exercise 9.10 with
= w01l y = 0%vI=iy and z = 02I*/~%w'. But 2y € L and xzz ¢ L. This
is a contradiction, so the crossing sequences must be different.

9.14.

INPUT (M,m,i,c);
FOR w, |lw| =m DO
Simulate M on input w0*lw and
note the crossing sequence at position i.
If this crossing sequence is the same as ¢, then output w;
END

9.15.

2n/3—1

timey (x) = |CSm(z, i) > Y [CSu(x,i)|
I=—00 i:n/3

2n/3—1

> Y (n/3—O(logn))

i=n/3
>n?/9 — O(nlogn) = 2(n?) .

10.1. The probability is > (1 —6)(1 —¢).
10.2. Using Exercise 8.8, this number is at most

e2m

2 (2.71 ) <M
) <

i=0
where H is the entropy function.
10.3. For PAC-learnability it suffices to choose m > 22(log |H| +log(1/4)).
Now let |H| = 2°("'™" ™" and plug in

m > 222 (pn) - m' = +10g(1/6)) =

In2-p(n) iy In2-log(1/0) .
€ €

From this we get

mO{

p(n)ln2 . log(1/6)1In2
€ eml-o
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It suffices to choose
p(n)ln2 . log(1/6)1n2
€ € )

mO{

From this we get

p(n)In2 4+ log(1/0) 1n2)1/a ‘

m>(
- €

This is polynomial in n, 1/ and 1/4.

10.4. There are 2n+ 1 possibilities for the choice of a literal z;;. So there are
at most (2n + 1)* possible monomials (in fact, there are fewer). A DNF,, -
formulas consists of an arbitrary subset of these monomials (conjunctively

2n+1)*

combined). There are 2! such subsets.

10.5. Let the function to be learned be f = Vi’:1 m;, where the monomials
m; represent a certain choice of the < (2n + 1)* monomials with at most k
literals. The hypothesis function A initially includes all possible monomials
with at most k literals. In each pass through the loop, the only monomials
m removed from h are the monomials such that m ¢ {m4,...,m}. This
guarantees consistence with the negative examples. But h is also consistent
with respect to the positive examples since we always ensure that h > f.

11.1. Every n-place boolean function is equivalent to a logic formula, which
can be expressed in either disjunctive normal form or conjunctive normal
form. These two forms correspond correspond to depth 2 OR-AND and AND-
OR circuits. But the size of the formulas generated in this way is exponential
in general.

11.2.

Ty T2 T1 T2 Tz T2 T1 T2
11.3. The fan-in on the first level (at the AND-gates) is d and the fan-in on

the second level (at the OR-gates) is c?.

11.4. Replace all AND-gates with OR-gates (and vice versa) and all z; input
gates with Z; (and vice versa). This corresponds to DeMorgan’s laws:
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o
8 8l
< >

zVy

< <

TAYy

This method works for any function. For parity in particular there is an even
simpler method: Since

par(zy,xs, ..., &,) = par(Ty, 2, ..., &) ,

we only need to swap x; with Z7.

11.5. Since
par, (0,22, ...,xy) = par,,_;(T2,...,&p)
and
par,(1,z2,...,x,) = Par,_1(T2,...,Tn) ,
these restrictions always result in another parity function or its complement.

11.6. Every AND-gate on level 1 of a depth 2 circuit for par,, must have
n inputs. That is, every variable or its complement must be one of the in-
puts. Suppose this were not the case, i.e., there is some AND-gate that is
missing (WLOG) both z,, and 7. The inputs are 2!' %, ... 2,""} with
ij € {—1,+1}. This AND-gate outputs 1 (and therefore the entire circuit
outputs 1) if we put x; = 1 exactly when i; =1 (j =1,2,...,n — 1). Now
we can set x, to be either 0 or 1 without changing the output of the circuit.
So the circuit does not correctly compute parity. Contradiction.

Now if each AND-gate in the circuit has n inputs, as we have just shown
is necessary, then each of these AND-gates can only capture one row of the
truth table for par,,. Since there are 2"~! rows of the truth table with the
value 1, there must be 27~! AND-gates.

11.7. Using XOR-gates with two inputs, we can compute parity with a
circuit in the form of a balanced tree:

XOR

( XOR ) ( XOR )

(TOT) (TOT) (TOT) (TOT)

Tr1 T2 T3 T4 5 Tg L7 Ig
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Each XOR-gate can now be replaced by a small circuit of AND- and OR-
gates. Note that we need to provide this circuit with both variables and their
negations, and that the circuit likewise “outputs” both XOR and XOR.

XOR(z,y) XOR(z,y)

(axp) (anxn) (axp) (anp)
] |

9 —

T T Y y

As one can see, the above solution only requires AND- and OR-gates of
constant fan-in (namely 2). The boolean functions that can be computed by
constant fan-in O((logn)*) depth circuits form the class NC*. So we have
just shown that PARITY € NC'. In fact, all symmetric boolean functions are
in the class NC'.

11.8. Let Y; be a random variable that is 1 if the ¢th trail results in suc-
cess, 0 otherwise. E(Y;) = 1-p+0-¢g = p. So E(X) = EQ,Y;) =
> E(Y;) = n-p. Furthermore, V(X) = E((X—E(X))?) = E(X?) - E(X)?
= E((ZiL, Y)?) — (np)? = B3, 352, YiY5) — (np)® = n(n—1)p* +np —
(np)* =n-p-(1-p).

11.9. Pr[|X —E(X)| > a] = Pr[ (X — E(X))? > a? ]. By Markov’s
inequality, Pr[ (X — E(X))? > a? | < E((X — E(X))?)/a* =V (X)/a®.

> 13] < L) = 1000307 — (394

11.10. Pr[X < 17] < Pr[|X — E(X)
11.11.

Pr[X > a] Pl —p)

IN

pl

(0

> (;
> (;

a

IN
i

s
Il
e

IA

=
S]
v
3
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In fact, we can show an even better approximation:

I
]

IN
3
|
/N N
2 3
N——
/N .
S
=
s}
N———
b
=)
s
_
=
3
|
)
L

Using this approximation, the approximations in Exercises 11.16 and 11.20
can also be improved.

11.12. Suppose there is a family of polynomial-size, depth ¢ circuits for
PARITY. If we artificially add a new first level consisting of (AND- or OR-
gates) with fan-in 1 (one connected to each variable used in the gate), then
we get a depth ¢ + 1 circuit with constant input fan-in, which contradicts the
claim.

11.13. Let X be the random variable that contains the number of variables
that remain in S},. Then

Pr[ fewer than y/n/2 variables remain in S’]
V(X)
< PrX —EX)|[>2Vn/2] < —F—755
(vn/2)?
=0 (—).
()
In fact, it is possible to prove much sharper bounds (look for Chernoff bounds,
cf. Topic 17).

11.14. We must show that for every n we can find a restricted circuit with
exactly n inputs. Let n be fixed. As a starting point, consider the circuit Sy,,2.
With probability greater than 0, the circuit Sy, . still has at least n inputs.
Thus there ewists a restricted circuit with m inputs where n < m < 4n?. The
size of this circuit is O((4n?)*) = O(n?*). If we now set any m — n of the
inputs to 0, then we get the desired circuit which is polynomial in size and
has exactly n inputs.
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11.15.
Pr[AND-gate not 0]
< Pr[all inputs # 0]
< Pr[an arbitrary, fixed input is not 0]**!n"
< (3/4)*Inn (for n > 4)
— 4k 1n(3/4)
<n7% (since In(l —z) < —x)
11.16.
Pr[AND-gate depends on more than a variables]
4klnn n
< 1 ‘1-1 e
<> (7)arvmra-inm
< (1/y/m)® - 2%kInn (Exercise 11.11)
_ n—a/2 .8k
— ,nSIcfa/Z

Solving 8k — a/2 = —k for a, we obtain the constant a = 18k.
11.17.

Prlthe AND-gate is not constant = 0]
< Prinone of the OR~gates obtains the value 0]
< (Pr[an arbitrary, fixed OR-gate does not get set to 0])%1n"
< (1—4-)¢mn (for n > 4)
d-In(1—47°)

IN

n
n~4*™"  (since In(1 — z) < —x)
n

% (plugging in d)

11.18. In this case there are at most d - Inn such OR-gates, and each one
has fan-in at most ¢. So [H| < ¢-d-Inn.

11.19. If there were an OR-gate with a set of variables disjoint from H,
then the set of OR-gates that defined H would not be maximal, since this
OR-gate with disjoint variables could be added to the set.

11.20. By Exercise 11.18, |H| < cdlnn. So by Exercise 11.11 we get the
approximation:
Prlh > a] < 2°4mm . (1/y/n)®
< n26d i nfa/Z
; n26d7a/2 i

Solving 2cd — a/2 = —k for a, we get a = 4ed + 2k.
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12.1. OR(z1,...,z,) =1-J]" (1 — ).
12.2. The error probability is (1/2). We put (1/2)! < e and get ¢ > log(1/e).

12.3. AND(zy,...,2,) = p(1 — x1,...,1 — x,,). This corresponds to the
DeMorgan law:

AND(zy,...,2p) = NOT(OR(NOT(z1),...,NOT(zy))) .

12.4. Pr(|TNSwgn+2| > 1) < Pr(|TNSiegnta| > 1) < (7)-270een+2) = 1/4.

12.5. The probability is > 3/4 that case 1 does not occur, and in case 2,
the probability is > 2/3 that there is an ¢ with |T'N S;| = 1. Therefore, we
get a probability of at least (3/4) - (2/3) = 1/2.

12.6. O(log(s/e) -log?(s)). As long as s = s(n) is a polynomial, ¢ = 1/4 (for
example) is a constant and the depth d is constant, then this is polylogarith-
mic in n.

12.7. Suppose there is no choice of random decisions with the property that
for at least 0.9 - 2™ values of a, p(a) = f(a). That means that for all random
decisions which lead to a polynomial p, there are less than 0.9 - 2" values of
a with p(a) = f(a). But then the expected value must be less than 0.9 - 2™,
a contradiction.

12.8. In one direction the function is z — 1— 2z, in the other z — (1 —z)/2.

12.9. The number of 1’s in a 0-1 vector is odd if and only if the number if
—1 terms in the corresponding (4+1/ — 1)-vector is odd. This corresponds to
a product = —1.

12.10. If the polynomial ¢ contains a term of the form y?, then we can
replace that term by 1, since we are only interested in the polynomial for
y; € {—1,1}. Thus exponents greater than 1 are unnecessary.

12.11. Using Stirling’s formula we can show that (2:) < \2/% From this it
follows that

(n+v/n)/2 n n/2 n (n/2)+(v/n/2) n
> ()-x()+ > ()
=0 =0 i=(n/2)+1

1 n
<_ n
< g2+ ()
< 12”-|-(\/_/2) 2"
— n
—2 /2

<0.9-2".
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12.12. Since y; € {—1,+1},

a@i-yn) - [Twi=1wi- 1] w

igT i=1 igT

ieT  igT

:Hyi-

i€l

12.13. We have already shown an upper bound of O(log(s/¢)-log(s)) for the
degree of an approximating polynomial. Now treat ¢ as a (yet undetermined)
function of n. By comparison with the lower bound /n/2 (for the degree of
an approximating polynomial for PARITY) we see that for certain constants

d and e, it must be that elog® n > v/n. Solving for ¢ yields t = Q(lolg‘;ﬁ)gn).

12.14. Let G € AC® via the constant depth bound # and the polynomial
size-bound p'. If we replace the fictitious G-gates in the reduction circuit with
the AC® realization of G, we get an AC® circuit for F' of depth < ¢ -¢' and
size < p(n) - p'(p(n)).
12.15. The majority function is a special case of threshold function
Ti(xy1,...,x,), where Ti(z1,...,2,) = 1 exactly if at least k of the z;’s
have the value 1. So maj(z1,...,2,) = Try21 (21, . ., T0).

In the other direction, the majority function can also simulate arbitrary
threshold functions. Suppose, for example, that k < n/2. Then

Ty(x1, .-, Tn) = Mafo(n_g)(T1,. .., Tpn, L,..., 1) .
——
n—2k
If £ > n/2, then
Ti(x1, ... xn) = major(x1,. .., Tn,0,...,0).
——
2k—n

We can also construct the Exact-k functions from the functions Tj. Ej is
1 if and only if exactly £k of the x;’s have the value 1.

Ey(zy,...,zn) = Ti(z1,.. .y x0) NTh—k(T1, ..., T0n)

=Te(w1,. ., 00) A1 (T1, .00, T0)

Finally, we get the parity function via the following circuit of constant
depth. (In the diagram below, assume that n is odd and that
T = (mla"';xnax_lw"aﬁ)')
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Ey E; o oo E, E,
i i i i

Analogous arguments can be used to show that all symmetric functions
can be reduced to majority by ACY-reductions.

12.16. If a; is a boolean function in the variables S C {z1,...,z,}, |S| <n,
then a; can be written in (unabbreviated) disjunctive normal form. Then
a; = 1 if and only if exactly one clause of the disjunction is true. Since at
most one clause is true, we can get rid of the disjunction and feed the outputs
of the ANDs (weighted with the w]s) directly into the threshold gate.

12.17. In polynomial p the monomials with i variables have coefficients
(¥)
Biy--y ,H(n) So every such monomial in polynomial ¢ has coefficient Z Bi.

i
i=1

13.1.

Let x1,-..,x, be the common variables of F' and G. We can give a truth
table for H by first giving “simplified” truth tables for F' and G that only
consider the common variables z1, ..., z,. We place a value of 0 (or 1) in the
truth table whenever the values assigned to z1,...,z, are already sufficient
to determine the truth value of F' or G. We place a 7 when the value depends
on the assignment to the remaining variables.

For formulas F' and G, for which F' — G not every combination of 0,1,7
is possible. For example, the combination F' = 7 and G = 7 is not possible,
since this would mean that there exists an assignment (of all variables) that
makes F' true but G false, contradicting F' — G.

The following table shows all possible combinations of values for F' and
G along with the correct choice for the formula H. This demonstrates that a
formula H exists.

F| H |G

~N=o OO
o
]
=
—
e =)
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See also

o G.S. Boolos, R.C. Jeffrey: Computability and Logic, Cambridge Univer-
sity Press, 2nd edition, 1980.

13.2. In order to be able to distinguish the encodings of occurrences of dis-
tinct variables we need a certain number of bits, and this number increases
with the number of variables. With 1 bit we can distinguish at most 2 vari-
ables; with 2 bits, at most 4, etc. In order to write down m different variables,
we need at least 2(mlogm) bits. So in a formula coded with n bits, only
m = O(n/logn) variables can occur.

13.3. Suppose an arbitrary assignment of all variables (z, y, and z variables)
in F,, and G,, is given. If this assignment makes F,, true, € A, since F}, is
a Cook formula for “A € NP.” Since G, is a Cook formula for “A € NP,”
G(z,z) =0 and ~G(z,z) = 1. So F}, = -G,

13.4. We must show that € A & H,(z) = 1. If x € A, then F, is
satisfiable. So there is an assignment to the z,y-variables with F,(z,y) = 1.
Since F,, — H,, Hp(z) = 1.

On the other hand, if x € A, then there is an assignment to the x, z-
variables with G,,(z,z) = 1. Since H,, — —G,, (equivalently: G,, — —H,,),
-H,(z) =1, ie., Hy(x) = 0. (In fact, we have F,, <> =G,,.)

13.5. Choose A; = A and 4, = A.

13.6. Let F,(xz,y) be the Cook formula for “A; € NP” and let G, (x, z) the
Cook formula for “As € NP.” Since A; and A,y are disjoint, F,, = —G,. If
an interpolant of F), and —@,, has polynomial-size circuits (i.e., int(F,,, G,,)
is polynomial in n), then A; and A, are PC-separable.

13.7. Suppose that the last two statements are false i.e., NP = coNP and
interpolants can be computed in polynomial time. We will show that P = NP.
Since NP = coNP, both SAT and SAT are NP-complete. For SAT and SAT
there are corresponding Cook formulas F,(z,y) and G, (z,z), and F,, —
—G,,. In polynomial time (in n) we can compute their interpolant H,(z),
for which ¢ € SAT < H,(z) = 1. From this it follows that SAT € P, so
P = NP.

13.8. Consider the language

A={(H(z,y),a) | H is a boolean formula and a an assign- .
ment to the wz-variables such that there
is an assignment to the y-variables that
makes H true}

This language A is in NP and has by hypothesis polynomial-size circuits.
This means there is a sequence of circuits ¢, co, ... of polynomial size such
that
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cumay|((Hya)) =1 < (H,a) € A < JbH(a,b)=1.

Now let F' and G be two formulas of length n with F — G. (F = F(z,y)
and G = G(x, z); i.e., x is the set of common variables.) Let ¢y be a circuit
(family) for A as above but with the first parameter fixed equal to F' (H = F)).
Then cp(a) = 1 < b F(a,b) = 1. We claim that cp is a circuit for an
interpolant of F' and G. It is clear that every assignment that satisfies F' also
makes ¢y = 1. Now let a be an assignment such that c¢p(a) = 1. Then there
is an assignment b such that F'(a,b) = 1. Since F — G, it must be the case
that for every assignment d, G(a,d) = 1. Thus cp — G.

14.1. Every branching in a branching program of the form
z;

~0C

Lq

can be locally replaced with the following sub-circuit:

Finally, all connections that lead into an accepting node are joined together
in one big OR-gate.

14.2. BP-INEQ € NP: The following describes a nondeterministic Turing
machine M for BP-INEQ:

INPUT (B, B');

GUESS z1,...,2, € {0,1};

IF B(a1,...,2,) # B'(21,...,7,) THEN ACCEPT
ELSE REJECT

END

BP-INEQ is NP-hard: The goal of this proof is to construct from a predicate
logic formula, two branching programs that are inequivalent if and only if
the formula is satisfiable. Consider an example: Let F' = (21 V =2 V x4) A
(x3 V @o V —xy). This formula is satisfiable. From this we must construct
a branching formula Bp with B = F. Bp is made up of subgraphs that
represent the individual clauses of F:
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The second branching program will be a program By that computes the
0-function.

If FF € SAT, then there is an assignment on which Br computes the
value 1. Since By computes 0 on every input, these branching programs are
inequivalent, i.e. (Bp,By) € BP-INEQ. On the other hand, if By and By
are different, then there is an input on which By computes the value 1. Since
Bp = F this is also a satisfying assignment for F'. Altogether we have:

F € SAT <= (By,By) € BP-INEQ .

It is clear that from any formula in conjunctive normal form one can
construct a branching program Bp. If F' consists of k clauses, then By has at
most 4k + 1 nodes. The size of By is a constant for all inputs. For example,
By could be a branching program that counsists of a single rejecting terminal
node. So the construction of By and By from the formula F' can be carried
out in polynomial time.

Note that the branching program Bp is not, in general, one-time-only and
that this is significant for the proof.

14.3. The polynomials in the individual nodes are:

m =1

b2 =1

pP3 = (1—371)-|—£L”1£L”2 +CU1(]. —372)373
pa = x1(l — 12)

ps = (1 —z1)wy + 2125 + 21 (1 — T2) 2203

pe =x1(1—a2)(1—a3) + (1 —21)(1 — 22)+
331372(]. — 372) + CUl(]. — 562)2373

PB =DPs
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Truth table:

L@ [ oo [a3 [ po [p2 | s | pa[ps [ ps | B

01010 1({0|1]0]0] 1|1
01011 1 (0] 1]0]0]1]|1
01110 10 1]0]1]0]|0
01 1 10| 1]0]1]0]|O0
1107]0 1710 1]0]1]1
117071 171|110 ]0|1]1
1 110 1 ({1 ,1]0]1]0]|0
1 1 1 1 (1| 1]0]1]0]|O0

As one can see, pg = B. Now we prove the claim:

Let x1,...,2, € {0,1} and let V,,, be the set of all nodes in B that
are reachable from v+ in exactly m steps. Then for all v € V,,,:

1 if v is reachable on the mth step
pu(T1,.. ., Tn) = of B(xy,...,zp),
0 otherwise.

Base case. m=0: p,,.., =1 +/

Inductive step. Assume the claim is valid for all nodes that can be reached
in < m steps.

Let v be a node in B that is reached in step m+ 1 step of the computation
and let the nodes wp,...,v; be the predecessors of v. Every assignment to
Z1,...,T, determines exactly how the branching program is traversed. v is
reached in step m + 1, then there is exactly one node v;, 1 <+ <1, which was
visited in the m-th step. By the inductive hypothesis, on input x1, ..., x,,

Dy =0Q1° Py, +Q2 - Dy, +...F+ Qi—1 " Poy;_,
~— ~—

~——
=0 =0 =0
+ai : pvi +ai+1 ' pvi+1 +...+ Qp - pvn =y .
N~~~ N—— N~~~
=1 =0 =0

So the value of p, is completely determined by «;. There are two possibilities
for the label of the edge (v;,v):

e z; =0, in which case p, =a; =1 —x; = 1.

e z; =1, in which case p, = a; = z; = 1.

Since every computation of B halts in some terminal node v, after finitely

many steps, p,, = 1. Finally, pp is the sum of all polynomials of accepting
terminal nodes so

pe(z1,...,x,) = B(x1,...,z,) .
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14.4. Consider the following counterexample: Here are two branching pro-
grams By and B) for the function f(z1,22) = —x1 V a:

Bg: pBZ(Il,I2) =1- T+ T1T2

B, and Bj are equivalent, but pp, and pp; are not identical: pp,(3,0) #
bg; (3a0)

14.5. The proof is by induction on the number of variables, n.
If n =1, then p and ¢ are lines. If they are not identical, then they can
only intersect in one point, so they must be different in at least |S| — 1 points.
Now suppose n > 1. Then

1 1
p— . . - ll . - Z
p(zy,...,x,) = E E Qiy o "] T

11 =0 in =0

1 1

_ .0 gl gt

=z - E E A0 ig,.iy " Lo e T
i2=0 in =0

=1 ,
~~

=:po(®2,....,Tn)

1 1
1 in i
+ a7 - E E A1 ig,..yin " Lo * e "L

i2=0 in=0

=p1(2,..,Tn)

=po(w2,...,xn) + o1 -pr(22,...,2n) .

Analogously, g(z1,...,on) = qo(2, ..., 2p) + 21 - q1 (22, .., Tp)-
Since p # ¢, either py # qo or p1 # ¢1. First we handle the case when
p1 # q1. By the inductive hypothesis, p; and g, differ on at least (|S|—1)""!
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points. We will show that for every (z2,...,,) there is at most one choice
for 1 such that p and ¢ are equal on the input (x1,x2,...,x,). Solving the
equation

po(Ta, ..o, Tn) + @1 - p1(x2, .-, Tpn) = qo(T2, .-, xpn) + @1 - 1 (T2, ..., Tp)

for x1 we get:
_ po(@2,- -, Tn) — qo(@2,- .-, Tn)
q1(x2, ..., xy) —p1(T2,...,Tp)
which is only a solution if the value is in S. There are at least |S| — 1 choices
for x1, which lead to different values of p and ¢. So altogether there are at
least (|S] —1)-(|S| —1)"~t = (|S| — 1) choices for (1, ...,x,) that lead to
different values of p and gq.
If p1 = q1, but pg # qo, then the value of z; doesn’t matter for the equality
of p and ¢. So in this case there are actually at least |S|(|S] — 1)" ! values
for (z1,...,,) that make p and ¢ different.

14.6. Let S = {0,1} in Theorem 14.2.

T ’

14.7. The polynomials pp and pp' from one-time-only branching programs
are multi-linear. By Exercise 14.3, they must agree on all values in {0,1}" =
S™. By the previous exercise it follows that pg = ppr.

14.8. B and B' are equivalent, so pgp = pg for all z4,...,z, € {1,...,2n}.
Thus Pr[M (B, B') rejects] = 1

14.9. Let p be the probability that the algorithm accepts. By Theorem 14.2,

JUSI=1" _enote 11
|S|m (2n)m 2n 2
More precisely, it can be shown that lim,, (1 — %)” = % = 0.6065... .

14.10. We will describe a reduction that maps each boolean formula F' in
conjunctive normal form to two one-time-only branching programs B; and
Bs, such that F' is satisfiable if and only if there is an argument tuple y with
fB,(y) =1 and fp,(y) = 0. Expressed differently: F' is unsatisfiable if and

only if fg, (y) < fB,(y) for all y.
Let F' be a CNF-formula with k£ clauses and in which the n variables

Z1,...,T, occur. The variable set y for each of the branching programs is
Y11 --- Y1k
Y21 - Y2k
Ynl --- Ynk

The (intended) connection between a satisfying assignment « = (z1,. ..
for F' and an assignment y = (y11, - - -, Ynk ), for which B;(y) = 1 and Bs(
0 is the following:

7mn)
y) =
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=1 Vi = 1 if z; occurs in clause j,
’ yij =0 otherwise;

wo— 0w Jyi =1 if ~; occurs in clause j,
¢ yij =0 otherwise.

The basic construction of B; is indicated in the following sketch:

oo XK

i=1 i=mn
Undrawn edges are to be understood as leading to a rejecting terminal node.
For every ¢ = 1,...,n, there are two separate paths between the connecting

nodes. The k edges on the upper path are labeled with y;; (j = 1,...,k) if
x; occurs in clause j, otherwise with 7;;. The labels on the lower path are
determined analogously, but with —z; playing the role that x; played in the
upper path.

For example, the formula

F = (Il V —|I2) A (I2) AN ("Il \ —|.Z'2)

maps to the following branching program By :

Y12 Y22

Clearly, there are 2™ paths from the start node to the accepting terminal
node. And since the branching program is one-time-only, there are 2" assign-
ments to y for which B;(y) = 1. These assignments can be assigned to 2"
original assignments for z as described above.

Every satisfying assignment for F' corresponds to an assignment to y with
the property that, in the arrangement of the y;;’s illustrated above, every
column contains a 1. The following branching program B, will describe all
y-assignments except those that correspond to satisfying assignments to F'
in this way, that is all assignments for which there is some column with no
1’s in it.
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va (i=1,...,n)

Solutions

Notice that By only depends on k and n, and not on the inner structure of

F itself.

For example, the formula F' from above, for which £ = 3 and n = 2,

results in the following branching program Bs:

A
W), W, O
Y11 {y21 o

Z/TK\?Jzz@

lem
Y13 Y32

O ©y32 @

Now F is satisfiable if and only if there is an assignment y with By(y) >
By (y), so the inclusion problem for one-time-only branching programs is

coNP-complete.

14.11. This is because f is critical, that is, for ever & with f(x) = 1 and
every &’ that differs from « in any bit, f(x’) = 0. So if some path in the
branching program accepts = but does not query every bit, then that path
cannot distinguish between & and x’, and will incorrectly accept @’. This
contradicts the assumption that B correctly computes the function f.
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14.12. Suppose k(z) = k(z’). Since the polynomials associated with z and
x’ are different, by the Interpolation Theorem, this difference must show
itself in any n/3 queries that are answered yes, since each such determines
a point on the polynomial. So the x-path and the x’-path must be different
both above and below k(x) = k(x’):

By following the x-path above k(x) and the x’-path below, we get a new
accepting path, corresponding to an assignment & for which f(&) = 1. This in
turn corresponds to another polynomial in POL. (There can be no conflicting
definitions for & since B is one-time-only.) But this is impossible, since the
polynomials corresponding to  and & cannot be equal in n/2 > n/3 places
and different in others.

15.1. If P = NP, then all languages (except for ) and X*) in NP are also
N P-complete. In particular, all finite sets are NP-complete. But an infinite
language such as SAT can not be isomorphic (and, therefore, certainly not
P-isomorphic) to a finite language.

15.2. Let z be a boolean formula and let y = 3195 ...yx be an arbitrary
string (WLOG over {0,1}*). Now let

pSAT(Iay) :l'/\(Z\/—LZ)/\uyl A A uYr ,

where z,u1,...,u are new variables that do not occur in z, y° means y and
y* means —y. It is clear that p4 is polynomial-time computable and that this
formula is satisfiable if and only if z is satisfiable. Furthermore, the formula
is longer than |z| + |y|. Injectivity in argument y is also clear, and from a
formula py(z,y) as above it is easy to reconstruct y. (This is the reason for
the variable z — it allows us to detect where the y part of the formula begins.)
So d4 also exists as required.

15.3. Let A §I’i B via f and B §I’i A via g. Now put
f'(x) = pp(f(x), ) and ¢'(z) = pa(g(x),z) .

By the properties of p4 and pg f’ and g’ are correct polynomial-time com-
putable reductions from A to B and from B to A, respectively. Furthermore,
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If'(@)| > [f(@)] + |z| > |z and |g'(z)|] > [g(2)] + [z| > |z|. The inverse
functions for f' and ¢’ are dp and d4 and are therefore polynomial-time
computable.

15.4. Let A SE B via the injective function f and B §P A via the injective
function g. Furthermore, suppose that |f(z)| > |z|, |g(x)| > |z|, and that the
functions f~! and ¢! are polynomial-time computable. We need to define
a bijective function A that is a reduction from A to B. For the definition of
h(zx) there are essentially two choices available: f(z) or g~!(z). (Of course,
the latter choice only exists if  is in the range of g.)

Sketch:

2 ®

By applying the functions g ! and f~! we can proceed in a zig-zag manner

backwards from x until we arrive at a string that is not in the range of g or
f, respectively. (In the example above f~1(g~!(z)) is no longer in the range
of g, so the zig-zag chain ends on the lower line.) Now define

h(z) = f(z), if the chain starting with = ends on the lower line
" | g~ !(x), if the chain starting with = ends on the upper line

Since the functions f and g are length-increasing, no zig-zag chain can be
longer than |z|, so h can be computed in polynomial time.

Next we must show that h is a bijection. For the proof of injectivity, let
z and y be distinct strings such that h(z) = h(y). Since f is injective, this
can only happen if h(z) = f(z) and h(y) = g *(y) (or vice versa). But then
x and y are in the same zig-zag chain and the definition of A would either
have used f both times or g—' both times. This is a contradiction.

For the proof of surjectivity, let z be an arbitrary string. We must show
that z is in the range of h. Consider a zig-zag chain starting at z (in the
upper line). If this chain ends in the upper line (including the case that z is
not in the range of f), then for x = g(2), h(z) = g '(x) = 2. If the chain
ends in the lower line, then # = f~1(2) must exist and h(z) = 2.

The inverse function for h is also bijective and can be defined using a
similar case distinction, so it is also polynomial-time computable.
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15.5. Let y be the encoding of some satisfiable formula ¢,,, and let [ = |y|.
For any z, the formula

P(x) =y A (2 V —)

is also satisfiable. Let f(x) be the encoding of ¢(z) as a string. Then under a
reasonable encoding scheme, | f(z)| < |y| +4|z|+k = 4|z|+I+k = 4|z|+C, for
some constants k and C. Thus there are at least 2" strings of length 4m + C
in SAT, i.e., for large enough n, there are at least 2(n=C)/4 = 2-C/29n/4
strings of length at most n in SAT.

15.6. By the previous exercise, SAT contains at least £2°" strings of length n
for some constants § > 0 and € > 0. If SAT were P-isomorphic to a language
S, where S contained only < p(n) strings of length at most n, then there
would be a bijective function f mapping SAT to S. Since f is polynomial-
time computable there must be a polynomial ¢ such that |f(x)| < g¢(|z]).
From this we get the following contradiction: f maps 29" strings injectively
into p(g(n)) possible range elements.

15.7. SAT <P LeftSAT via the reduction F — (F, \).

LeftSAT <P SAT via the reduction (F,a;...a;) — F(z1,...,2,) A
(ay...a; <* z...x,), where the formula (a; ...a; <* z;...z,) is defined as
follows: Let E = {j € {1,...,i} |aj =1} and N = {j € {1,...,i} | a; = 0}.
Then

(al...aig*xl...xn):/\ x;V \/ €

jEE LEN,I<j

Another way to show that LeftSAT SE SAT is simply to observe that
LeftSAT is in NP and that SAT is NP-complete.

15.8. Let by ...b; be an initial segment of b, which we assume by induction
belongs to T'. By the construction of U, by ...b;0 and by ...b;1 are added to
U, so the correct initial section of b of length 7 + 1 — let’s call it b’ — is in U.

If (F,0") has the same g-value as some other string in U, then the smaller
of the two is stricken, but this cannot be ', since it is the largest element
of U for which (F,b") € LeftSAT and g is a correct reduction. So after the
first reduction of U, each string in U has a distinct g-value, and b’ is among
them. If U contains more than m = p(q(|F|)) strings, then U is restricted to
the first m of these. But this must include ', since at most m possible values
of g are available for elements of LeftSAT (including (F,b')):
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on b 1"

The sketch above shows a possible distribution of the strings in U following
the first reduction step.

16.1. Suppose L = II}'. Let L € F . Then there is a language L' € II¥
with
L=A{x|3y(z,y €L’}

By assumption, L' is also in . Let
L' = {{z,y) | I3=1V22...Qz; (z,21,...,2i) € A},
where A is a language in P. Then we have

L={z|3y(z,y) €L}
={z | FyI=1V22...Qz (x,y,71,...,2;) € A}
={z|FuVzr...Qz [u=(y,z1) Nz,y,21,...,2;) € A]} .

The expression in square brackets is a predicate in P, so L in EiP .

Now suppose that X = X, We show by induction on k that for all
k> 1, XY = ¥,,). From this it follows that PH = X¥. The base case of
the induction is clear. For the induction step let L be a language in EiikH.
Then for some language L' € I},

L={z|3y(z,y)el}.

By the inductive hypothesis L’ € XF so L' € II¥. From this it follows that
L e XL, . By assumption X5, = ¥F so Le TF.

Finally, suppose PH = Y. Since IT C PH it is immediate that II¥ C
P so It = 2F.

16.2. Choose a language over the one-element alphabet {1} that is not in P.
This language has polynomial-size circuits (for each n design a circuit that
on input 1™ outputs either 1 or 0 according to whether or not 1™ € L). Such
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a language L that is not in P (in fact, not even computable) can be easily
defined by diagonalization, for example

L = {1™ | the n-th polynomial-time machine on input
1™, does not accept} .

16.3. If L has polynomial-size circuits then the corresponding circuits
c1,C2,C3,... can be coded in a sparse set:

S ={(1",y) | y is an initial segment of ¢} .

With this language as oracle, we can use polynomially many oracle queries
to reconstruct the circuit ¢|,| and then simulate the circuit on .

On the other hand, if L € P for some sparse set S, then the configura-
tion transition of the Turing machine can be suitably coded into a circuit,
demonstrating the L has polynomial-size circuits. Details of this can be found
in

o U. Schoning: Complexity and Structure, Springer, 1986.
o 1. Wegener: The Complexity of Boolean Functions, Teubner-Wiley, 1987.

o J. Kdébler, U. Schéning, J. Toran: The Graph Isomorphism Problem: Its
Structural Complexity, Birkh&user, 1993.

16.4. Self-reducibility of SAT means that can find a witness (a satisfying
assignment) for a formula F' € SAT by recursively testing other formulas
for membership in SAT in the following manner: To determine the value
of a variable z in a satisfying assignment for F' temporarily assign it the
value 1. This produces a new formula with fewer variables. If this formula is
satisfiable, then there is a satisfying assignment for F' in which x = 1, else we
try « = 0. By this same recursive procedure we get a satisfying assignment
for the modified formula with « = 1 or = 0. This combined with = 0 is
a satisfying assignment for F'.

Now we want to design a circuit that realizes this method. Suppose we
are given polynomial-size circuits for SAT. We will use the following notation
for these circuits:

F [F € SAT]

The thick lines indicate a bus of wires. The input to this circuit is the formula
F, coded as binary string, and the (single) output is 1 if and only if F' € SAT.

We also need another simply-constructed, polynomial-size circuit, which
we will denote by
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F$1:a1,...,$i:ai

This circuit has n + ¢ inputs and (WLOG) n outputs. The inputs to this
circuit are the encoding of F' and i additional bits ay,...,a;. The output is
an encoding of the formula that results from substituting the values a4, ... a;
into the formula F' for the variables z1,...,z;. The details of this circuit
depend on the encoding used for formulas.

The desired witness circuit is built as follows:

— = "
|
S

le— =

le——

16.5. (C) Let « € L. Then for every y, the formula f((z,y)) is satisfiable.
Choose for ¢ the appropriate polynomial-size witness circuit for SAT, which
exists by the assumption and the previous exercise. Then ¢ will produce a
satisfying assignment for every input F' = f({z,y)) € SAT.

(D) If y = c(f({(z,y))) is a satisfying assignment for F' = f((z,y)), then
F is satisfiable (regardless of how y came to be).

16.6. It is clear that all languages in BH;, i = 1,2,3,... are contained in
BH. For the reverse direction, let L be a language in BH. Then there is a
finite expression that represents the application of the intersection, union,
and complement operators used to build L. We will show by induction on the
structure of this expression that L is in BHy for some k& > 1. By DeMorgan’s
laws we can bring all complement operations to the “inside” of the expression,
so that we only need to consider intersection and union over NP and coNP
languages. All NP and coNP languages are in BH,. Furthermore, observe that
all languages in BHj, with k£ even can be expressed in the form

AZ(Al—Az)U(Ag—Agl)U"'U(Ak,l—Ak),
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where each A; is a language in NP. It only remains to show that the intersec-
tion of any two such languages A and A’ can again be expressed in this form.
Now we can apply the distributive law to “multiply out” the expression and
use the equivalence

(Ai —App) N (A — Ajyy) = (AN A)) — (A UAYL)
and the fact that NP is closed under intersection and union to see that the
result has the desired form. (This result is due to Hausdorff (1928)).

17.1. Let M be a probabilistic algorithm for “L € RP,” and let M’ be a
probabilistic algorithm for “L € RP.” Then the following algorithm has the
desired behavior:

INPUT z;

Simulate M on z; let the result be y € {0,1};
Simulate M’ on x; let the result be y' € {0,1};

IF (y = 1) AND (4 = 0) THEN ACCEPT
ELSE IF (y = 0) AND (4 = 1) THEN REJECT
ELSE OUTPUT “don’t know”

In the other direction, from an algorithm of the type given above (with
three possible outcomes: accept, reject, or don’t know) we can get an RP-
algorithm for L (or for L) by making the following modifications to the algo-
rithm:

e In the first case, to show L € RP: “don’t know” becomes “reject.”
e In the second case, to show L ¢ RP: “don’t know” and “accept” become
“reject,” and “reject” becomes “accept.”

17.2. Let L € ZPP. Then L can be computed by a polynomial time-bounded
probabilistic machine My as in the previous exercise. We use this machine as
a sub-program in the following machine M;:

INPUT z;
REPEAT
y := result of simulation of My on z;
UNTIL y # “don’t know”;
IF y = accept THEN ACCEPT
ELSE REJECT END

Let € be the (least) probability that the machine My gives a definite answer
(accept or reject). The expected number of passes through the repeat-until
loop of Mj is then

o0

-1 . 1
Za-(l—a) -z_g.

i=1
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So the expected running time is polynomial. In fact, expected running time
would still be polynomial even if € were dependent on n in such a way that
e =¢(n) = 2().

In the other direction, let M be the algorithm with expected polynomial
running time p(n).

By Markov’s inequality, the probability that the running time is actually
more than 2p(n) (twice the expected running time) is at most 1/2 (otherwise
the “slow” running times would already force the expected running time to
be more than p(n)). So if we simulate M for 2p(n) steps, we get an algorithm
of the type in the preceding exercise, with a probability constant of 1/2,
i.e. our new algorithm answers “don’t know” whenever M has not answered
with “accept” or “reject” within 2p(n) steps.

17.3. The probability that we fail to get acceptance ¢ times (provided the
input is in L) is at most (1 — g)t. If we want (1 —¢)! < 27", we see that

t> oot = 2(2) is sufficient.

17.4. If we repeat a Bernoulli trial ¢ times independently, where each of the
trials has a probability v of success, and let X be a random variable that
counts the number of successes, then the following approximations are valid
for r > 0:

PriX —ty>r] < 6*7’2/(4W(1*V)) < 6*7’2/75

and
Prity — X >r] < e~/ (At (1=7)) < =P/t

— ’

since y(1 — ) < 1/4. Derivations of these (or similar) approximations can be
found in many places, for example in

o N. Alon, J.H. Spencer: The Probabilistic Method, Wiley, 1992, 233ff.

o H. Chernoff: A measure of the asymptotic efficiency for tests of a hypoth-
esis based on the sum of observations, Annals of Mathematical Statistics
23 (1952), 493-509.

o Cormen, Leiserson, Rivest: Introduction to Algorithms, MIT Press, 1990,
1211

o T. Hagerup, C. Riib: A guided tour of Chernoff bounds, Information
Processing Letters 33 (1989/90), 305-308.

o E. Kranakis: Primality and Cryptography, Wiley-Teubner, 1986, 91ff.

o C. Papadimitriou: Computational Complexity, Addison-Wesley, 1994,
258ff.

o E.M. Palmer: Graphical Evolution, Wiley, 1985, 133ff.
o P.E. Pfeiffer: Concepts of Probability Theory, Dover, 1978, 281ff.



Solutions 283

Applying these inequalities in our case yields:

at
t . .
> <> A (1= ) = PrIX —at > et/2] < e < /4 < 2720

. 7
=0

To get an error probability of 27", we must choose t > (c/e?) - n where c is
a suitable constant.
The approximations in the case ¢ € L are similar:

t
> C) 5 (1=6) = Prlat — X >et/2] <e = t/4<2720)

i=at
where § = a —¢/2.

17.5. Deterministic polynomial time computations (with a fixed input
length) can be transformed into polynomial-size circuits. (Details can be
found in the book by Kobler, Schoéning, and Tordn.) If we fix a fortunate
choice of the random variable z, then our probabilistic algorithm becomes
a deterministic algorithm and we can apply the same principle to construct
polynomial-size circuits.

17.6. (For an explanation of self-reducibility, see Topic 16, the book by
Kébler, Schoning, and Toran.)

Let M be a BPP-algorithm for SAT, which we are assuming exists. After
probability amplification, assume the error rate is at most 2~". Now to show
that SAT € RP we use the following probabilistic algorithm (the only prob-
abilistic part is the use of M as a sub-routine). The algorithm makes use of
an array ai,...,a, of bit values.

INPUT F(xy,...,x,); (F is a formula in the variables z1,...,z,)
FOR i:=1TO n DO
IF M(F(ay,...,a;—1,1,%it1,...,2,)) =1 THEN q; :=1
ELSE a; := 0 END
END:

IF F(ay,...,a,) =1 THEN ACCEPT
ELSE REJECT END

If FF ¢ SAT, then this algorithm will always reject. If F* € SAT, then with
probability at least (1 —27™)™ > 1/2 a satisfying assignment a; ... a,, for F
is constructed by the algorithm, which causes it to accept. So this algorithm
demonstrates that SAT € RP.

17.7. Let x and y be arbitrary distinct element from {0,1}". Then
Pr[h(z) = h(y)]
= Z Prih(z) = z A h(y) = 2]

z€{0,1}*
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= Z ZPT[(aw—f—b) mod p =u A (ay + b) mod p = ']
u€[0,p—1] u'

<p-Tp/2] pi
<(@/2°+1)-1/p

=1/2°+1/p
<1/2°+1/2".

Here the last sum runs over all v’ € [0,p — 1] with «' = u (mod 2°).

17.8. Let hy,hs € H and z,,x2 € X be chosen uniformly at random We
need an upper bound for Pr{(hi,hi(x1)) = (ha,h2(x2))], i.e for Pr[h; =
ha Ahy(x1) = ha(z2)]. This is exactly 1/|H| multiplied by Pr[h(z1) = h(z2)],
where h € H and 1,22 € X are chosen at random. If x1 # 2, then this
probability — by the definition of almost universal — is at most 1/2° + 1/2".
Since |X| > 2!, the probability for z; = x5 is at most 1/2!. So we can give
an upper bound of

1
[H (2%

|—;[| (1725 + 1/27 +1/2%) < (1 +2/2%) -

17.9. Let X be the set of 0-1 sequences of length & with not more than k/2
1’s. Let D be a distribution that is e-similar to the (p, 1 — p) distribution (of
length k), and let E be the “correct” (p,1 — p)-distribution. We approximate
as follows:

Prp(X) < Prg(X)+e¢
k/2

B\ . )
=> <Z.>p’(1 —p)* Tl +e
=0
< 2=k 4 ¢

So it must be that ¢ = 277(k),
17.10. Let X be an arbitrary set of 0-1 strings. Then

|Prt(F) € X]— Pr[H € X]|

< |Pr[t(F) € X] - Pr[t(G) € X]| + |Pr[t(G) € X] — Pr[H € X]|
< |Pr[t(F) € X] — Pr[t(G) € X]| + 62

< |Pr[F € t7Y(X)] - Pr[G € t7H(X)]| + 52

<640y

18.1. If for every language A € C gilt, the language {(z,y) |z € A4, y €
2*} € C, then CC BP-C.
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18.2. Let ¢ be an arbitrary polynomial and let A be a language in BP-C. So
for some language B € C and some constants « and ¢,

r€A= Pr[(z,y) € B]>a+¢e/2,
r g A= Pr[(z,y) e B]<a—¢/2.

In order to amplify the probability to reach an error rate of at most 2~4(" | we
use the well-known technique of replacing B with the language B’ described
by the following algorithm.

INPUT (z,y1 - ye);
s :=0;
FOR:i:=1TO t do
IF (z,y;) € B THEN s := s + 1 END;
END;
IF s > at THEN ACCEPT
ELSE REJECT END

Here t is a linear function in ¢(|z|).

What we need is that this algorithm is “of type C,” so that B’ € C. Since
this program uses B as a sub-program, it is clear that B’ € P(B), but that
characterization is to coarse, since it would not, for example, apply with the
class NP in the role of C (unless NP = coNP). If we look more closely, we see
that this reduction is actually positive (or monotone). This means that from
B, C By it follows that L(M, By) C L(M, B3). We will use the notation Pos
for this type of reduction, so B" € Pos(B). P, NP and many other classes are
closed under Pos(-).

18.3. Let A € BP-BP-C. Then there are constants « and €, and a language
B € BP-C such that

r€A= Pr[(z,y) €eB]>a+¢/2,
r¢g A= Pr[(z,y) e B]<a—¢/2.

For B € BP-C we can apply probability amplification, so there is a language
C € C with

(2,5) € B=> Pr{(s,y,2) € C] > 1—¢/4,
(r,y) ¢ B= Pr[(z,y,2) € O] <¢e/4.
Putting this together, we get

t€A= Pri(z,y)eC]>a+e/2—c/d=a+¢e/4,
t g A= Pr[{z,y) eC]|<a—¢e/2+ec/d=a—c/4.

This shows that A € BP-C with the constants o and /2.
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18.4. Let L be a language in Op-BP-C. By the statement of the exercise,
there is a language A € BP-C, a polynomial p, and a predicate @ such that

r€el — Q(m,ASp(n)) ,

where n = |z|. For the language A, there is a language B € C such that for
all y with [y| < p(n),

Prlye A <= (y,z)€eB]>1-9,

where the probability is over z chosen uniformly at random. Because of prob-
ability amplification, we can choose § = 272(")=3_ Now it follows that

Pr(Vy,lyl <p(n) ((y,2)B < ye A)]>1—2pm+lg=pn)=3 _3/4
From this it follows that
PT[I €L — Q(I,B(y)gp(n))] > 3/4 )

where we are using B(y) to denote the set {z | (z,y) € B}. So L € BP-Op-C.
18.5. nl/m
18.6. X = {(G,n) | G is isomorphic to G1 or to G and 7 € Aut(G) }.

18.7. Suppose first that the strings y and g’ differ in exactly one bit, say in
the first bit: y; # yo. For every bit position j = 1,...,b in the result string,

a

h(y); = @ (hij Ayi) = B & (hij Ayr)

i=1

and
a

hy'); = @i Ayi) = B (hj Ayh)
i=1

where 3 = @ ,(hij Ayi) = By 5(hij Ayl). WLOG, we may assume that
y1 = 0 and y{ = 1. Then h(y); = 0 and h(y'); = m1;. So h(y'); =0 or 1
with probability 1/2 for each. Since the bits m, ; are chosen independently,
Prih(y) =zAh(y') =z]=2"2.

This argument can easily be generalized to the case where y and y' differ
in more than one bit.

18.8. Choose uy, ..., upp) randomly. We approximate the probability that
then (the rest of) statement (1) does not hold:

Pri3v(ui ®v g ENA--- ANy ©v ¢ E) ]
SZPr[u1®v¢EA---Aup(n)@v&’E]
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p(n)
:ZHPr[uieang]
v i=1

18.9. Suppose there is a choice of uy, ..., uyy), such that for every v there
is an i < p(n) with u; ® v € F. Partition the set of v’s (i.e., {0,1}P(™)
according to the 4’s:

{Oa 1}p(n) =Vu---u Vp(n) )

where V; = {v | u; ®v € F}. For at least one j, |V;| > 2" /p(n). From this
it follows that |F| > 2P(") /p(n) and, therefore, that |F| < (1 — 1/p(n))2P("),
which is a contradiction to our assumption (for large enough n).

asm. Lm. 18.2 Th. 18.7
18.10. XY = 3coNP "C IBP-NP  C  BP-INP = BP-NP C

mnrt.

19.1. P is contained in ®P since a P-machine is also a ®©P-machine.

®P is also closed under complementation since every ®P-machine can be
extended with one “dummy” accepting path, transforming an odd number of
accepting paths into an even number of accepting paths and vice versa.

19.2. Let L be a language in FewP as witnessed by a machine M that has at
most p(n) accepting computation paths. A computation has length at most
q(n), so it can be represented by a string of length ¢(n). Consider now the
following new non-deterministic machine M':

INPUT z;

GUESS m € {1,...,p(|lz])};

GUESS y1, ..., ym, |yi| = q(|z]) with y1 <+ < ym;

IF all y; represent accepting computations THEN ACCEPT
ELSE REJECT;

END

If ¢ L, then machine M' has 0 (an even number) accepting paths on input
x. On the other hand, if x € L, then M has m > 0 accepting paths and M’
has 327", (') = 2™ — 1 (an odd number) accepting paths.
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19.3. AND-function: f((Fi,...,F,)) = F{ A--- A F. Here F] is a version
of the formula F; with the variables renamed in such a way that no variable
occurs in more than one formula Fj.

OR-function: f((F1,...,Fp)) =F V-V F,.

A NOT-function is nothing other than a polynomial time many-one reduc-
tion to the complement of the language. In the case of SAT, such a function
exists if and only if NP = coNP.

19.4. It suffices to show that SAT € BP-®P, since BP-®P is closed under
polynomial time many-one reductions. Let M be a probabilistic algorithm
that transforms input formulas F' into formulas F’ with

1
F € SAT = Pr[F' € ®SAT] > ——,
[ 1> S0

F ¢ SAT = F' ¢ ®SAT .

Now it suffices to show that for any € > 0 there is a probabilistic algorithm
M' that transforms F' into F"' with

F € SAT = Pr[F" € ®SAT]>1-¢,
F ¢ SAT = F" ¢ ®SAT .

For this all that is needed is to let F"' consist of ¢ independent formulas of
the form F’ (i.e., F|,..., F/) combined using the OR-~function h for ®SAT":
F" = h(F{,...,F]). We must still determine how large ¢ must be chosen
(depending on p and €). On input F' € SAT the probability of having no
“successes” (F] € ®SAT) in t trials is at most

1 1
(1- =) = (1
p(IF]) p(IF])
where d > 1/e. This probability is supposed to be less than e. From this we
see that t > 1.45-log(1/e) p(|F|) suffices. (In fact, from this we see that € can
even be a function of the form 279(") where ¢ is an arbitrary polynomial.)

t t

)p(IF\))p(\FU < d»0FD

19.5. The following language

A={F(X,Y)|F is a boolean formula and X and Y sets of
variables occurring in F' such that for at least
one assignment of the X-variables there is an

odd number of assignments of the Y-variables
with F(X,Y) =1}

is clearly complete for 3-@P. It is sufficient to show that A is probabilisti-
cally reducible to ®SAT. This is achieved by the given probabilistic algorithm
which transforms F into F"' if we consider the “halving process” of the algo-
rithm to act only on the X-variables and not the Y -variables. From this we
get:
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F(X,Y) € A = with high probability there are an odd number
of X-assignments for which there are an odd
number of Y-assignments that make F"' =1

— with high probability there is an odd number
of X,Y-assignments with F"' = 1.

F(X,Y) ¢ A = there is no X-assignment for which there is
an odd number of Y-assignments that make

FII — 1
—> there are an even number of X, Y-assignments
with F" = 1.

19.6. If ®P C PH, then ®SAT € PH. Thus there exists a k such that
®SAT € XF. Since SAT is complete for &P and X} is closed under many-
one reductions, it follows that &P C E,f. From this we get PH C BP-®P C
BP-XY Cvaxl =v-If =1If, .

19.7. Since BP-®P = V-3-®P the following language is complete for BP-®P:

{F(X,Y,Z) | F is a boolean formula and X,Y and Z are sets .
of variables occurring in F' such that for every X-
assignment there is at least one Y -assignment for

which there is an odd number of Z-assignments with
FX,)Y,Z)=1}

19.8. a =0(mod b) = Fx € Nbo = a = Jz € NbPz? = o = df =

0(mod bP7).
On the other hand, a = I(mod b)) = Jz € Nbzx +1 = a = Tz €
N@z+1) =a? = IreNa? =Y (P)(bz)) = Jx € Na? =1+b-

(X8, (O)pita?) = a? = 1(mod b).

19.9. Every non-deterministic computation tree can be augmented with one
additional “dummy” accepting path. The class #P is therefore closed under
“+1” (in fact, under addition).

By attaching two non-deterministic computation trees “one after the
other” (in the sense that the second computation is only started in the case
that the first one ended in an accepting state) we get a non-deterministic
computation tree for which the number of accepting paths is precisely the
product of the numbers of accepting paths on the original trees. This shows
that #P is also closed under multiplication. It is important to note that the
(non-deterministic) running times merely add. This means that to compute
accyr(z)PU2D on input z, we can attach p(|z|) copies of M-computations one
after another. This results in a running time that increases by a factor of
p(|z|), which is still polynomial provided M ran in polynomial time.



290 Solutions

20.1. If in some calculus there is polynomially long proof for the statement
“r € A” then A € NP: On input z one can guess a potential, polynomially
long proof and verify that it is correct. (For this we need that proofs in
our calculus can be verified in polynomial time. This will be the case if, for
example, the individual steps in the proof are easily checked for syntactic
correctness.)

If A is in NP, then one can define the “configuration transition calculus”
corresponding to the NP machine. A t-step proof of & € A consists of a
sequence of legal transitions that result in an accepting configuration.

20.2. Let A be computable by an interactive proof system (in the given
sense). Then A € NP, since on input x one can simulate the computation of
the verifier and nondeterministically guess the communication of the prover.
x € A if and only if such a nondeterministic algorithm accepts z.

20.3. Just asin the case of a nondeterministic or alternating Turing machine,
the configuration transitions of the prover and verifier can be viewed as a tree
structure with the start configuration as the root. Prover branchings are to be
understood and evaluated as existential branchings, and verifier branchings
(which are used to generate random numbers) as randomized or probabilistic
branchings.

Ezxample.

D

Verifier

€) €
ooNoNo }p

Such a computation tree is evaluated as follows: The accepting and re-
jecting leaves receive the value 1 or 0, respectively. The value of an existential
node is the maximum of values of its children, the value of a probabilistic
node is the mean of the values of its children. By the definition of an interac-
tive proof system for the language A, the root must receive a value o > 2/3
ifrecAanda<1/3ifx ¢ A.

The evaluation of such computation tree can be done by a polynomial
space-bounded machine (in exponential time) by evaluating the tree using a
depth-first, back-tracking algorithm. At no time does this require more space
than that required to store one path through the tree. Since the tree has
polynomial depth and each node can be stored in polynomial space, this is a
PSPACE simulation.
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20.4. Suppose that A € IP via a verifier V' and a prover P, who is responsible
for x € A. The prover can be regarded as a function P : (x,y1,...,yk) — 2,
where x is the input, y; is the communication between the prover and the
verifier that occurred during (a previous) round 7, and z is the the communi-
cation from the prover in the next round. We want to show that A is provable
by an oracle.

In place of the prover, we use the oracle language

B={{z,y1,---,y,2") | P(z,y1,...,yr) = z and 2’ is an ini-
tial segment of z } .

In place of of the verifier, we have to describe oracle Turing machine M. M
will behave exactly like the verifier, except that instead of writing a string
y on the communication tape, M systematically writes strings of the form
(z,y1,---,U1,Y,2") (where the y;’s are the previous communications) on the
oracle tape and uses the oracle B to obtain the information z. If € A, then
it is clear that M?® exhibits the same probabilistic behavior as (P,V), and
therefore accepts with probability > 2/3. Now suppose « ¢ A and let B be an
arbitrary oracle. This corresponds to some prover Pg, and since M? behaves
just like (Pg, V), it will accept with probability at most 1/3.

Now we will try to prove the reverse direction. Suppose A is provable by an
oracle A via the machine M and the oracle language B. We want to show that
A € IP. In place of M we use a verifier V' that behaves exactly like M, except
that instead of querying the oracle about a string w, w is communicated to
the prover. The prover associated with the oracle B is defined by the function
P(z,y1,...,yr,w) € {0,1} where P(z,y1,...,yx, w) = 1 if and only if w €
B. That is, the prover ignores the input = and all previous communication
and simply tells the verifier whether or not the last string written on the
communication tape was a string in B (a single bit).

If z € A, then it is clear that (P, V) exhibits exactly the same proba-
bilistic behavior as M*%, and so accepts with probability > 2/3. If z & A,
however, there is a problem. Let P be an arbitrary prover, that is, a func-
tion P : (x,y1,---,Yk) — 2. It is not clear how the prover can be coded up
into an oracle. The reason is that an oracle, unlike a prover, has no “mem-
ory” and, therefore, cannot make its answers dependent upon the previous
communication. It has in fact been shown in

o L. Fortnow, J. Rompel, M. Sipser: On the power of multi-prover inter-
active protocols, Proceedings of the 8th Structure in Complexity Theory
Conference, IEEE, 1988, 156-161.

that a language A is provable by an oracle if and only if A € NEXPTIME.
This is potentially a bigger class than IP = PSPACE (cf. Topic 21).

20.5. The probability is exactly 1/2 if the prover always chooses j € {0, 1}.
Otherwise the probability is p/2, where p is the probability that the prover
chooses j € {0,1}.
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20.6. Change the line “Accept if i = j” to “Randomly select k € {1,2,3,4}.
Accept if i = j and k < 3.” This has the effect of translating the probabilities
to 3/4 and (1/2) - (3/4) = 3/8.

20.7. Instead of computing one “random copy” of one of the graphs, H, the
verifier generates k independent random copies, Hy, ..., Hi, and communi-
cates these to the prover. The verifier expects to receive k correct answers
Jis---Jr back from the prover and only accepts if this is the case. If the
graphs are isomorphic, then the prover can evoke acceptance with probabil-
ity at most 27%.

20.8. If the input graphs G and G5 are isomorphic, then the graph H gen-
erated by the prover is also isomorphic to both graphs and the prover (using
his unlimited computational power) is able to compute the isomorphism o.
So in this case and with this prover, the probability of acceptance is 1.

But if the graphs G; and G2 are not isomorphic, then no prover can
produce the required isomorphism more than 1/2 of the time, since in half
the cases, no such isomorphism will exist. By means of the usual techniques,
this probability of 1/2 can be further reduced to fulfill the definition of IP.

20.9. The desired machine M works as follows:

INPUT (Gl, G2);
GUESS RANDOMLY j € {1,2};
GUESS RANDOMLY 7 € S;
(¥ Sy, is the set of permutations of {1,...,n} *)
OUTPUT (n(Gj), j,7);

The distribution of triples generated by this program is the same as the
distribution that can be observed in the given protocol on an input (G, G2) €
GI. The first component of this triple is a graph H isomorphic to G or G,
chosen under the uniform distribution; the second component is a number j €
{1,2} that is uniformly distributed and independent of the first component;
and the third component is an isomorphism between G; and H.

20.10. The protocol can be followed word for word, except that at the point
where the prover is required to “determine o so that ¢(G;) = H,” instead the
prover uses the extra information (namely, ¢ with p(G1) = G3) to compute
o in polynomial time as follows:

™ ifi=1j=1,
R ifie=1,j5=2,
7T Y7 ifi=2j=1,
™ ifi=2j=2

21.1. By DeMorgan’s laws one can systematically push all of the negation
symbols to the inside until they are all in front of variables:
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A(FAG) = (-FV @),
(FVG) = (-F A-G)
Vo F'=3dz—F
—Jdx F =Vz-F .

21.2. For the variables this is true since only the values 0 and 1 are sub-
stituted. The use of 1 — x; for negation turns a 0 into a 1 and vice versa, so
this is also correct. (This is why it is important that negation only occurs at
variables.) Now consider two formulas F' and G, for which the claim is true.
Then one can easily check that multiplication and addition behave correctly
for F A G and F V @. Similarly, if we have a formula of the form Quz F,
Q € {3,V}, and substituting a 1 or 0 into F for « produces a correct arith-
metic value for the corresponding formulas with the variable « replaced by
TRUE or FALSE, then multiplication will correctly evaluate ¥V and addition
will correctly evaluate 3.

21.3. Since the variables z:; do not occur in the in the subformula 3y 3z (yVz),
this subformula can be evaluated directly: its value is 4. Each application of
a universal quantifier squares the value, so in the end the value is 42" .

21.4. We use induction on the length of formulas. The largest value that
can be assigned to a variable or negated variable is 1 < 22" For a formula of
length n > 1 of the form (F o G), o € {V, A}, the formulas F' and G will (by
the inductive hypothesis) be assigned values < 22" and < 22" with r +1 < n.
The value for F o G is then at most 22 % 22" = 22'+2" < 22" Tn the case of a
formula Qz F, Q € {3,V}, if the value of F is at most 22" with m < n, then
value for F is at most 227 22" = 22%2" = 227" < 92"

21.5. In the interval in question there are at least V28— gn > gn prime
numbers. Let these be p1,pa,...,pr, k> 2" If for all i < k, a = 0 (mod p;),
then by the Chinese Remainder Theorem, a = 0 (mod Hle p;). Since
Hle pi > Hle 27 > 22" and since a < 22", it follows that a = 0. Con-
tradiction.

21.6. Consider the set of numbers from 1 to n. Half of them are not prime,
since they are divisible by 2. Of the rest, 2/3 remain if we strike the third that
are divisible by 3. After the next step, 1/5 of the remaining prime number
“candidates” are stricken because they are divisible by 5. If we continue this
process until we reach the largest prime number less than /n, then only
the prime numbers between 1 and n will remain. The number of candidates
remaining is thus exactly 7(n). If we express this in formulas, letting p run
over prime numbers, we get

p—1 RAC
) 2 n [[ == 2n ][] — = n/lvn] = vn.
p<yn P =2 !
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21.7. By the argument above (in Exercise 21.5), it follows that there are at
most 2" prime numbers p with p > 2™ for which a = 0 (mod p). This means
that in order to arrive at the desired error probability of 27", we need an
interval starting at 2" that contains at least 22" = 22" primes. If we use the
sharper approximation w(n) ~ n/lnn we see that it suffices to choose the
same interval as before, namely [27,23"].

21.8. The polynomial p(z) — p'(x) also has degree (at most) d. Since the
polynomial is over a field, it can have at most d zeroes. The probability of
randomly selecting one of these at most d zeroes from the set z € {0,...,k—1}
is, therefore, at most d/k < d/2™.

21.9. Note that we can extend the definition of pg to include the case where
G has more than one free variable, in which case the polynomial pg will also
have additional variables. We are only interested, however, in the degree of
one variable . OR and 3 operations correspond to addition so they don’t
increase the degree of z. If F'= H A K, then pp = py * pk, so the degree of
x in pp is at most the sum of the degrees of z in py and pg. If F = VyH,
then the degree of x in pr is twice the degree of = in py, but this is nonzero
only once for a given variable. Thus for subformulas H of G, the degree of x
in pg is bounded by |H| if H does not contain the universal quantifier that
doubles the degree, and and by 2|H]| if it does.

21.10. Every subformula in F of the form Qz ...Vy H(zx,...) (where Q €
{3,V}) is replaced by the following equivalent formula

Qr ...32" ((x < 2")AVyH(2',...)) .

That is, a new variable 2’ is introduced, its equivalence to z is confirmed,
and then it is used in place of z. (The equivalence symbol can, of course, be
expressed using AND, OR and NOT.)

21.11.
Pr[error] = 1 — Pr[no error]

n

=1- H Pr[no error in round 7]
i=1

<1—(1-2n/27)".

22.1. Let A be PSPACE-complete. Then PSPACE C pA C PSPACE and by
a Savitch’s Theorem PSPACE C NP4 C NPSPACE C PSPACE.

22.2. A fixed block contains only strings in A with probability 1/2", so the
probability is (1—1/27)%" that none of the blocks consists solely of strings in
A. Thus the probability of at least one such block is 1 — (1 — 1/2")2" which
approaches 1 — 1/e = 0.632... as n gets large.
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22.3. On input z, |z| = n, nondeterministically guess a number i in
{1,...,2"} and verify that all strings in the ith z-block are in the oracle.

22.4. The proof follows the line of argumentation used in the case of P
versus NP. Let N1, Vs, ... be an enumeration of all NP oracle machines, then

Pr[NP# = coNP4] < Pr[L(A) € NP]

= Pr[3i L(A) = L(N/Y)]
<> Pr{¥j (z; € LIA)AL(N{))]

= >[I Prie; € LLAYAL(N?) | T

So it suffices to show that for some € > 0
Prlz; € LIA)ALN?) | C)=(2) +(3) < 1—¢,

or, equivalently, that (1) + (4) > e.

Now consider the cases (1) > 0.1 and (1) < 0.1. If (1) > 0.1, then we are
done. If (1) < 0.1, then from % > 1/3 we can conclude that (3) < 0.2;
and since (3) + (4) > 0.3, it follows that (4) > 0.1.

23.1. A l-superconcentrator is given by the following graph:

O O

An n-superconcentrator can be made by putting together 2 copies of an
n/2-superconcentrator S’:

The size g(n) of this graph satisfies g(n) = 2¢g(n/2) + O(n), so g(n) =
O(nlogn).

This graph is a superconcentrator, in fact it is a permutation network,
which means that for any arbitrary permutation of {1,2,...,n}, a node-
disjoint connection can be found that realizes this permutation (between
input and output nodes). Let = : {1,...,n} = {1,...,n} be a permutation.
We can assign to 7 a bipartite graph G, with n nodes (partitioned into
two pieces of size n/2 each), such that for every (i,j) with (i) = j an
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(undirected) edge is drawn between the (i mod n/2)-th left node and the
(j mod n/2)-th right node. In this way every node has degree 2 (multi-edges
are possible). This bipartite graph consists of one or more disjoint cycles of
even length. These can be colored red and blue in such a way that adjacent
edges always receive different colors. We assign all red edges to the upper
(n/2)-permutation network and all blue edges to the lower. These are each
permutations of n/2, which by the induction hypothesis can be realized by
the network S'.

23.2. For the size (number of edges) g(n) of an n-superconcentrator we
obtain the recursion g(n) = ¢g(2n/3) +dn, where d is a constant and g(2) = 4.
From this we get g(n) = O(n).

23.3. Let k£ < n input nodes S and k output nodes T be fixed. Let S’ be
those nodes in S that correspond to positions that also occur in 7', so that
they can be connected directly. Let 7" be the set of corresponding positions
in T'. The inputs in S — S’ are routed through G. Since k' = |S — 5’| <n/2,
these k' inputs to G can be connected to some k' outputs of G (= inputs
to S"). The size of T — T" is also k', so for this set of outputs of G’, there
is some set of k' inputs that can be connected by node-disjoint paths. The
superconcentrator S’ connects these two sets of nodes. This shows that the
sets S and T can be connected by node-disjoint paths.

23.4. If for some subset S’ C S, |S'| > |N(S")|, then at least one node of S’
cannot be connected.

In the other direction, suppose that |S’| < |N(S')| and let M be a match-
ing that does not match the node u € S. Then |N({u})| > 1 and the nodes
in N({u}) are already “blocked” by other nodes. Suppose v; € N({u}) and
(ur,v1) € M for some node u; # w. Then |[N({u,u1})| > 2. So there is at
least one other node vy € N ({u, u1}), so that the matching M can perhaps be
altered so that the edges (u,v1), and (u1,v2) are in M instead. This will only
fail if v, is already matched with some uy in M. But now |N ({u, u1,u2})| > 3,
so we can proceed analogously, obtaining a new node v3 and hoping to re-
arrange the edges of M so it includes (u,v1), (u1,v2), and (u2,vs). This will
only fail if M already matches some u3 with vs.

But we cannot fail forever. At the latest when we have used all the nodes in
S, we must must find an unmatched node that allows for the rearrangement.

23.5. (36m)!

23.6. For k = 2 there are 6 - 2 = 12 edges to be connected on one side but
only 9 -1 = 9 possibilities on the other side, so such a matching can only
happen if £ > 3.

23.7. More generally, we can show that if n =ny +ng, k = k1 + ko, ny > kq,
and no > ko, then (Zi) (Z;) < (})- Note that (}) is the number of ways to
choose k of n people to occupy k available chairs. (We are only interested

in who gets a chair and who doesn’t, not who gets which chair.) Similarly,
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(Zi) (Z;) is the number of ways to seat k of n people with the added restriction

that the first &y chairs are occupied by a subset of the first n; people, and
the remaining ko chairs are occupied by a subset of the remaining no people.
Clearly, this is a smaller number.
23.8. We compute Ly /Ly, canceling redundant terms and grouping as
follows:
9k + 98hE626n 4k

9kEEGm AT

9k +9)---(9k+ 1)

Bk+3)---(8k+1)-(26m — 4k) - - - (26m — 4k — 3)

9k +3, 9k +2 9k +1
_(9k+9)---(9k+4)'(3k+3)(3k+2)(3k+1)

1 1
'(26m—4k)"'(26m—4k—3)'

Lyt1/Li =

L . .
7 is monotone in-

Each of these factors is monotone increasing in k, so
creasing in k, from which it follows that Lk_lLkH/L% > 1, so Ly is convex.

23.9. If we let kK = 3, then

(3s) o(1)
3m - =8 =3m . —
RN
=0m™*) < 1.
If we let k = 3m, then
(15m) (o)
3m - S = 3m - e
(12m) (12m)
- 27m2m(12m)!
(9m)126mi2m
27m21] 2m3m
= 3m e mzm
_3 27m2m12m3m
= e TmEm
18 12

< (Z2N\Im (22 \3m
<3m () (35)
<3m-(0.6)" < 1.

24.1. A pyramid can be pebbled level by level. For the lowest level, we need
k pebbles. Then we need one more to begin the second level. From that point
on, we can reuse pebbles to move up the graph.
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24.2. We prove the following by induction on k:

Every pebbling strategy, starting at any initial configuration of peb-
bles on Py that leaves at least one path from the input nodes to the
output node pebble-free requires at least k + 1 pebbles.

The case k = 2 is clear. Now let k > 2 and let an arbitrary initial configuration
with at least one pebble-free path be given. Without loss of generality, we
may assume that there is a pebble-free path that passes through the node v;:

Pk:

Py

Now suppose there were a pebbling strategy for the output node v that
used k or fewer pebbles. This strategy would include a strategy for pebbling
vy, which by induction would require the use of all k pebbles. At the point in
the game where all k£ pebbles are on graph Pj;,_;, the path down the right edge
of Py, is pebble-free. In particular, to pebble ve (in the copy of Pr_; at the
right edge of Pj) will again require all k pebbles, which means that we must
remove the pebble from v;. Thus with k& pebbles it will not be possible to
cover v; and vy simultaneously, so we will need at least k4 1 pebbles to cover
v. (Only k pebbles would be necessary if we allowed “sliding” of pebbles,
which would correspond to using only two registers to compute things like
r=x+y.)

24.3. For every node u with in-degree d > 2, replace the subtree consisting
of that node and its predecessors with a binary tree with d leaves (assigned to
the original predecessors of ). The number of pebbles required to pebble the
graph remains the same (it just takes more time), since once the d original
predecessors of u have been pebbled, it takes only one additional pebble to
cover u in the tree, just as in the original graph (see the previous exercises).
Clearly the in-degree of each node will now be 2 and the number of edges
will have at most doubled.

24.4. We start with G; = ) and G> = G and successively move from Gs
to G1 nodes (along with their in-coming edges) that already have all of their
predecessors in G2. In this way, there cannot be any “back-edges” in A. This
process is continued until at least n/2 edges are in G;. Since at each step
at most 2 new edges enter G1, the number of edges in G; will be at most
n/2+2.
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24.5. Case 1 is trivial since it only covers finitely many cases.
Case 2: P(n) < P(n/2+2) < (n/2+2)/log(n/2+2) < n/logn.

24.6. For case 3 we have:

2
P(n) < log”n + P(n)2 +2)
2n n/2+2
< .
~ logn e log(n/2+ 2)
< 2n ny 0.6-n
~ logn log(n/2)
< 2n ny 0.6-n
~ logn 0.9 -logn
n
<ec- )
— logn

when ¢ > 9 and n is large.

24.7. In case 4, apply n/2 —2n/logn > n/4 to get

P(n) < P(n/2—2n/logn)+ P(n/2+2)+1

n/2 —2n/logn n/2+2
<ec- . 1
= log(n/2 — 2n/logn) e log(n/2 + 2) *
en/2  2cn/logn enf2 N 2¢ 1
< Tog(n/D) ~ Tog(n/4) " og(n/2) T log(n/2)
en/2 2cn en/2 49
~ logn—2 logn(logn—2) logn—1 '
1
Now apply the equation =—+ to get
- x  x(r—a)
en/2 en 2en

P < —
(n) < logn ~ logn(logn —2) logn(logn — 2)

enf2 cnf2

2
logn = logn(logn — 1) +
< om en/2 cn
~ logn logn(logn — 2) ~ logn’

24.8. Under the assumption that all context sensitive languages can be
recognized in linear time we get

NSPACE(n) C DTIME(n)
C DTIME(nlogn) (Time Hierarchy Theorem)
C DSPACE(n)
C NSPACE(n) ,
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which is a contradiction.

24.9. We build up a set of n — j inputs with the desired property succes-
sively as follows: Let E; be an arbitrary (j + 1)-element subset of the inputs.
E, is connected to A via j + 1 node-disjoint paths (by the definition of su-
perconcentrator), of which at least one must be pebble-free. Let e; be the
corresponding input node. Build E» = (E; — {e1}) U {e} for any input e that
has not yet been considered. Once again there is at least one pebble free path
with corresponding input e; € Es. Repeated application of this procedure
leads to a set of n — j inputs with the desired property.

24.10. |C(n)| = O(2"), so |Gpt1| = ©(2™) + 2|G,,|. This recursion relation
has the solution ©(n2").

24.11. (G, includes, among other things, direct connections between the
inputs and outputs. If we just consider these edges, it is clear that the com-
bination of G, and C'(n) is at least as good as C'(n) alone, so it must also be
a 2"-superconcentrator.

24.12. Consider a strategy that takes a total of ¢ steps on Gg, and — starting
from a configuration in which at most 3 nodes are pebbled — pebbles 14
outputs. By Lemma 24.2, 4 of these outputs are connected with at least 253
outputs via pebble-free paths. So there must be one of these outputs that is
connected to at least 64 of the inputs via pebble-free paths. Let a be this
output and let t; be the last time at which all 64 of the inputs were still
unpebbled. Then the statement of the theorem is satisfied for the interval
[t1 + 1,¢], since in this time interval 64 > 34 inputs need to be pebbled and
at least one pebble remains on the graph (otherwise ¢; would not have been
the last time the inputs were all unpebbled).

24.13. We have a graph family {G,} with |G,| = ©(n2") edges. In order
to pebble a certain subset of the outputs in any order, we need at least
2™ pebbles, for some ¢ > 0. So there must be an output that requires ¢2™
pebbles (else one could pebble all the outputs with fewer pebbles by pebbling
one after the other, each time removing all of the pebbles use.)

So P(m), the required number of pebbles, satisfies

P(m) > 2" = cO(m)/n > cO(m)/O(logm) > 2(m/logm) ,
where m is the size (number of edges) of G,.

25.1. Consider the following P-computable distribution, defined on tuples
(x,a,b), where x is a CNF formula, ¢ an assignment to the variables in x,
and b a bit:

if b is the truth value for  under assignment a,
otherwise.

u((w,a,b)) = {W
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Clearly this is P-computable. Furthermore, p*(z,1,1) — p*(z,1,0) # 0 if and
ounly if there is a satisfying assignment for x. Thus if p* is P-computable,
then SAT € NP, so P = NP.

1 1 1) — 1
25.2. — — _m+l-m _ . 50
m m+1 m(m + 1) m(m + 1)
3 = 1 = —las N —
—=1-— as 0 .
= m(m+1) N+1

More generally,

2n if x =07,
@) = {0 otherwise.
Then " "
n 2n -
|z|=n
but

=2".

f(iL")2 _ 22n +2n -1 S 22n
Z on on = 2_n

25.4. Closure under maximum is demonstrated by

|z| |z |z|
|| f(@)>g() f(@)<g(w)
3 [ (= 3 g (z

Clearly we have closure under <. Closure under sum is then obtained by
noticing that f+g < 2max(f, g). Closure under exponentiation is obtained by
choosing an appropriately adjusted value for e. Closure under multiplication
then follows because f - g < f2 + g2

25.5. Suppose the expected value of f is polynomially-bounded with respect
to some distribution p. Then there are constants ¢ > 0 and k£ > 1 such that
for all m, 32, _, f(@)pn(z) < en®. Let € = 1/k, then
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2 nflif) D> v (L)
< ZH—un z)
=
=1+— > f(@)un(2)
<l+c e
So
|§>:1f5 Z:Z |x| T;(l“LC)H(E "M =1tc<o0.

25.6. Consider the following algorithm:

1. Input a graph G.

2. Search G for a copy of K, (by checking each set of four vertices to see
whether all six edges are present in the graph). If a copy of Ky is found,
reject.

3. Search for a 3-coloring by assigning each possible coloring to the nodes
and checking if two adjacent nodes have the same color. If a 3-coloring
is found, accept; else, reject.

The running time of this algorithm is polynomially bounded on instances
that contain a copy of Ky, since there are only ( ) < n* potential copies of
K, and each can be checked in polynomial time. Let the polynomial bound
in this case be p(n).

If there are no copies of K4 in G, then the algorithm must perform step
3. There are 3™ potential colorings, so this step takes at most 3"¢g(n) time,
for some polynomial g.

Now we need a bound on the probability of finding a copy of Ky in G.
Given any set of four nodes, the probability that they form a copy of Ky is
(1/2)® = 1/64. Thus we can give the following rough approximation for the
probability that no K, is found:

: 63"
Pr(G contains no K,) < 6l

Let ¢ > 1 and k > 1 be integer constants such that cn® > max(p(n), g(n))
and (31/F)(£)1/4 = o < 1. Let A be the set of graphs that contain no copy
of K,. By the closure properties of polynomial on u-average, it is sufficient
to show that g(x) = f(z) — c|z|* is polynomial on p-average. The following
sequence of inequalities shows this to be the case:
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1/k

;glwl <D 0-ple Z 3|$

cZA z€A
<0+ 3"ku(A=n)

<> 3"k (63/64)"/*
<3 (3 @)’
< Za” <00 .

25.7. Suppose f : (A,u) <P (B,v), and g : (B,p) <P (C,¢). Clearly
h=gof:A lei C, so it suffices to show that p <, €. Let p be a polynomial
and let py and v; be distributions such that

|f ()] < p(|z]),
lgw)| < p(|yl),
p(|z])pa (z),

as guaranteed by the definition of §§1. (For ease of notation we are assuming
v(range(f)) = 1 and {(range(g)) = 1, so no scaling is needed. The argument
can be easily modified if this is not the case.) It follows that

()= 3 nly)

9(y)=2

> plyhr(y)

9(y)=2

> > pe(e)m(x)

9(y)=z f(z)=y

> p(laDp(p(e)ule) |
h(z)=z

IN

IN

IN

so we can define a distribution i, such that {(2) = > )=, p2(z) and p(z) <
p(p(|z)))p(lw)p(x), thus p <5 €.

25.8. Suppose f : (A, p) Sf; (B,v), and (B,v) € AP. As in the previous
exercise, for ease of notation, assume that v(range(f)) = 1. The obvious
algorithm for determining whether x € A proceeds by first computing f(x)
and then checking whether f(z) € B. Since f is computable in polynomial
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time, there are constants ¢ > 1 and k > 1 such that |f(z)| < c|z|¥. Since
(B,v) € AP, there is an algorithm for B that runs in time ¢, where ¢ is
polynomial on v-average (witnessed by some exponent ¢). The running of
our algorithm for A4 is at most c|z|* + t(c|z|*). By the closure properties of
polynomial on average, it suffices to show that h = t(c|z|*) is polynomial on
p-average.

First we consider h/k:

e/k x e/k
L EICED D Drs e

x Yy flz)=

so he/* is polynomial on p-average. This implies that h is polynomial on
pi-average, which implies that h/p is polynomial on p-average, and thus
h = (h/p)p is polynomial on u-average. So (4, u) € AP.

25.9. If p(z) > 27", then the first difference in the binary representations
of p*(z) and p*(z — 1) must come at or before the nth digit. So let z, be the
longest common prefix of the binary representations of p*(z) and p*(z — 1),
and define code,(z) by

odes) = {17, St
Now we verify the three properties code,, is required to have.
e [fficiency. Since p* is polynomial-time computable, so is code,.
e Uniqueness. If pu(x) # 0, then
0.z <p(xr —1) <0.2,1 < p*(w) <0.2,.1.

So x is uniquely determined by either Oz or 1z,.
o Compression. If u(zr) < 27121 then |0z| = 1 + |z| < 1+ log(-£+). On the

n(z)
other hand, if y(z) > 27121 then |2,| < |z| and

u(z) < 0.2,1 = 0.2, = 9|2zl ,

80 |2, ] < min(|$|,10g(ﬁ))-
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25.10. By the definition of D-HALT,
c

v MA7 7COde T 71‘1(|$|) = )
(( Iz u() ) q(|z])? - [code, (z)|? - glcode, (2)|

where ¢ is a constant depending only on A and code,. By Lemma 25.11,
|code, (2)] < 1—log(p(x)), so —|code,(x)| > log(p(x)) —1, which means that

27\COdeH(z)\ > ()

Thus

, code. (). 1904 c(2)
((MA,m d H( )1 )) < 2q(|z])2 - |COdeu(£L")|

c
<
2|(Ma,u, codey (z), 190D))]

5 |code, ()| ,

from which it follows that u < v.

25.11. Suppose that a graph G with n nodes is encoded using an adjacency
matrix. Then the size of 2the encoding = for G is n?. The weight of such a
graph is given by n=22—"" < 2~z

25.12. The following is a sketch of a solution, but it can be easily formalized.
The encoding of (M, z,1*) takes about |M|+ |z| + k bits. So if we fix M and
x and let k vary, the encoding takes ©(k) bits and the weight is ©@(k~2). But
for every £, @(k=2) > 279" when £ is large enough.
25.13. 2’ € By can be determined nondeterministically in time 2P(D) = |2/].
N(N+1) N+1

2N 2

1
26.1. —(1+2+...+N)=
N( +2+4+...+N)

26.2. m/N.

26.3. For ease of notation we will assume that each node in the tree has only
two children; the general case follows by a similar argument. For any node
v in the tree, let p, be the probability labeling the edge to the first child;
(1 — p,) is then the probability labeling the edge to the other child.

We prove that the sum of the probabilities at any level & is 1 by induction
on k. When k = 1, there is only one node, and it has probability 1, since the
empty product is 1. Now suppose that the sum of the probabilities at level
k is 1. Let g, be the probability of a node v on level k. Then the sum of the
probabilities of the nodes on level k + 1 is

qupv +qv(1_pv) :ZQv(pv"'(]-_pv)) :qu =1,

where the sums are over all nodes on level k.
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26.4. If the entries in M arereal, M* = M*. The fact that the rows (columns)
are orthonormal is just another way of expressing that MM = MM = I,
since the values in M M? are just the dot product of two columns, and the
values of M'M are the dot product of two rows. This implies the stated
equivalence.

26.5. Note that in the following example, the probability is 0 for every state
after two steps, even though the probability of going from any parent node
to either of its children is 1/2 .

1/vV2 1/vV2  —1/V2 —1/V2
|a) |b) |a) |b)
With an appropriate labeling of the internal nodes of this tree, this corre-
0 1 1
sponds to a matrix — [0 1 1 |, which is not unitary.
V2 0 -1 -1
26.6. M =L |1 1| il work
73 |1 _p | Will work.

26.7. W :lco) = >, ( )”|cz>

26.8. W : |c;) = 32;(5)"(=1)"|c;), where i j is the dot product of the
strings ¢ and j. This is because a negative sign is introduced exactly when a
bit is 1 both before and after the transformation.

26.9. Since D = WEFW, the effect of D on |¢;) is

sy % Z(i)%—l)i'ﬂc»

Z )"le;) +ZZ —pitreredie)
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SO
1 1
Dy; N+Z_( 1)1+za+at
a#0
1
a;éO
_ 1-(N - 2 N
B N N
and
D;: — l + Z l(_1)1+i-a+a~j
K N N
a#0
— 1 i-0+0-4 1+i-a+a-j
=5 <1+1Z ’+§a:(—1) vata]
1 2
N( +0) N

26.10. Note that D! = D, 50 1t suffices to show that D? = I. Clearly, I? = I,
and P = P? since Pszz "1/N)1/N) =& = L. So

D*=(-1+2P)> =1’ —4P+4P* =1 —-4P+4P=1.

26.11. For any vector x = [xo,xl,.. ,en—1]t, Pz is a row vector, each
component of which is equal to 37} (x;/N), so each component of Pz is the
average of the values in z. Thus Dz = (—I+2P)s = —z+2Px = Pz—(z—Px)
is the inversion about the average.

26.12. The base case is trivial using sin(f) = 1/v/N and cos(f) = %

Now suppose that we have shown that the equation is correct for k; and [;.
It is perhaps most natural to verify the values of k;11 and [;4; are as stated

by working backwards. Let a = (2j + 1)¢. Then using sin(26) = 22— and
cos(26) = 272, and a tirgonometric identity for sin(a + 26), we see that

sin((2(j + 1) + 1)) = sin(a + 26)
= sin(a) cos(26) + cos(a) sin(26)

N -2 2v/N —1
=kj——+LVN - 1——/——
N N
N -2 2(N -1)
ij N +lj N .

The argument for kj; is similar.
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26.13. If a = |T'|/N, and the algorithm randomly picks an element to query
repeatedly until a target is found, then the expected number of queries is

a+2a(1—0,)-|-3a(]_—a,)2+...+(i+1)a(1_a)i+_”

= aZ(i +1)(1 —a)
i=0

So if |T'|/N = 1/4, the expected number of queries is 4. Even if the algorithm
is modified so that no query is made more than once, the expected number
of queries is nearly 4 when N is large.

26.14. Assuming the algorithm makes a new query each time, it could take
N —|T|+1> (3/4)2" queries.
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P 131
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Babai 160, 178, 181, 183, 189

back-tracking 290
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circuits
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circuit complexity 79, 133

circuit depth 92
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Cohen 309
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collapse 38, 142
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collision probability 147
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context-free language 119

convex function 201

Cook 59, 66, 165

Cook Hypothesis 132

Cook’s Theorem 112, 113

Cormen 151, 186, 189, 282, 309

counting argument 159

counting classes 163-174

- BP-NP, 153, 155, 178

— BP- operator, 153, 165

- BPP, 142, 153, 159, 177, 227

- C=P, 227

— FewP, 164

— MOD-classes, 174

- NP, 111, 163, 165, 173

— coNP, 111

- #P, 168

- ®P, 163-166, 173

37, 207,



- PP, 141, 171, 173

— ZPP, 138, 142

C_P see counting classes
Craig 113

Craig Interpolation Theorem 111
Crescenzi 151, 181, 189, 309
critical 274

critical assignment 53
crossing sequence 80
cryptology 181
cut-and-paste 122

cycle 2

D-3COL 215, 217
Dahlhaus 113

Davis 15, 22, 23
decidable 10, 27
degree

— of a language, 124

— of a node in a graph, 44

— of a node in graph, 2

— of a polynomial, 1, 95, 103, 106, 187,
188, 294

— total, 1, 107

Demarrais 235

DeMorgan’s laws
280, 292

density function 214

depth

— of a circuit, 92

depth-first 290

descriptive complexity 61, 65

Deutsch 223, 234

D-HALT 215, 218

101, 166, 259, 264,

D-HAM 216
diagonalization 279
Diaz 40, 151, 309

diffusion transformation 229

dimension

— of a vector space, 104

Diophantine equation 15

Diophantus 15

directed graph 115, 197, 203

disjunctive normal form 49, 89, 259,
266

DistNP 214

distribution function 213

distributional problem 214, 215

divide-and-conquer 197

DNF  see disjunctive normal form

DNF, 89

dot product 225

downward separation 132

Index 315

Drake 309
Dunne 309
Dykstra-Pruim viii

e-mail 183

easy formula 136

easy-hard argument 136
Ehrenfeucht 88-90

Ekert 235

Emde Boas, van 22
Enderton 69

entropy 145, 256, 258
equivalence problem 26

— for branching programs, 119
— for circuits, 115

— for context-free languages, 119
— for LOOP-programs, 26

— for tournaments, 164
equivalence relation 33
evaluation vector 79
example set 86

expected value 4, 42, 143
exponential running-time 42
expression tree 33

factoring 77, 223

Fagin 68-70

failure 94

falling power 200

fan-in 91

Feigenbaum 181

Fenner 235

FewP see counting classes
Feynman 234

Fiat 181

Fibonacci sequence 238
finite field 120, 146, 185, 187
finite injury 13

finitely presented group 219
first-order 63

flat distribution 220
Floyd 22, 309

formal language 37
formula 61, 80

— arithmetic, 3

— boolean, 2

— predicate logic, 3

— quantified boolean, 3

— satisfiable, 3

— size, 3
ortnow 227, 235, 291
Fortune 121, 126, 129

Fourier representation 103
Fourier transformation 228
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free variable 61
Friedberg 9, 11
Furst 91, 99, 101, 109

Godel 15

Gabarré

GAP 41

Garey 22,42, 47, 113, 155, 310

generalized spectrum 64

Gergov 122

GF(n) 120, 146, 185, 187

GI  see graph isomorphism

Gibbons 310

Gill 151, 191, 195

Goldreich 160, 177, 179, 181, 182,
195, 222

Goldsmith viii

Goldwasser 160, 175, 177-180, 182

GOTO-program 27

Gradel 70

Graham 310

grammar 39

graph 2

— acyclic, 2

— bipartite, 2

— connected, 2

graph accessibility see GAP

graph coloring 215, 217

graph isomorphism 42, 153, 155,
158-160, 177, 179

Grassl 233, 234

greedy algorithm 55

Green viii, 235

Grover viii, 223, 234

Gundermann 138

Gurari 40, 151, 310

Gurevich 70, 113, 222

40, 151, 309

Hgyer 230, 233, 234

Hack 23

Hagerup 282

Haken 49, 59

halting problem 5, 9, 17, 18, 26, 27,
215, 218, 222

Hamiltonian circuit

hard formula 136

Hartmanis 37, 40, 70, 123, 138, 310

hash function 146, 150, 156, 157

Hausdorff 281

Haussler 88-90

Hemachandra 138, 173

Hemaspaandra 310

Herken 181, 310

42, 216

Hertrampf vi

Hertz 310

Hilbert 15

— Tenth Problem, 15
Hoffmann 160

Homer viii, 126, 129, 235, 309

Hopcroft 121, 197, 201, 212
Horn formula 65, 68, 69
Huang 235

Hunt 37, 40

hypothesis 86
hypothesis space 86
Hastad 99, 161

Immerman 37, 40, 63, 70

Impagliazzo 150, 151, 222

in-degree 205

inclusion problem 119

inclusion-exclusion principle 4, 157

Incompleteness Theorem see Godel

independent events 4

index (of an equivalence relation) 33

inductive counting 39

initial configuration 209

input node 203

interactive proof systems
176

interpolant 111

interpolant complexity 111

Interpolation Theorem 2, 33, 120,
121, 275

interpreter 72

inversion about the average 229

IP 178, 183

isomorphic

— computably, 123

Isomorphism Conjecture
126

isomorphism degree 124

Israeli 113

153, 160

123, 125,

Jeffrey 267

Johnson 22, 42, 47, 113, 155, 310
Jones 23, 69, 70

Jozsa 234, 235

Kobler vi, 42, 47, 151, 160, 165, 174,
181, 279, 283, 310

Kadin 135, 138, 139

Kannan 138

Karg vi

Karp 40, 47, 70, 126, 129

Kautz wviii

Keisler 69



Kilian 310

Knuth 189, 310

Ko 151

Kolmogorov 75, 192

Kolmogorov complexity 71, 72, 75,
77, 86, 88

Kolmogorov random 74, 77

Kozen 121, 310

Kranakis 189, 282, 310

Krause 122

Kreczmar 309

Krogh 310

Kucera 310

Kuroda 37, 40

Kurtz 195

L 41

Lagrange 17

Landweber 14, 309

language 1

Lautemann 160

law of large numbers 44, 144
LBA see linear bounded automoton
LBA problem

— first, 37

— second, 38

learning 85, 107

learning algorithm 86

Leeuwen, van 202, 310

Leftover Hash Lemma 145, 147, 149
Leiserson 151, 186, 189, 282, 309
Levin 75, 213, 216, 222

Lewis 310
lexicographical order 1
Li 75,83, 90, 310

Lidar 233, 234

linear bounded automaton 37
linearly independent 105
Lipton 47, 126, 129
literal 49, 89, 108
Lobstein 309
log-reducible (<iog) 41
Lolli 70, 113

Longo 113

Longpré viii, 126, 129
loop-depth 26
LOOP-program 25
Lorenzen 175

Lovasz 47

lower bounds

— for branching programs, 115
— for circuits, 91, 101

— for resolution proofs, 49

Index 317

— via Kolmogorov complexity, 77
Lund 189, 310

Machtey 128, 254, 310
Mahaney 129
majority 105

majority vote 145, 148
Makowsky 113
Manders 22

many-one degree 124
many-one reduction 6

— for distributional problems (SE), 218

— polynomial time (Srlz), 6, 125

Marja 113

Markov chain 44

Markov’s inequality 4, 45, 94, 248,
261, 282

Marriage Theorem 199

matching 198

Matijasevic 15, 23

McCulloch-Pitts neuron 106

Meinel vi, 122, 310

memory 204

Merlin 178, 189

Meyer 36

Micali 160, 175, 177, 179, 180, 182,
311

Milterson 76

Minsky 106, 107, 109, 311

MOD-classes see counting classes

model 3, 62

monomial 89, 101, 104, 108

monotone reduction 285

move 203

Muchnik 9, 11

multi-linear polynomial

Mundici 111, 113

museum 45

104, 118

Natarajan 90, 311

NC', NCF 261

neural net 107

neuron 107

Nisan 122, 183

NL 41

nondeterminism 51

NOR 244

NOR-function 35
NOT-function 101, 165

NP  see counting classes
(NP,P-computable) see DistNP
(NP-search, P-samplable) 222
NQP 226, 227
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observation 226

Occam algorithm 88
Occam’s Razor 85
Odifreddi 128, 311
Ogiwara 126, 129
one-one reduction

— polynomial time, 125
one-time-only 116
one-way function

— cryptographic, 221
OR-function 16, 101, 165
oracle results 183, 191
oracle Turing Machine 9
oracle Turing machine 5, 138, 192
orthonormal 225, 306
output node 203

P 173

#P  see counting classes

P-computable distribution 214

P-isomorphic 123, 125

P-samplable distribution 221

PAC (probabilistically approximately
correct 86

PAC-learnable 86

padding 124

padding function 124

Palmer, EM. 282

Palmer, R.G. 310

Papadimitriou 40, 70, 173, 181, 189,
282, 310, 311

Papert 106, 107, 109, 311

Parberry 311

parity function 90, 91

@©P  see counting classes

partial assignment 55

Patashnik 310

Paterson 311

PATH 41

path 2

Paul 82, 203, 212

pebble 203

pebbling strategy 205

perceptron 106

permutation network 295

Petri net 23

Pfeiffer 282

PH 68, 131, 142, 153, 165, 173

PHP, 52

pigeonhole principle 52

pipe 246

Pippenger

Pitassi 59

201, 202

Pitt 90

POL 120

POL 104

Polish notation 80

Pollett  viii

polynomial 101

polynomial on p-average 216

polynomial-size circuits 3, 93, 111,
133, 134, 145

polynomial-time hierarchy

Pos see positive reduction

positive reduction 158, 285

Post correspondence problem 219

Post’s Problem 9

Pratt 186, 189

predicate logic 61

predicate symbol 61

prime factorization 77

prime number 146, 185

prime number problem 165

prime number sieve 293

Prime Number Theorem 77, 78, 185

primitive recursive 25

priority method 9, 11

probabilistic method 46, 95, 159, 191,
200

probability amplification 46, 143, 154,
158, 166, 177, 283

probability amplitude 225

probability distribution 146

probability gap 141, 153

proof 134

proof calculus 175

property P 124

provable by an oracle 177

prover 175

Pruim 235

pseudo-random number 146, 148, 151

PSPACE 6, 168, 172, 177, 178, 183

public coins 178

Putnam 15

pyramid 205

see PH

QBF 3,183

quantified boolean formula
188

quantifier 3, 16, 61, 64

quantum mechanics 223

quantum state 226

quantum Turing machine 225

QuickSort 71, 74, 75

3, 183,

Rodding 69
Rib 282



Rackoff 47, 175, 177, 179, 180, 182

random bits 156

random oracle 192

Random Oracle Hypothesis 192

random polynomial 101

random restriction 95

random sequence 71

random variable 4, 141

random walk 43

random, Kolmogorov
random

Razborov 101, 109

Reckhow 59

reducibility 123

refutation 50

register machine

regular graph 46

relativization principle 191

resolution 49

resolvent 49

reversible computation

Richter 70, 113

Ritchie 36

Rivest 151, 186, 189, 282, 309

RL 42

Robbin 69

Robinson 15

Rogers, H. 14, 129, 311

Rogers, J. 227, 235

Rompel 291

round 176

Rozenberg 23, 311

Rudich 109

Rytter 309

see Kolmogorov

5, 17, 25, 204

226, 228

Salomaa 311

SAT 2,6, 35, 115, 116, 124, 164

OSAT 165

Savitch 40, 294

Savitch’s Theorem 37

Saxe 91, 99, 101

Schoning  viii, 38, 40, 42, 47, 113, 129
151, 160, 161, 165, 173, 181, 279,
283, 309, 310

Schaefer viii

Schmidt 121

Schnorr 311

scholastics 85

Schuler vi

Schulz 62

Schwichtenberg 69

search algorithm 223

Second Berman-Hartmanis Conjecture
126

Index 319

second-order existential 64

second-order predicate logic 64

Seiferas 82

self-reducible 134, 145, 279, 283

self-terminating code 78, 79

Selman 40, 69, 70, 310, 311

sentences 61

set of examples 86

Sewelson 138

Shamir 178, 181, 183

Shoenfield 311

Shor viii, 223, 235

sieve of Eratosthenes 293

similar probability distributions 147

Simmons 181

Simon 82, 234

simple formula 188

Sinclair 311

sink 2

Sipser 47, 91, 99, 101, 160, 177, 178,
182, 291, 311

size

— of a circuit, 3, 92

— of a formula, 3

Smolensky 101, 109

SO3 64

Soare 311

Solomonoff 75

Solovay 191, 195

Sommerhalder 40, 311

soundness 50

source 2

sparse 125, 133

Specker 70

spectral problem 61, 62, 68

Spencer 109, 282, 309

Spirakis 310

start node 115

statistical test 151

Stirling’s formula

Stockmeyer 68, 70

Strassen 70

strategy 203

Straubing 311

Strauss viii

string 1

structure 61

subspace 104

success 94

SUPER proof system 51

super-duper-concentrator 208

superconcentrator 197

superconcentrators 203

255, 264
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superposition 226 universe 61
Swapping Lemma 154 UNIX 246
symmetric boolean function 105, 108,
261 Valiant 86, 89, 90, 101, 109, 165, 174,
Szelepcsényi 37, 40 212
valid formula 183
Tamon 138 variance 4
Tapp 230, 233, 234 Vazirani 101, 109, 165, 174, 234, 235
Tarjgn 203, 212 vector space 104
Tarui 174 vector space homomorphism 104
tautology 3 verifier 175
teacher 85 Vitanyi 75, 83, 90, 310
terminal node 115
Thierauf vi
threshold function 265 wzgi{er 1%?2;8 212. 311
threshold gate 106 Wainer 309 ’ ’
threshold value 106, 153 Walsh-Hadamard 228
Thue system 219 Wang 222
tiling 219 Warmuth  88-90
Tlme.Hlerarchy Theorem 299 Watanabe 126, 129, 311
time interval 209 Watrous 235

time-space trade-off 205

Toda 165, 167, 174, 183

topological ordering 54

Toran vi, 42, 47, 113, 151, 160, 165,
181, 279, 283, 310

total degree 1,22, 107, 108, 240

total ordering 69

truth table 49, 79

Tsichritzis 36

Turing machine 4, 26, 27, 175, 224

Turing reduction 9, 126, 133, 154

Wechsung 138, 212, 311
Wegener 279, 311
Wegman 121

Welsh 151, 256, 311
Westrhenen, van 40, 311
Wigderson 122, 160, 179, 182, 311
witness 10, 113, 134
witness circuit 134
WLOG 81

word problem 219
worst-case complexity 71

Ullman 197, 201 Wrathall 138
unbounded fan-in 91
undecidable 15, 27 XOR 158
uniform distribution 43, 146
unitary 225 Young 11, 125, 128, 129, 254, 310
universal hash functions 145, 146,
151, 156, 157 Zachos 160, 161, 173
universal probability distribution 73, Zak 122
75, 214, 222 zero-knowledge 179, 180
universal traversal sequence 45, 46 ZPP  see counting classes

universal Turing machine 72 Zuckerman 150, 151



