
A Comparison of the Business Object Notation
and the Unified Modeling Language

Richard F. Paige and Jonathan S. Ostroff

Department of Computer Science, York University,
Toronto, Ontario M3J 1P3, Canada.fpaige,jonathan g@cs.yorku.ca

Abstract. Seamlessness, reversibility, and software contracting have been pro-
posed as important techniques to be supported by object-oriented methods. These
techniques are used to provide a framework for the comparison of two model-
ing languages, the Business Object Notation (BON) and the Unified Modeling
Language (UML). Elements of the UML and its constraint language that do not
support these techniques are discussed. Suggestions for further improvements to
both BON and UML are described.

1 Introduction

. . . There are two ways of constructing a software design: one way is to
make it so simple that there are obviously no deficiencies, and the other way is
to make it so complicated that there are no obvious deficiencies.

C.A.R. Hoare,Turing Award Lecture 1980[7].

As described by Brooks [1], the key factor in producing quality software is specify-
ing, designing and implementing the conceptual construct that underlies the program.
This conceptual construct is usually complex and highly changeable. It is abstract but
has many different representations. The complexity of the conceptual construct under-
lying software is an essential property, not an accidental one. Hence, descriptions of a
software entity that abstract away its complexity often abstract away its essence.

A suitable modeling language is needed to describe the conceptual construct, its
design and implementation. A satisfactory description of the conceptual construct for
an industrial-strength software system prior to its construction is as essential as having
a blueprint for a bridge or a large building, before its construction commences.

In 1994, there were between 20 and 50 such languages [14]. Often users had to
choose from among many similar modeling languages with minor differences in over-
all expressive power. But in a landmark meeting in 1994, methodologists and tools
producers agreed that users needed a standard. At that moment, the seeds were sown
for the UML, and it has since been embraced by leading software developers. From
1997, development of the UML standard – through the Object Management Group –
has continued.

This paper conjects that the standardization on UML is premature and perhaps even
counter-productive. The reason we use the word ‘conject’ is that a rational critique of



UML would first require building a theory of software quality and then developing
metrics for measuring the quality of software developed via a particular approach. Such
a theory and consequent metric is not currently available and we must thus resort to a
more qualitative, and hence more subjective, analysis.

In the absence of a theory of quality, our starting point will be the remarks quoted at
the beginning of this paper. Our main goal will be simplicity of language. But we will
need criteria which will allow us to reject a feature of a language as being excessive.

We define quality software as software that isreliable andmaintainable. Reliable
software must becorrect: it must behave according to specification; and, it must be
robust:it must respond appropriately to input from outside the domain of the specifica-
tion. Maintainable software must beextendible:that is, easy to change with changing
requirements; andreusable:that is, it can be re-used in different applications.

Reliability is the key quality requirement. If the software does not work correctly
and supply the required functionality it is unusable despite having other qualities. Main-
tainability is the other key requirement because maintenance often accounts for 70% or
even more of the cost of the product.

In order to assess UML’s contribution to quality, we will compare it to the BON
notation and method. The BON approach to quality is to stress three techniques:design
by contract, as a contribution towards reliability; andseamlessnessandreversibility, as
contributions towards maintainability. These terms are defined as follows.

– Seamlessness.Seamlessness allows the mapping of abstractions in the problem
space to implementations in the solution space without changing notation. Seam-
less software development occurs by adding new classes, or by enriching already
existing classes with additional features.

– Reversibility. Changes made during one stage of development can be automatically
reflected back to earlier stages. A modification made to an implementation class can
be reflected in changes to a BON design class. CASE tools exist to support such
reversibility for BON and Eiffel.

– Design by contract.The obligations on and benefits of using features of classes are
precisely specified, using assertions, with the class. BON was designed to support
design by contract, and this coupled with support in programming languages like
Eiffel helps to satisfy the seamlessness and reversibility requirements.

With the above definitions now in place, we will look for the simplest set of features
that will allow us to describe the conceptual construct underlying our software. The
following will be rejected.

– Any feature that militates against contracting, seamlessness or reversibility.
– Any feature that duplicates one already in the notation. (Note that this does not

prevent using differentviewsof a model, but, as we discuss in the conclusions, these
views should ideally be generated automatically from a single model, to maintain
consistency.)

– Any feature that is in the notation merely because a competing notation has it.

The language summary for UML (version 1.3) is 161 pages, whereas the summary
for BON is just a few pages [10]. Further, BON has only one classifier (the class),



while UML has an additional seven classifiers (e.g., datatype, use case). Among the
UML classifiers, a case can be made for redundancy; e.g., datatype and interface can
be encompassed by class. We fail to see why all of the UML classifiers are needed.
The power of using only the class as a classifier is that it unifies modules (information
hiding) with hierarchical subtyping, and thereby abets simplicity and seamlessness.

There are three ways to defeat our arguments.

1. Develop a scientific theory of software quality, and do suitable studies and compar-
isons to other methods to show the efficacy of UML.

2. Disagree with the notion of software quality, as defined above (although we feel
that most developers will want to have reliability and maintainability).

3. Prove UML does at least as good a job as BON at reliability and maintainability.

The rest of the paper will focus on point 3. We hope to show that BON does a signifi-
cantly better job than UML. We also suggest what changes could be made to UML to
better support contracting, seamlessness and reversibility.

Our comparison of BON and UML is founded on the standards for both languages.
The BON standard reference is [17]; the UML reference is [16]. We do not consider
techniques or extensions beyond the standards. In part, we therefore do not consider
UML stereotypes beyond those documented in the standard reference. We refer the
reader to [13] for a longer version of this report.

2 Introduction to BON

BON is an object-oriented method possessing a recommended process as well as a
graphical and a separate textual notation for modeling object oriented systems. The no-
tation provides mechanisms for modeling inheritance and usage relationships between
classes, and has a small collection of techniques for expressing dynamic relationships.
The notation also includes anassertion language, discussed in more detail in Section 4;
the method is predicated on the use of this assertion language. In this sense, BON is
based on behavioral modeling. This should be contrasted with UML which is grounded
in data modeling. The method is supported by the EiffelCase tool from ISE.

As previously mentioned, BON supports three main techniques: seamlessness, re-
versibility, and software contracting. As a result, BON provides only a small collection
of powerful modeling features that guarantee seamlessness and full reversibility on the
static modeling notations.

Early steps of the BON recommended process make use of the informalchart(CRC
index card) notation for documenting potential classes, clusters of classes, and proper-
ties of classes. Intermediate steps rely on the BON static and dynamic modeling no-
tations, which we summarize in following sections. The final step involves mapping a
BON model into an OO programming language.

The BON method is not driven by use-cases, unlike UML and its compatible pro-
cesses. In this sense, we would claim that BON is architecture-centric and contract
driven, but not use-case driven. BON does implicitly apply use-cases with its object
communication diagrams (they are called ‘scenarios’ therein), but they are not an em-
phasized part of the method, and are usually applied after design classes have been
discovered.



2.1 What is not in BON?

BON is also distinguished by the so-called ‘standard’ modeling elements that it omits,
in particulardata modeling(e.g., via some variant of entity relationship modeling) and
state machines. Using these elements breaks seamlessness and reversibility [17]. The
modeling advantages that these elements offer are far outweighed by the advantages of
seamlessness and reversibility.

Modeling the behavior of objects using finite state machines introduces an impe-
dence mismatch, which requires translation of finite state machines into code or surren-
der of the class concept. We also lose seamlessness with data modeling, in part because
of its reliance on binary associations, and in part because associations as a modeling
concept break encapsulation [3, 4, 17]. It is claimed in [17] that using simple OO prim-
itives, and not binary associations, for class relationships is sufficient for specifying all
the interesting relationships between classes, and is guaranteed to maintain seamless-
ness.

We have previously mentioned that BON does not support use-cases directly, though
they are implicitly applied during the later stages of the process where object commu-
nication diagrams are developed.

3 Seamlessness and Reversibility

In this section, we outline the basic BON modeling language, concentrating on those
aspects of the language that support seamlessness and reversibility. As we shall see, all
of the static diagram elements of BON are designed for this purpose. These elements
will be compared with equivalents in UML, and we will discuss the support these UML
elements provide to the aforementioned techniques.

3.1 Class interfaces

The fundamental construct in BON is theclass; in UML terminology, the class is the
only form of classifier available. A BON class is both a module and a type; it is a
possibly partial implementation of an abstract data type. With BON, a class is the only
way to introduce new types; this is because of the requirement for seamlessness.

A BON class has aname, an optionalclass invariant, and a collection offeatures. A
feature may be aquery—which returns a value and does not change the system state—
or acommand, which does change system state. BON does not include a separate notion
of attribute.Conceptually, an attribute should be viewed as a query returning the value
of some hidden state information.

Figure 1(a) contains a short example of a BON graphical specification of the inter-
face of a citizen class. Class features, with optional behavioral specifications, are in the
middle section of the diagram (there may be an arbitrary number of sections, annotated
with visibility tags, as discussed later). An optional class invariant is at the bottom of
the diagram. The class invariant is a predicate (conjoined terms are separated by semi-
colons) that must betruewhenever an instance of the class is used by another object. In
the invariant, the symbol@refers to the current object; it corresponds tothis in C++



and Java. ClassCITIZEN has seven queries and one command. For example,singleis
a BOOLEANquery, whiledivorceis a parameterless command. ClassSETis a generic
predefined class with the usual operators (e.g.,2; add); it is akin to a parameterized
class in UML, or a template in C++.

name, sex, age : VALUE
spouse : CITIZEN
children, parents : SET[CITIZEN]

single : BOOLEAN

Result <-> (spouse=Void)!

divorce

? not single

! single and (old spouse).single

single or spouse.spouse=@;

parents.count=2;

CITIZEN

invariant

children p=@∀c ∃ p c.parents22

(a) BON interface

Citizen

name, sex, age : Value

single() : boolean

divorce()

spouse parents

children

0..1 *

*

single or spouse.spouse=self  and
parents->count=2                   and
children->forAll(c | c.parents->exists(p | p=self))

<<invariant>>

<<postcondition>>
result=(spouse=NULL)

<<precondition>>
not single

single and spouse@pre.single
<<postcondition>>

(b) UML class diagram

Fig.1.A citizen class in (a) BON and (b) UML

A textual dialect of BON also exists [17]. It is syntactically similar to the Eiffel
programming language.

A UML class diagram for a citizen is shown in Fig. 1(b). It is drawn assuming that
we want to represent all details shown in Fig. 1(a) in UML (OCL is used for writing
constraints); later, we discuss how the class diagram can be simplified.

Let us discuss the fundamental differences between the diagrams. First, consider
the types of the attributes. In UML, attributes are intended to be used to represent data
types (i.e., primitive types and enumerations, perhaps with simple multiplicities). A cit-
izen class thus is not used as a type of an attribute in a class. So,spouse; children; and
parentsfrom the BON class interface must be modeled as associations in the UML class
diagram, thus making the UML diagram more complicated and making seamlessness
difficult to support. In BON, any class may be used in an interface. This leads to sim-
pler models, abets seamlessness, and allows modelers to visually emphasize the most
important relationships in their diagrams, thus aiding readability.

A second difference between the UML diagram and the BON diagram is with the
behavioral specifications. We shall return to this point in detail in Section 4, but for now
we mention that pre- and postconditions and invariants can be modeled using notes,
extra boxes, and stereotypes. This clutters the diagram, as Fig. 1(b) shows. For this
reason, behavioral details for classes are frequently omitted from diagrams and instead



are presented using a textual assertion language, such as the OCL, separate from the
diagram. Separation introduces the potential for maintenance and consistency problems.

3.1.1 FeaturesEach class in BON has a collection of features, which may be queries
or commands. All features of an object are accessed by standard dot notation. Identi-
cal syntax is therefore used to access attributes, and parameterless queries; this is the
so-calleduniform accessprinciple [10], and is a clear difference between BON and
UML. In UML, one must distinguish between using a parameterless function and an
attribute by suffixing the former with() . This is not necessary in BON, and because of
it, it is possible to hide implementation details from clients of the class, and allow the
redefinition of functions to attributes under inheritance.

3.1.2 Compressed interfacesOften, specifiers do not want to include all the details
of a class interface in a diagram. For this purpose, BON has acompressed formfor a
class. In this form, a class is written as an ellipse containing its name. The compressed
form can be annotated with special header information, indicating further properties
about the class. Some examples (more are in [13]) are shown in Fig. 2.

NAME[G,H] Class is parameterized.

*
NAME

Class is deferred. It has no
instances, and is used for
classification purposes.

Graphical form Explanation

NAME Class is (potentially) persistent.

NAME
Class is interfaced with the outside
world; some feature encapsulates
external communication.

Graphical form Explanation

Fig.2.Compressed views and headers in BON

The ellipse notation in BON is equivalent to the rectangle in UML. The* header in
BON, for adeferredclass, roughly corresponds to anabstractclass in UML. A deferred
class has at least one unimplemented feature. The correspondence between deferred and
abstract class is not exact. In UML, classes where all operations are implemented can
still be marked as abstract, while this is not possible with BON. Deferred classes are also
not the same as UML interfaces, since the former can contain attributes and behavioral
specifications, while the latter cannot. Thus, the deferred class notion encompasses the
UML notion of interface, and the most common uses of abstract class as well. It is not
clear why both a notion of abstract (or deferred) class and interface need to be present
in UML.

3.1.3 Visibility Visibility of features in BON is expressed by sectioning the feature
part of the class interface, and by use of the feature clause. By default, features are
accessible to all client classes that would use them. This is almost the same as public
visibility in UML, except that in BON no client class canchangethe value of any query
(that is, BON features are externally read-only). This restriction is necessary if we want
proper information hiding.



More restrictive visibility of features can be expressed by writing a new section of
the class interface and prefixing the section with alist of client classes. For example, a
section prefix offeature{A,B} indicates that only classesA andB may access the
features in the section. This form of visibility is directly implementable in Eiffel, and
can be mapped directly to C++ viafriend features and classes.

This should be contrasted with the mechanism supported by UML, which by default
permits the C++/Java style of public, private, and protected features, via tagging each
feature with a symbol. Tagging can be applied at both the class and the package level.
The BON visibility mechanism is more flexible and general. It is also very helpful in the
analysis and design phase, when class communication and coupling is being developed
[10, 17].

3.2 Static architecture diagrams

BON provides a small, yet powerful selection ofrelationshipsthat can be used to in-
dicate how classes in a design interact. These relationships work seamlessly and re-
versibly with those that are supported by modern OO programming languages–especially
Eiffel. There are only two ways that classes can interact in BON.

– Inheritance: one class inherits behavior from one or more parent classes. Inher-
itance is the subtyping relationship. It corresponds to generalization in UML: ev-
erywhere an instance of a parent class is expected, an instance of a child class can
appear. There is only one inheritance relationship in BON; however, the effect of
the relationship can be varied by changing the form of the parent classes (e.g., mak-
ing parents deferred), and by using feature modifiers, e.g.,renameandredefine.
In BON, renaming mechanisms can be used to resolve multiple inheritance prob-
lems. By contrast, UML provides no mechanism for resolving such conflicts. Ac-
cording to [14], it is the responsibility of the designer to resolve class conflicts in
multiple inheritance, for example, based on some provided programming language
mechanism. This approach increases generality, but breaks seamlessness.

– Client-supplier: a client class has a feature that is an instance of a supplier class.
There are two basic client-supplier relationships, association and aggregation, which
are used to specify thehas-aor part-of relationships between classes, respectively
(the difference between the relationships is defined in Section 3.2.1). Both rela-
tionships are uni-directed; there is no undirected association in BON. These two
relationships correspond tosingly navigableassociations and compositions, re-
spectively, in UML, or to usage dependencies. There is no equivalent to UML’s
aggregation in BON. Client-supplier relationships can also be bidirectional and
self-directed; we provide examples later.

Fig. 3 contains a non-trivial architectural diagram using BON, demonstrating exam-
ples of both inheritance and association. Thin vertical arrows (e.g., betweenEXPand
SD) represent inheritance. Double-line arrows with thick heads (e.g., betweenFTSand
TRANSITION) represent association. On the associations, names and optionally types
of client features that use the supplier class can be specified, e.g., featureeventson
the association betweenCLOCKCHARTandEVENT. The type ofeventsis generic;
eventsis a set of instances ofEVENT. The BON naming notation for client-supplier
relationships roughly corresponds to the UML notation for roles.



TRANSITION

STRING

TYPE

EXP VAR

SD

CD

alpha: SET[...]

FTS
trans: SET[...]

CLOCKCHART EVENT

CHOOSE ASSIGN

START STOP

COUNT_UP

COUNT_DOWN

COUNT_UP_PARAMETER

COUNT_DOWN_PARAMETER

events: SET[...]

action: SET[...]

DESCRIPTIONS
FAIR_TRANSITION_SYSTEM

EFFECTIVE_CLOCK_COMMANDS

CLOCK_TRANSITION_SYSTEM

CLOCK_COMMAND
*

COMMAND
*

Fig.3.BON architectural diagram for fair transition systems

3.2.1 Client-supplier relationships Client-supplier relationships in BON are be-
tweenclasses, and constrain classes. The BON relationships can be mapped directly
to attributes or functions in Eiffel and Java, and can be reversibly generated from Eiffel
and Java programs.

Associations and aggregations in BON have no object multiplicities; class invari-
ants can be used to express such constraints. In this manner constraint details are kept
solely within classes, and thus it is easier to maintain them and to understand their re-
lationships. Multiplicities are just one of many different kinds of constraints that one
might want to write on a relationship. Instead of providing a multiplicity notation, BON
provides a single, uniform and expressive notation to express all kinds of constraints on
relationships.

BON also provides a notion ofaggregation,which is commonly used to represent
the ‘part-of’ relationship. Aggregation has a precise semantics in BON: it corresponds
to the notion ofexpandedtype [10]. A variable of expanded type is not a reference. An
implication of this is that in BON, aggregates are created and are destroyed with the
whole. This most closely corresponds with UML’s notion ofcomposition.

3.2.2 Clustering In Fig. 3, dashed boxes areclusters, which encapsulate subsystems.
In BON, clusters are a purely syntactic notion. They can be used to present different
views of a system. Clusters roughly correspond to the notion of package in UML, but
there are several differences.

The first difference pertains to the extension of BON’s relationships to clusters.
With BON, inheritance and client-supplier relationships are recursively extended to be
applicable to clusters as well as classes, as the figure shows. Precise rules for such ex-



tensions can be found in [17]. The extension for client-supplier relationships is similar
in meaning to package dependencies (via the<<imports>> stereotype) in UML. A
difference arises with inheritance. UML supports generalization between packages, but
it differs in meaning from inheritance involving BON clusters. In UML, package gen-
eralization defines a substitutability relationship among packages; in BON, it simply
means that everything in the child cluster inherits from something in the parent cluster.

The second important difference between clusters and packages is that UML pack-
ages introduce import and export facilities. Things inside a UML package cannot see
out of the package by default. Further, things outside of a package cannot see inside the
package. This can be changed by the specifier by introducing visibility tags on things
inside a package. Packages can also explicitly import visible components of other pack-
ages, via the<<imports>> stereotype. BON supports none of these features; visi-
bility and accessibility is determined and specified by the modeler at the class level.
Clusters provide no namespace control, visibility control, and import/export facilities.
All of these features areonlyprovided at the class level, because of the requirement for
seamlessness.

The limitation with the UML approach is that it makes it difficult to express fine-
grained visibility for specific features of classes; this is discussed more in [13].

3.3 Dynamic diagrams

BON provides a simple, uniform expressive notation for specifying message passing
and object interactions. This dynamic notation presents a complementary view to that
of a static model.

We view the BON dynamic notation as useful for producingrough sketchesof sys-
tem behavior [8]. Rough sketches provide informal details of how elements in a system
interact. There are two categories of dynamic BON notations: the charts, and the object
communication diagram. The charts are an informal card-based notation for describing
system events and scenarios. The object communication diagram models objects and
the messages that are passed between objects. Objects are represented as rectangles en-
closing the name of their class, perhaps with an object name qualifier. Messages are
depicted as dashed arrows, optionally annotated with sequence numbers representing
order of calls. Sequence numbers can be cross-referenced to entries in ascenario box.

The object communication diagram corresponds most closely to UML’s collabora-
tion diagram (though it is also semantically equivalent to UML’s sequence diagram);
both forms of diagram share the ideas of sequence numbers and using two dimensions
to express collaborations. The BON and UML syntax for these diagrams is so simi-
lar that we omit examples, though some can be found in [13]. We point out that BON
provides only one diagram for dynamic modeling, whereas UML provides several.

4 Design by contract and assertion languages

We now turn to the second major technique supported by BON (and supportable by
UML), namely design by contract [10]. In doing so, we explain how the technique is
used in BON and UML, and discuss the respective constraint and assertion languages.



The notion of design by contract is central to BON. Contracts are used to specify
the behavior of features, of classes, and of class interactions. Each feature of a class
may be given a contract, and interactions between the class andclient classes must be
via this contract. The contract is part of the official documentation of the class; the class
specification and the contract are never separated. This substantially aids readability
and specification simplicity.

The contract of a feature places obligations on the clients of the feature (they must
establish the precondition) and supplies benefits to the clients of the feature (they can
rely that the feature will establish the postcondition). Both BON and UML offer con-
straint languages than can be used to precisely specify behavioral details about classes,
features, and entire systems. BON has a simple assertion language based on first-order
predicate logic; the method was designed around the use of the assertion language. By
contrast, UML has its Object Constraint Language, which was added to UML in version
1.1, after much work on the modeling language had been completed.

4.1 Assertions in BON

Contracts, and thus class behavior in BON, are written in a dialect of predicate logic.
Assertions are statements about object properties. These statements can be expressed
directly, using predicate logic, or indirectly by combining boolean queries from indi-
vidual objects. The basic assertion language contains the usual propositional, predicate,
and set theoretic operators and constructors, as well arithmetic operators and constants.

The assertion language can also be used to refer to the prestate in the postcondition
of a routine. Theold keyword, applied to any expressionexpr, refers to the value of
exprbefore the routine was called.old can be used to specify how values returned by
queries may change as a result of executing a command. Most frequently,old is used
to express changes in abstract attributes. For example,count= old count+ 1 specifies
thatcountis increased by one.

A formal semantics for contracts in BON, as well as a collection of re-engineered
rules for reasoning about BON contracts, can be found in [12].

4.2 The Object Constraint Language

The Object Constraint Language (OCL) is roughly the equivalent of the BON assertion
language in UML; a difference is that the OCL is not based on standard predicate logic.
The OCL also fixes problems inherent in the UML metamodel. Requirements for the
OCL include: precision; a declarative language; strong typing; and, being easy to write
and read by non-mathematicians. As a result, OCL syntax is verbose, replacing common
mathematical operators and terms with a more programming language-like syntax. To
developers experienced with the use of a constraint language, the OCL will appear
cumbersome and difficult to use—especially for reasoning.

4.3 Comparison

While the BON assertion language and OCL are similar in terms of how they are in-
tended to be used, there are significant differences between the two languages.



The first difference is in terms of the rˆole that the constraint languages play in the
modeling language. The assertion language is fully integrated into BON; the graphical
(and textual) notation and the process have been designed to use it. With UML, the
constraint language is an add-on, and there are syntactic and semantic issues that remain
to be considered after OCL’s addition [5], such as connecting finite state modeling with
constraints.

The BON assertion language provides both a familiar, concise, expressive mathe-
matical notation – in its graphical form – as well as a textual form that may be preferable
to inexperienced constraint language users. The graphical BON assertion language is far
superior for reasoning, either with a tool or without, than the OCL; even simple proofs,
e.g., the kind needed to show totality or satisfiability of a constraint, will be large and
difficult to do with OCL’s syntax. An example of using the BON assertion language for
reasoning can be found in [12].

Another significant difference is that OCL is a three-valued logic; anexpression
may have the valueUndefined. BON possesses a notion ofVoid, which reference types
may take on. However, this is not the same as OCL’sUndefined, as only a reference
variable (and not, e.g., aBOOLEANvariable) can take on valueVoid. Three-valued
logics need more extensive rules for reasoning than standard predicate calculus. A case
for making the OCL a two-valued logic can be found in [5]. Techniques for reasoning
about references can be found in [9].

BON also defines the effect of inheritance on constraints: they are all inherited,
and may be refined by the child class. With OCL, this approach is suggested, but not
required. It is not clear what value there is in not requiring the inheritance of contracts.

4.4 Contextual information

In BON, constraints are written in class interfaces and are never separated from the
interface to which they apply, and therefore maintaining constraints and ensuring their
consistency with respect to the attributes and queries of a class is straightforward.

With OCL, it is recommended that constraints not be included in the class diagrams
[18], in part because doing so clutters the UML class diagram. Constraints are instead
written textually, separate from the diagram. For example, to express that an attribute
ageof a classCustomeris always at least 18, we would write

Customer

age � 18

Since constraint and diagram are separate, there is increased likelihood of inconsistency,
especially without tool support. Even with tool support, separating constraint and class
can make it difficult to use existing constraints for further development. Part of the
value of using constraints with classes is that we can use existing constraints when
writing new ones. This is not easy to do when constraints are not kept in one place.

4.5 Software contracting with OCL

OCL support for software contracting comes in the form of class constraints (which
are equivalent to BON’s class invariant), and optional pre- and postconditions. These



contracts are not, by default, inherited by a child class, though they may be. Here are
two example contracts in OCL. They are translated from the BON classCITIZEN in
Fig. 1(a). On the left is an OCL contract for functionsingle, and on the right is the
contract for proceduredivorce.

Citizen :: single()

pre : �� none

post : result = (spouse = NULL??)

Citizen :: divorce()

pre : not single()

post : single() and spouse@pre:single()

In the BON contract forsingle, spouseis compared with theVoid reference; a citizen
is single if and only if theirspouseattribute refers to theVoid object. [18] makes no
reference to aVoid or NULL object that can be used with reference (or object) types.
We useNULL?? here for illustration, but a careful consideration of object types,Void
references, and their effect on the type system of OCL and UML, is necessary.

In the postcondition ofdivorce, the value of attributespousebeforedivorceis called
is referred to by using of the@pre notation.@pre can only be applied in postcon-
ditions to attributes or associations. This should be contrasted withold, which serves
a similar purpose in BON.old can be applied to any expression.old makes specifica-
tion of certain features very straightforward and convenient. There is no valid technical
reason to restrict use of@pre to attributes and associations.

4.6 Using the constraint languages

OCL provides a number of built-in types, including basic types like integers, and col-
lection types like bags, sequences, and sets. Methods of collection types (defined in
[18]; examples includecollect; select; forAll andexists) are accessed via the arrow no-
tation!; methods of basic types are accessed by the standard dot notation. It has been
suggested that the arrow notation in OCL is counter-intuitive [2], in part because of its
confusion with the pointer dereference syntax of C and implication of logic. A simpli-
fying modification to OCL would be to obey the uniform access principle, and to use
dot notation to access both methods and attributes.

The definition of OCL states that collections are flattened [18]; that is, collections
cannot contain other collections. Nestings of collections are not permitted because they
are considered to be complex to use and explain; however, they are a very useful model-
ing tool. Further, flattening makes formalization of a theory of collections difficult [5],
requires non-standard reasoning about collections, and significantly reduces the model-
ing power of the notation. We agree with [5] that flattening collections is unnecessary,
and it reduces the expressive power of the OCL significantly.

Consider the following illustration of the use of built-in types, taken from [18], that
uses the OCLforAll operation. Suppose we have a collection (e.g., a set) of customers
in a classLoyaltyProgramand want to specify that all customers are no more than 70
years old. In OCL, a constraint is

LoyaltyProgram

self:customer! forAll(c : Customer j c:age() � 70) (1)



This specification is not very readable. It also contains many unnecessary elements: the
!, the empty parentheses, and the type ofc. The corresponding BON specification is
an invariant of classLOYALTYPROGRAM, which possesses a set attributecustomer.
The constraint is

8 c 2 customer� c:age� 70

It is difficult to argue that the OCL constraint (1) is easier to write and read than this
BON constraint.

An alternative OCL specification of (1) is given in [18]. The alternative is, in fact,
more concise, and is as follows.

LoyaltyProgram

self:customer! forAll(age() � 70) (2)

This is easier to read than (1), but it introduces a new problem.age() is an operation
of the classCustomer . The constraint (2) belongs toLoyaltyProgram . The use of
age() in (2) is untargeted; the object to which the call applies is not provided. The OO
paradigm clearly states that all operation calls must be targeted, either implicitly to the
current objectself or to a specified object. Neither case applies to the use ofage()
in (2), so we must reject use of such constraints for OO modeling.

See [13] for a discussion of OCL’sallInstancesoperation, and how the BON asser-
tion language can be used for everything that it can do. A specialallInstancesfeature
is unnecessary if a single, expressive assertion language based on standard typed set
theory and predicate logic is provided.

5 Limitations of BON and UML

In this section, we briefly discuss some limitations that we have identified, with both
BON and UML.

5.1 Improvements to BON

Two inadequacies with BON were identified and discussed in detail in [12]: tool support
and handling of real-time systems. There does not exist a wealth of tool support for
BON; EiffelCase, a CASE tool from ISE, supports the static diagram and interface
notation, as well as round-trip engineering and code generation. There is no analytic tool
support, e.g., for reasoning about contracts and classes. Work is underway on providing
such support, as detailed in [12]. Better tool support is needed for BON in general.

Currently, BON provides no support for real-time specification (concurrency can
be expressed using object communication diagrams). UML, by comparison, has a real-
time dialect. A long-term direction of research will be to study how to provide real-time
features that integrate with BON’s behavioral modeling techniques. This could go hand-
in-hand with further study and development of dynamic modeling notations in BON.
Any extensions to BON will have to maintain seamlessness and reversibility.



5.2 Improvements to UML

The UML has been constructively criticized by others, e.g., [4, 11, 15]. Our comparison
of BON with UML has led us to the following suggestions for improvements with the
UML.

– Design by contract.Design by contract can be supported in UML through the
OCL, but it is not a core part of the modeling language. Full support for design
by contract in UML would an excellent way to rationalize existing techniques for
specifying constraints, and would significantly improve the UML’s capabilities for
building reliable, robust software. This, however, may be difficult: the visual mod-
eling notation may require changes in order to better integrate design by contract
capabilities, and the semantics, particularly with respect to state diagrams, may
have to be changed to accommodate contracts.

– OCL. As it currently stands, we believe the OCL is too informal and too verbose for
behavioral modeling and for reasoning about said models. A formal semantics for
the OCL, as well as a less verbose syntax, needs to be developed. Work is underway
along these lines [6]. A number of decisions in the design of OCL are also worth
revisiting. As discussed earlier, and elsewhere [5], making the OCL a three-valued
logic, and requiring the flattening of collections, are questionable decisions and
impact on the modeling power of the notation.
We question whether it is feasible to develop a constraint language that meets all
the requirements placed on the OCL. The goals of precision and non-expert un-
derstandability seem to be mutually exclusive. A better approach, as is used in the
formal methods application area, might be to use a formal contract language for
modeling and specification, and to thereafter paraphrase it into natural language.

– Rationalization.With the UML, there are typically several ways to write a model.
In part, this is an artifact of unification and the desire to make it as easy as pos-
sible for users of the unifying methods to move to UML. With the addition of the
OCL, a number of modeling concepts, e.g., or-constraints, subset constraints, etc.,
can be considered redundant. Further rationalization could be done. Alternatively,
restrictions of the UML could be examined, e.g., removing those graphical model-
ing concepts that become redundant upon addition of a precise constraint language.
This is discussed more in [13].

6 Conclusions

BON and UML are languages that can be used to model object-oriented systems. BON
is founded in behavioral modeling and emphasizes seamlessness, reversibility, and the
use of design by contract. It is simple, easy to teach, and scales up to large systems.
UML is a data modeling language that emphasizes use-cases, architectural modeling,
and expressiveness. It is supported by a constraint language that is optional for devel-
opers to use. It is large, general-purpose, and extensible.

One of our goals in writing this paper was to better understand UML and BON,
and to potentially identify limitations and aspects for improvement with each notation.
With BON, we have identified limitations with respect to real-time specification and



tool support. With UML, our main conclusion is that its development is not complete.
UML has unified three different approaches to modeling; that is a useful first step. A
next step for UML development should be rationalization.

A second goal of this paper was to understand how UML supports, or fails to support
seamlessness, reversibility, and software contracting. We believe that these are vital
techniques for an OO modeling language to support. BON has been designed to support
these techniques, but UML has not. If it is desired to use UML and to support the
techniques of seamlessness, reversibility, and contracting, we suggest the following.

– Seamlessness.We can treat dynamic diagrams as rough sketches [8], and make
contracts the fundamental specification element. State diagrams should be used
minimally, and ideally as an automatically generated view for a class (e.g., as is
done with SOMA [4]).

– Reversibility. Navigable associations should be used. Non-standard stereotypes
should not be used. Contracting should be considered for use as a technique that
further supports reverse-engineering.

– Contracting. The OCL should be carefully formalized, and a precise definition of
the effect of contracts on inheritance should be specified. Collapsing of collections
should not be carried out.

Suppose that the UML was used in this manner. It is still very questionable whether
the UML applied in this way is the best approach for developing software seamlessly
and reversibly, using design by contract. The most significant difference between BON
and UML is that the former satisfies what we term thesingle-model principle.In BON,
there is precisely one model for a class. All information associated with the class, e.g.,
contracts, invariants, signatures, is always kept in that single model. When we design,
we add information to the class model, and as necessary we produce different views of
the model. But these views are always based on the single model for the class.

UML does not satisfy the single model principle. Information about a class need not
be kept in one place; its contracts and invariants are written in OCL, and are not part
of the diagram. Information about attributes that are not ‘simple’ is kept outside of the
class. The semantics of a class may be given using a state machine. There is no single
model for a class written in UML, and this may lead to consistency and communication
problems as the class is reused or maintained, and as the system evolves.
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