
1

ITEC 1630
Week 9: Files & Streams

Yves Lespérance
Readings: Horstmann Ch. 16

Using files

• We save data in files on disk or some
other media so that we don’t lose it
even if the computer is shut off

• Files can store more data than may fit in
working memory

Types of files

• Text files
• Binary files

– Sequential access
– Random access
– Object streams

Text files

• Text files contain a sequence of
characters.

• They are easy to understand for
humans and can be read with a text
editor

• The characters can only be read or
written in sequence.

2

To read a text file

1. Open t he file for reading by creating a
FileReader: FileReader r = new
FileReader(inputFileName); (may throw
FileNotFound exception)

2. Create a Scanner for the reader: Scanner s =
new Scanner(r);

3. Read and process the data using the
scanner, e.g. if(s.hasNextLine()){String l =
s.nextLine();…}

4. When finished, close the file: r.close();

To write a text file

1. Open t he file for writing by creating a PrintWriter:
PrintWriter w = new PrintWriter(outputFileName); if
the file already exist, it will be overwritten

2. Write data to the file: w.print(value); or
w.println(value);

3. When finished, close the file: w.close();

Can use JFileChooser dialog box to get the file name.
Can also use command line arguments.

Binary files

• Binary files contain a sequence of bytes in
binary format; can represent any type of data.

• U sually a more compact representation than
text.

• Can access data:
– sequentially as a stream of bytes; low level
– sequentially as an object stream; convenient
– in arbitrary order as a RandomAccessFile of

records

To read a binary file as a byte
stream

1. Open t he file for reading by creating a
FileInputStream: FileInputStream in = new
FileInputStream(inputFileName); (may throw
FileNotFound exception)

2. Read and process the data:
while(!done)

 { int n = in.read(); // returns -1 when EOF
 if(n != -1){byte b = (byte) n;…}

 else {done = true;} }

3. When finished, close the file: in.close();

3

To write a binary file as a byte
stream

1. Open t he file for writing by creating an
OutputStream: OutputStream out = new
OutputStream(outputFileName); if the file
already exist, it will be overwritten

2. Write data to the file: out.write(byte);
3. When finished, close the file: w.close();

To write a binary file as an
object stream

1. Open t he file for writing by creating an
OutputStream and then an
ObjectOutputStream: ObjectOutputStream
out = new ObjectOutputStream(new
OutputStream(outputFileName)); if the
file already exist, it will be overwritten

2. Write object(s) to the file:
out.writeObject(o);

3. When finished, close the file: w.close();

Writing a binary file as an
object stream

• Complete a rrays or ArrayLists can be written as a
single object

• Easiest to create an object that contains all your
data and then write it to the object stream

• Objects written must implement Serializable
interface (no methods required)

• If they contain non-serializable attributes, they are
not automatically saved: declare these as
transcient and define writeObject and
readObject methods to handle them (see p. 599)

To read a binary file as an
object stream

1. Open t he file for reading by creating a
FileInputStream and then an
ObjectInputStream: ObjectInputStream in =
new ObjectInputStream(new

FileInputStream(inputFileName)); (may throw
FileNotFound exception)

2. Read object(s) from file, e.g. BankAccount b =
(BankAccount) in.readObject();

3. When finished, close the file: in.close();

4

To read or write a binary file
as a random access file

1. Decide on a record size and layout
2. Open t he file for reading and writing by creating a

RandomAccessFile: RandomAccessFile f = new
RandomAccessFile(fileName, “rw”); for reading only use
“r”

3. Move the file pointer to the right position: f.seek(n *
RECORD_SIZE); or f.seek(f.length());

4. Write data to the file, e.g. f.writeDouble(x) or
f.writeInt(n) or f.writeChar(c); or read data from
the file, e.g. Double d = f.readDouble()

5. When finished, close the file: f.close();

