yceptional conditions that arise in the execution
of programs, within a knowledge representation
‘formalism. The scheme consists of two mechanisms:
e excuse, which allows the Jjustification of
pecified conatraint violations in instances of a
1ags through membership in a second class within
‘designated contexts, and the mapping, which
permits the specification of similarity
relationships between the definitions of two
objects, so that arbitrary elements of these
definitions may be copied or inherited (a flexible
i§-A). Exceptions in programs are handled through
‘an extension of the excuse mechanism,

1.0 INTRODUCTION

In order to perform intelligently , a system
ust possess a model of its world and be able to
use it to deal with the often unexpected
pltuations that arise. The Kknowledge in this
model {knowledge base) is organlsed in terms of a
ayster of gategories. The cathegories may be
explicit, as in frame systems [Minsky 74], or more
Amplicit as in logical formalisms. Exceptions im
representation systems arise as a resuit of (1)
‘the sometimes unpredictable nature of the world,
which produces atypical situations, and (2} the
inadequacies of current representation formalisms
4n dealing with "patural™ concepts {as wused by
people). These exceptions manifest themselves
through the violation of some constraint during
the lifetime of the knowledge base.

4 simple classification of excep!ional
oonditions will help in finding ways to deal with
them. Generic exceptions can firat be

distinguished fron individual exceptions, as the
former pertains to constraints vioclated in the
definition of a category rather than in particular
--individual objects. Individual exceptions can be
Further subdivided into statlic exceptions, which

S Brise wnile the systems is attempting to
© instantiate or recognize an object (basic
operations at the top-level), and dypamic

Bxceptions, which are encountered during the
pxecution of a user defined program.

63

‘suggested.

HANDLING EXCEPTIONAL CONDITIONS IN PSN
Yves Lesperance
Department of Computer S3eience

University of Toronto
Toronto, Canada

. MBS 1AT
ABSTRACT This paper sumarizes an exception handling
system develloped for the P3N representation
formatism [Levesque 79}, which is explained in
This paper describes a scheme for handling details in [Lesperance 80]. The seminal ideas for
both exceptional objects and classes and the system came from [Minsky T4], where two ways

of recovering from failure in a frame system are
Firat, it may try to create an excuse
for the exceptional condition with an appropriate
reason. In this approach, the failure is seen as
arising from the fact that the defective object 1is
really an instance of two frames which interact,
thus the object does not satisfy perfectly the
jdeal defined in one of the frames. The knowledge
necessary to make the repair should be attached to
a higher thematic context frame. The second
approach involves using the local advice embedded
in a similarity network to replace the defective
frame by a more appropriate one.

The two approaches reflect the distinction
between individual and generic exceptions. In the
first case, we do not wish to create new
categories for every single exceptlon, thus an
gxguse mechanism has been devised to allow the
handling of both static and dynamic exceptions and

the maintenance of the consistency of the
knowledge base. The excuse mechanism has been
influenced extensively by exception handling

mechanisms develloped for programming languages,
[Levin 77] in particular. These mechaniems allow

the mainline of the program to be expressed
without cluttering it with the code required to
handle exceptional conditions. Moreover, the

handling code for the condition is attached to the
caller or user of the program module which ralsed
the exception, allowing for a context dependent

recovery from the exception. This faecility
permits the use of a procedure even If the
conditions for which it was deslgned are not

satisfied, as long as the exceptions that will be

rajised can be handled by its caller or user. For
generic- exceptions, the problem lies in the
insertion of the category inte the existing

hierarchies, especialy when the inheritance of
only part of the definition of the category is
desired. This has been done through a Lippiag
mechanism inspired from [Moore 731, which makes
explicit the inheritance process of definition
elements and gives control to the user over it
when this is needed.

The developpement of this system 1s seen as a
step in the direction of improved flexibility for

EXCUSE~CLASS EKCEPg}ON-LlNK EXCEPTION-CLASS
4 N

F .
i

- xcusm-cmssq»—;;'_amm@-ﬂ:\
5 Just-slot gxeeption-glass

Justification. ! .
exc-slot [PIRATE—STORY Z{j exception-link~1 AAﬁQ\\U
er

- NO-REAL-LEG
main-charact N -class A

HUMA red
type head.
legt..
™

exception.

B
{1t 7 ARTIFICIAL-LIMB]

{DiSABLED-PERSONW

— -
RUMAN-LEG
) ARTIF1CIAL-LIMB
story-1s.
...‘\-‘,
main-character - |
R c ON~-CLASS-
Capt 'n-Kidd EX_EPTI !
4
legl
excuse-1 H\“:?
exception wooden-1eg-1 no-real-leg~1
Figure 1 - Example of excuse for static exception.
representation formalisms, both for practical of & class, the appropriate attached program is
purposes and modelling adequacy. The system can executed, this allowing the desired inferences
be readily adapted to most other semantic network {antecedent theorems} to be added to the knowledge
or frame based formzlisms. The approach taken base. Similar action is taken in the case of the
emphasizes the knowledge base definition aspect, three other operations. Simple token objects are
but generality has been preserved. Before the represented in the graphle notation by thelr

host external name in lower cases, for example
"Capt*n-Kidd" in figure 1. The INSTANCE assertion
is represented by an unlabled single line arrow.
Incidental relationshipa between objects {the
links in traditional semantic networks) are

system can be explained, an overview of its
formalism must be given.

2.0 QVERVIEW QF PSN repregented by a class of objects called
relations, whose semantics are also defined by
The PSN formalism grew cut of a desire to four programs. The instances of relations are
develop a facility for defining semantic network agsertions of the relationship between fwo

knowiedge bases with well defived semantics. The apecific objects.

formalism is basicaly procedural, as the semantlcs

of clagses, which represent generic objects, are This basic procedural PSN is augmented with
defined in terms of four attached programs, which declarative facilities whieh help in the
: prescribe the behavior of the eclass under the organization of the knowledge base. The defining
; operations of instantiation, removal of an properties of a class are grouped together to form
instance, testing for meambership and fetching of the atructure of the class, which consists of a
all instances. (lasses are represented graphicaly set of alots which can have a type, restrictlons,
by their external pame in capitals, for example default, ete.. The structure of a class is
RHUMAN® or PEXCEPTION-CLASS"™ in figure 1. represented by a box under the name of the class,

g Whenever an individval object is made an JIpatance for example "HUMAN® in figure 1, and slots by

-uogadaoxa ormenip B JOJ SEnoXs Jo sjdwexy - 2 aanB1g

. N ~ . |) ,
i /rqq,naqodﬂu L-38R0X3
PRI~ — A Gurer - - ~ 14 /»;f
08T *33n3718QNE SA1E /
{ =339 T~-51B95-0U anTeA 43It o MW

L =1E9E-3AJBEB] =T o PV 1= AT “ :

gludo]ud g._ i
. % SEETO-UOTTAT0XT DTaeuwAp, - { ~dTaq-aduedde
: ./..f - R
-~ .
.f/f /. %
' a Tens T : -

. . / T | : TEAS T —=UTTIS
E 4 PR\ ._. - w..n | ')
S P O 57 £ [0€aeT mpmommunwﬁﬁ.: s pmuwﬁmwwn Empmﬁ_ﬁmn

> sasysueded £A<>lm=mr L J — . gwm. 153 . SaTneod
B 1d Texg k !
- taTnsad e gaj1stnbaaaad, - / 4pog rgotqdaoxas sudngad
. suUIN3 AL epsﬁnwmnwwﬂ N o 3015-*0%3) s
2z B . .
*3uST1I " smﬁm. BT *UQFIBOTITASNF IS
_sJaajsueded . sJdsjsweded sJajameed jers-qsnf saagaweded
LATT-SLYVIT-ON - _.lxm.n.m.awho.muamuxw LYHAS-FANESTY —JTHL-FONVHY 3 =1 =-S5¥I10-FSNIX \\\m@\%m.ﬁdﬂlmzﬁml
L
R . W
\ v ¥
SS¥10~ROTLA90X3 ANTT-NOTI4TOXE HYYD0Hd SSVTI-3SnoXE

their name with » node writien in the box, for
example "legi". These slota can then be filled
with values when an instance of the class has been
ereated. This is repreaented by a link with the
name of the slot as for the 9"legl" of
#Capt 'n-Kidd" 18 "wooden-leg-1" in figure i. The
closure of these structural property value
relationships forms the PART-OF hierarchy. The
classes can 8lso be organized 1in an 1S5=4 or
specialization hierarchy {represented by unlabled
double 1line arrows, see figure 2). This
facilitates the definition of the subclasses &as
the structure of the superclass i3 inherlted by
them. The slots can be refined but are required
to satlsfy the I5-A constraints, which guarantee
that the subclasses are effectively
gpecializations.

Slot values, in particular the four programs
defining the semantics of classes, can also be
inherited 1f neceasary.

The instance hierarchy ls not restricted to
two levels and classea can be instances of
metaclasges. Thism is used extensively in the
definition of the formalism itself and many
‘aspects of its behavior arise as a result of the
‘definition of the metaclasses: CLASS, RELATION,
OBJECT, PROGRAM,etc.. & metaclass can conatrain
the structure of 4its instances through its
metastrueture [Kramer B0), as the slots of the
instance must be instances of the metaslots in the
metastructure. Programs are represented as
classes im the formalism, and thus benefit from
all the declarative facilities. In figure 2, the
program YARRANGE-TRIP" calls another program
"RESERVE-SEAT™. Metmslots have been used to
partition the slots into different categories:
parameters, locals, etc.. To specify the desired
parameter bindings and evaluations, a form is used
(the box with no heading under "RESERVE-SEAT").
The programs are executed by creatling processes
which are instances of the programs,
tappange-trip-i" and “peserve-gseat-1" in the
example. The formalism also provides a gontext
mechaniam [Schneider 78, Schneider 80). An object
which is visible in a context is called a yiew.
Context are vaed to implement inheritance,
structures being essentisly sapecial forms ~ of
contexts. A 8lot is inherited because 1t is
visible (a view) in the structure of subclasases.

The only differences with some previous
versions of PSN are the use of yaluers to
implement manifestations (ex: John as a taxpayer)
as 1in [Schneider 78], which are needed for the
proper treatment of dynamic exceptlioms, and the
pbility to refer to wmost ayatems assertions
{INSTANCE, type, ete.}. This feature can be
pimulated without any extenaion to PSN by
replacing the single link assertion reference by a
triple link reference to the relation and its
argunents.

3.0 [EXCUSES
3.1 STATIC EXCEPTIONS

The excuse mechanism takes ¢are of objects
which are instances of a class while viclating
some of the conatraints associated to its slots.
The exceptions which are “raised by these
violations must be handied by the clags of the
object which bas the defective object as one of
its parts (slot value), thus one level up on the
PART~OF hierarchy. This provides a basic form of
context sensitivity to the mechanism. The handler
attached to the "situation" is restricted to belng
a class of which the defective object must also be
an ipstance, thus retalning Minsky's idea of frame
interaction in a context.

Let's explore the mechanism in more detail by
considering an example of static exception
handling represented graphicaly in figure 1.
Here, we have an object #Capt 'n-Kidd", which would
be a legal instance of the class "HUMANT, except
for the fact that the value of its slot "leg-1",
myooden-leg-1", violates the type constraint of
the Mleg-1" slot definition in the class WHUMAN™ .
The violation is precisely that "wocden-leg-1" is
not an instance of "HUMAN-LEG". To characterize
this type of constralnt violation, an
exgeption-class called "NO-REAL-LEG" is created.
Then thias class is associated to the type of the
slot 7"leg-1" using an gxception-link. When the
pystem, attempting to fill the value of ‘“leg-i"
for "Capt'n-Kidd¥ will detect the type violation,
it will find the exception-link and then, if the
predicate of the link i= satisfied, it will create
an instance of the exception class "NO-REAL-LEG".
The gxception “no-real-leg-1" is attached to the
INSTANCE- link between "Capt’n-Kidd" and “"HUMAN®,
which thus becomes an EXCEPTIONAL-INSTANCE link.
This is done by making the exception an instance
of an exoeption-class created especialy for the
1link. Many exceptions could be raised on the
instance in the same way.

The rest of the mechanism concerns the
handling of the exception where the system tries
to build an excuse for the exception. For that,
it oclimbs up one level in the PART-OF hierarchy
and looks at the corresponding class to find an

excuge-cliass., In the example, this corresponds to
following the "main-character? agsertion to
fgtory-1m, then looking at its claass

"PIRATE-STORY" and then finding “EXCUSE-CLASS-1".
This excuse-class must have been attached to the
nlot whose value is the exceptional instance. For
the excuge-class to be usable, L1t must -be
associated to the exception-class of which the
exception is an 1instance. If this ia the case,
then the system tries to make the exceptional
object an instance of the class which ls the velue
of its "py" slot, which is ADISABLED-PERSON® 1in
thia case. Any desired checking for evidence for
this type of excuse cen be done at this stage. If
the instantiation has been succesful, then zan

excuse is created, which aszoclates the
justification to the exception. In the example,
this is ‘excuse-i", The ByYcuse marks the

T r

-gutdden Jo s1dwexg - £ 24ndT3

z-Aesq . Z=Aeaq/1-Aeaq ’ 1-422q
- gyt wogyc T AR

dEsg—

Aqsamy/~uTnduag o v:é,.nnwnwm

wo4J qreaq/dyeaq r~
o
L ayW-d/d
. “\fr....J . //./
 — . \/
‘ ; oaﬁ\m&u : o JYH-SSYTIO~XITINFQT
oL P - T i
A¥IG-NIAONEL ¢ aEE-3018/301 7 b\.
/ :u AT (2353 ~SSY13-v-S1
1 f,” swouy)8101s)AaTTRUTPACD 0> #
—woag| /| e— A

Le
= yyad-quTe

—

o

- TERISIT

<L rVAﬂ.l,

" . wahm._
i Lyo1s-dewot

: L . 3: wghw._

OT5~TWod

P e AYA=S SV T — e
e A
L

o
dYW-103raq AYR-SSYTOVLEA

A 3

<E e

“pothing® is glven 8as a value.

eall, with the differance that the
procedure to be invoked has to be selected by the

succesful bandling of the exception. 1f all the
exceptions attached to an exceptional-inatance
1ink via its exception-cliass have been excused,
vhen the link becomes an EXCUSED-INSTANCE link.

Exception-classes 1in this system have 2
two-fold function: they are abstract descriptions
of the violations that arise and they allow an
economical 1interface petieen the excuse-classes,
whieh handle the violations, and the violations
themselves, assuming that some violations will be
treated in the same way. The use of the PART-OF
nierarchy as a kind of context mechanism for
exceptions is new to PSN, but resembles that of

METL [Fahlman 79]. The excuse mechanism also
works nicely for cases of non-existant slot
valuea. In this case, the gpecial object

This can be
yreated as a type viclation and be nandled in the
normal way.

3.2 DYNAMIC EXCEPTIONS

The excuse wmechanism can be wused - to handle
dynamic exceptlons with a few extensions. It is
natural to see exception-classes as the interface
between the program context ralsing the exception
and the one whieh will be selected to handle 1it.
Az these two belong to different levels of
apstraction, it 1s necessary to provide parameter
passing facilities with exceptions. These are
defined as slots in the exception-clasa. The
raising of an exception is simllar to & procedure
actual

system using the information provided by the
excuse~classes. The scheme chosen reauires the
exception handling program to return contrel to
the ralaser of the exception after it has
completed, ms in [Levin 79]. This requires the
definition of a returns slot in the
eyception-clasgs.

In the example represented graphicaly in
figure 2, a type violation has occured in the
process Wpegerve-seat-1", which was invoked by
tarpange~trip-1°. The violatlon is on the
prerequisite alot "pi*, which checks whether some
aeats are avallable on the flight. As the value
returned Was “false®, an instance of the
exception-clasa #NO-SEATS-LEFTY is ereated

L("no-aeats=left~1“) and attached to the INSTANCE
1ipk of the process.

In the ocase of dynamic
exception handling, the exception-link does not
point directly to ‘the exception-class, but to a
form which is a subelass of it, allowing the
parameter bindings to be indicated by Yeval”
assertions. A more important difference is the
presence of a peturn slot value indicating which
slot of the raiser should recieve the result of
the evaluation of the exception handler.

After the creation of the exception, the
system looks for an excuse-class (having the
appropriate exception-class) attached to the slot
that was being evaluated in the galler of the

68

proceas that raised the exception. The dynamic
hierarchy is used instead of PART-OF as it fills a
aimilar role in dynamic objects like program3 to
that of part=of 1im static objects. Thus the
ndynamic® azsertion is followed from
vpeaerve-ascat-1¥ to warpange-trip-1", where the
EXCUSE=CLASS-1" is located, from the
rpeservation® slot that was belng evaluated.
Then, the form which is the value of the “by" slot
and a subclass of the RFIND-ALTERNATIVE® program
is instantiated. {executed), as the exeeption
handler. Here again, 8 form is used to allow for
the binding of parameters. The instance of the
thy? class WFIND-ALTERNATIVE", i3 a manifestation.
of the same object wpegerve-seat-1¥ that ralsed
the exception. The explicit representation of the
valuers (the ovals conkaining the value
asgignements to the slota) makes the separation of
the two manifestations clear. The exception
handiing process thus appears as a tatloring of
the process tpegerve-seat=1" to fit the particuiar
situation at hand. Once the instantiation has
completed, an excuse is created ("excuse-1") for
the succesfuly handled exception. Then, %he
upegultt of the handler, that is the wvaliue of ite
slot whieh 18 an instance of the tpaturns®
metaslot, can be passed pack to the exceptlon and
to the process which raised it. This amounts in
this case to set the local aiot "subatitute® to
this value. Then, the process resumes after the
point of interuption. A& process can. trigger an
exception yoluntarily by returning the aspecial
yalue "fail® in the same way as fnothing" in the
atatic case. :

3.3 INTERACTIONS QITH THE HIERARCHIES AND SEMANTICS

The immediate father in the PART-OF (dynamic)
hierarchy 1is not always the pest class to provide
an excuse for an exception, but the agheme
requires the exceptlon to be reformulated in terms
of the father class before 1t cen be passed up
higher, a0 =as to preserve the abstpaction
atructure, This 1s dome in the atatic ocase by
considering the unexcused exceptional object as
violating the type of the father. In the dynamic
case, the handler. ("by" class) can also ralse a
new exception of its own, as it is treated as &a
part of the caller's context.

Even if it does not appears o by the
examples given, it is intended that
exception-links and excuge-classes he inherited
with the slot they are attached to down the is-a
hierarchy. They cen 8also be refined and have to
satisfy the is-a constrainta (that their parts be
{identieal or is-a, lncluding the exception-class
and the "by" clasa). This can be enforced by the
formalism if these¢ objeats are defined as ~classes
with =lots representing the finks, as in [Kramer
B0]. However this solution ia not totaly
gatisfactory. A default exception-class called
HGENERAL-EXCEPTION-CLASS" is provided by the
formalism to every slot defined, through the
inheritance mechanism.

The excuse mechanism can be considered to be
aimply @ syntactic extension of the original P3N
formalism. The attachement of an exception-link
and exception-class to a slot can be seen as the
oreation of a class which only differs from the
original class by the required presence of the
violation which would raise Gthe exception. The
attaghement of an excuse-class to a alot effects a
godification of its type, generalizing it to
inelude some of these "violation" classes.

4.0 MAPPINGS

Qur goal in designing the mapping mechanism
was to define a very general construct which would
(1) provide a facility for describing
that exist between objJeets and {(2) allow the
gefinition of clasaes ip terms of other classes,
{neluding the copying of parts of their strusture
on a plecemeal basis to enhance expressive
efficlency. The motivation for this came mainly
from the lack of flexibility of the current IS-4
construct, whioh is heavily felt whe dealing with
npatural conecepts. In fact, IS-A should appear as
a partiecular specialization of the general mapping
construct and as such, it cannot be used in 1its
definition.

An example of application of this moré

general mapping construct would be defining. the
class YPENGUIN" in term of the class U"BIRD" by
specifying a mapping from T"PENGUIN" to HBIRDP

which includes, as a pubmapping, saying that the
wpeak® slot of ®YPENGUIN" has a type which is a
particular specialization of that of the "beak" of

HBIRD". This is represented graphicaly in figure
3, where "Pb-MAP" i3 =uch a mapping {(wore details
later). In this definition process, the user
creates a mapping and expects the mapping

instantiation program to create all objects and
views not already existing and have them form the
class being defined in terms of the other, as a
side-effect of the mpapping Iinstantiation. Two
aspects of the definition of mappings can thus be
identified: their structure, which 18 concerned
with the description of the relationship between
the two objects, and their side-effects, which

include object creation and manipulation of the
structure hierarchy {contexts) to effect
inheritance. The rest of the presentation

concerns mainly the structural aspect as the other
'wtil]l needs to be worked out in detailas.

The main influences on the mapping mechanism
have been the mappings of MERLIN [Moore 73], where
the recursive aspect of their definition is taken,
the “cables" of KLONE (Brachman 79}, for the idea
of structured inheritance, and the similarity
networks of [Winston 75].° :

The main idea on which the mechanism is based
iz that any mapping of an object must also involve
the mapping of its type(s), as it is an essential
part of its definition. This reguirement causes

the structure of mappings to mirrors closely that
INSTANCE -hierarchy.

of the If we return to our

and an inatance of

example in figure 3, the mapping “P/B-MAP" between
the clases WPENGUIN" and "BIRD" is also a class
*CLASS-MAP"., It contains a
slot-mapping slot, "beakp/beakb", from the “beakp®
slot of "PENGUIN" to the "heakb® of "BIRD". The
type of this slot, "PB/BB-MAP", is another mapping
e¢lass from the type of Ybeakp", V"PENGUIN-BEAKY, to
the type of "beakb™, ®BIRD-BEAK". P"PB/BB-MAP"
would itself be expanded in the same way to map
the slota of Dboth classes. Now at the token
level, there is an instance of "P/B-MAP", mapping
"penguin-1" to "Tweety". It has as slot value a
mapping between both "beak" slot values, which is
an instance of "PB/BB~-MAP". Thus, the mapping at
the class level allows us to map the instances of
the cless. The structure of the mappings is
exactly parallel to that of the classes mapped.

However, to satisfy completely our
requirement, the types of the classes YFENGUIN®
and PBIRD" must also be mapped. This is

accomplished by "CLASS/CLASS-MAP", which maps the
class WCLASSY into itself. Note that both
wp/B-MAP" and "PB/BB~MAP® are also instances of
this metaclass. The type of T"CLASS"™ itself,
nMETACLASSY, would also need to be mapped, but
eventualy this will stop as “METACLASS" is only an
instance of itself. :

The classes that define mappings
{"CLASS-MAP", “METACLASS-MAP™, etc.) also allow us
to create a Laxonomy of mappinas and differentlate
between identity mappings, IS-A mappings and
general ‘similarity mappings. This is done by
gradualy adding more constraints on the structure
of mappings (e.g. the "interval®™ of "CLASS-MAR"),
mainly on the metaslot controling slot mappings
{"slot-map-siot"). This produces a pseudo-l1S-A
hierarchy of mappings. In the example, the
VPB/BB-MAP" ia an instance of WIS~A-CLASS-MAPY and
its argument classes would satisfy the IS-A
constrainta. WCLASS/CLASS-MAPY is an instance of
nIDENTITY-CLASS-MAP" as it maps a class to itself. -

"The ‘mapping construct allows the
representation of similarities of similarities, as
mappinga are simply objects like everithing else.
It is also a powerful tool to study relationships
involving the parts of objects as well as the
objects themselves. An interesting question
raised by the characterization of IS-A as a class
of mappings is whether 1ts set-incluaion aspect
{(inatances of subelasses are instances’ of
superclasses) is simply a side-effect of the 15-A
constrainta or a supplementary relationship. A
mapping class can also be devised which exibits
the constraints of the INSTANCE relationship.
However, this abstract comparison of existing
structures should not be confused with the
INSTANCE assertion 1tself, which is the result of
an external recognition process starting from
sensory features and whose existence is assumed by
the mapping mechanism.

5.0 COMPARISON TQ OTHER SCHEMES

The only other representation formalism to
give aignificant attention to the statle and
generic exception problems is NETL ([Fahlman 79].
Its solution is much simpler than ours, being

based on the insertion of "CANCELY 1links in the

virtual copy hierarchy to cancel inheritance when
meeded. This wmay be considered analogous to a
mapping mechanism based on differences. There is

0o need for excuses as NETL neither does include a

meparate instance hierarchy nor programs. The
mechanism 1s defined at a lower level of
abstraction than ours {the user is concerned with
the imheritance process) and 1s affected by the
emphasis on retrieval. It does not offer the

deseriptive facilities of our sclution and does
not enforce apny consistency or Jjustifieation
‘requlrement.

The excuse mechaniam for dynamic exception
handling has many pointg in common with those of
[Kramer B0] and [Mylopoulos 79]. However, it
differs essentialy with that of [Kramer 80] on the
question of where control should be returned after
the completion of the exception handler, We
require the resumption of the process which raised

the exception, rather than return control to itz
caller. This makes it easier to ensure that the
model is not left Iin an inconsistent state, is

more efficient and promotes a more natural view of
abstractions.

appreoach to exceptions has
recently been proposed. Exceptlions are seen as
entities for which some default inference rule
does not hold [Reiter T8}{e.g. birds fly unleas
we can prove otherwise, for penguins the rule does
not hold). Systems based ot this principle
maintain justifications for their assertions and
reevaluate them as new fapts are learned, which
pay contradict existing defaults deductions [Doyle
79]. If a satisfactory (non-monotonic} logie can
be found to characterize these systems, it oould
improve greatly our understanding of the pnature of
exceptions and how Lo deal with them.

4 more logical

6.0 CONCLUSION

Some work remains to be done to achieve the
full potential of the excuse mechanism. It should
be possible to extend it 80 as to accomodate
"structural" exceptions that arise on objects
shared among many program conbexts, which need to
be propagated along the user hierarchy instead of
the dynamic hierarchy {Levin 771]. Thias would
involve a better integration of static and dynamic
exception handling., The alde-effects aspect of
the mapping mechanism also need to be worked out
in details.

It iz certalnly necessary to experiment with
both wmechanisma on & larger scale, to see whether
they are really useful and suggest improvements.
This would show in particular whether the
whole-to-part style of objeet definition {where

70

the
neceasary to take full advantage
mechanism, is practical.

REFERENCES

Brachman, R.J. (1979). ©"0On the Epistemologleal
Status of Semantic Networks",in Associative
Networks: Representation and use of knowledse by

object 18 ereated before its parta), which is
of the excuse

gomputers, Findler, N.V. (Ed.), Academic Press,
New York.

Doyle, d. (1979). "4 Glimpse of° Truth
Maintenance®, 1in Artificinl Intellisence: Ap MIT
Perspective, Winaton, P.H. and Brown, R.H.
(Eda.), MIT Press, Cambridge, Maas..

Fahlman, S.E. {1979). METL: A System for
Representing and Usipg Real-world Knowledze, MIT

Press, Cambridge, Mass..

Kramer, B.M. (1980}. *"Representing Programs in

PSNY. Prog, 3ng Hat. C£SCSI Qggﬁh, Victoria.

Lesperance, Y. (1980), BHandling Exceptions in
PSN. M.Se. thesis, Dept. of Computer Science,
Univ. of Toronto, to appear.

and Mylopoulos, J. (31979). "A
for Semantic Networks", in

Representation and use of
Findler,N.V. (Ed.),

Levesque, H.d,
Procedural Semantics
Associative Networks:
knowledge by computers,

Academic Press, New York.

Levin, R. (1977). Program structurez for
; Handling. Ph.D. thesis,
Dept. of Computer Sclience, Carnegle-Meilon Univ.,
Pittasburg.
Mylcpoulos, J., Bernstein, P. and Hong, H.
(1979). A Lappuage Eacility Degfening
Database-Intensive Appligations. C8RG-TR-105,
Dept. of Computer Science, Univ. of Toronto, to

appear in TODS.

Minsky, M. (1974). A Framework for Representing
Knowledge. A 1. Memo No. 306, MIT A.I. Lab.,

Cambridge, Mass..

toore, J. and MNewell, 4. (19733, "How Can

Merlin Understand 7", in Knowledge and Cognition,
Gregg, L. (Ed.), Lawrence Erlbaum, Potomac, Md..

Reiter, H. (1978). "On Reasoning
Proc, TINLAP-Z2, Urbana, Ill..

by Defaulth,

Schneider, P.F. (1978).
Knowledge Ain 2 Progedural Semantie Network
Formalism. Report No. 115, of

Computer Science, Univ. of Toronto.

Schneider, P.F. (1980}. “Contexts
Prog, 3rd Nat. £SCSI Conf., Victoria.

in PSN",

HWinston, P.H.
Descriptions

{1975). *Learning Structural
from Examples", in The Pavchology of
Computer Vigiopn, Winaton, P.H. (Ed.), MoGraw
Hill, New York.

