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Abstract. Most previous logical accounts of goal change do not dedl wii-
oritized goals and do not handle subgoals and their dynapriggerly. Many
are restricted to achievement goals. In this paper, we dp\wellogical account
of goal change that addresses these deficiencies. In ourg¢ceee do not drop
lower priority goals permanently when they become incdaniswith other goals
and the agent’s knowledge; rather, we make such goalsweastie ensure that
the agent’s chosen goAfgentions are consistent with each other and the agent’s
knowledge. When the world changes, the agent recomputeshbsen goals and
some inactive goals may become active again. This ensuaesuh agent max-
imizes her utility. We also propose an approach for handdimiggoals and their
dynamics. We prove that the proposed account has someiviatyitiesirable
properties.

1 Introduction

There has been much work on modeling agent’s mental statbstd) goals, and inten-
tions, and how they interact and lead to rational decisitrmaibaction. As well, there
has been a lot of work on modeling belief change. But the dyosuwef motivational
attitudes has received much less attention. Most formaktsaxf goal and goal change
[1-6] assume that all goals are equally important and mafydeal with achievement
goals (one exception to this is the model of prioritized gaal[7]). Moreover, most
of these frameworks do not guarantee that an agent’s goklgraperly evolve when
an actioievent occurs, e.g. when the agent’s beflefswledge changes or a goal is
adopted or dropped. Also, they do not model the dependebeigseen goals and the
subgoals and plans adopted to achieve these goals. Fondastsubgoals and plans
adopted to bring about a goal should be dropped when the figwahbecomes impos-
sible, is achieved, or is dropped. Dealing with these issigaportant for developing
effective models of rational agency. It is also important forrkvon BDI agent pro-
gramming languages, where handling declarative goals active research topic [8,
9.

In this paper, we present a formal model of prioritized gaald their dynamics
that addresses some of these issues. Specifically, we grapfmamework, where an
agent can have multiple goals affdrent priority levels, possibly inconsistent with
each other. We define intentions as the maximal set of higiréstity goals that is
consistent given the agent’s knowledge. Our model supfguetspecification of general



temporally extended goals, not just achievement goalshandles subgoals and their
dynamics.

We start with a (possibly inconsistent) initial setpoforitized goals or desires that
are totally ordered according to priority, and specify hbwse goals evolve when ac-
tiongevents occur and the agent’s knowledge changes. We defiragéra’schosen
goals or intentions in terms of this goal hierarchy. Our agents imie their utility;
they will abandon a chosen gaglif an opportunity to commit to a higher priority but
inconsistent withy goal arises. To this end, we keep all prioritized goals ingbal
base unless they are explicitly dropped. At every step, weptde an optimal set of
chosen goals given the hierarchy of prioritized goals, garéfg higher priority goals,
such that chosen goals are consistent with each other ahdheitagent’s knowledge.
Thus at any given time, some goals in the hierarchy are aétezechosen, while oth-
ers are inactive. Some of these inactive goals may latembeawtive, e.g. if a higher
priority active goal that is currently blocking an inactigeal becomes impossible. We
also show how the dependencies between goals and subgodie caodeled. Finally,
we prove some interesting properties about the dynamickaxfen goals.

As mentioned above, our formalization of prioritized goatsures that the agent
always tries to maximize her utility, and as such a limitataf our framework is that
it displays an idealized form of rationality. In Section 5¢ wiscuss how this relates
to Bratman'’s theory of practical reasoning [10]. We use d@adheory based on the
situation calculus [11] along with our formalization of patin the situation calculus as
our base formalism.

The paper is organized as follows: in the next section, wéneubur base frame-
work. In Section 3, we formalizpaths in the situation calculus to support modeling
temporally extended goals. In Section 4, we present our hafgwioritized goals. In
section 5, we present our formalization of goal dynamicsdiaduss some of its prop-
erties. In Section 6, we discuss what it means for an agerdve & subgoal and how
subgoals change as a result of changes to their parent gbalsin the last section, we
summarize our results, discuss previous work in this ameé paint to possible future
work.

2 Action and Knowledge

Our base framework for modeling goal change is the situatadeulus [11] as formal-
ized in [12]. In this framework, a possible state of the damigirepresented by a situa-
tion. There is a set of initial situations correspondingte ways the agents believe the
domain might be initially, i.e. situations in which no agt@have yet occurred. Ing(
means thas is an initial situation. The actual initial state is repmet®el by a special
constantSy. There is a distinguished binary function symHbolwheredo(a, s) denotes
the successor situation sxesulting from performing the acticm Thus the situations
can be viewed as a set of trees, where the root of each treérigiahsituation and the
arcs represent actions. Relations (and functions) whasiewalues vary from situation
to situation, are called relational (functional, resp.gfits, and are denoted by predi-
cate (function, resp.) symbols taking a situation term ag tast argument. There is a
special predicate Poss@) used to state that acti@niis executable in situatioa



Our framework uses a theoBpas that includes the following set of axiomg1)
action precondition axioms, one per actiarcharacterizing Posa(s), (2) successor
state axioms (SSA), one per fluent, that succinctly encotedsiect and frame axioms
and specify exactly when the fluent changes [12], (3) indtake axioms describing
what is true initially including the mental states of the iaige (4) unique name axioms
for actions, and (5) domain-independent foundational rasiadescribing the structure
of situations [14].

Following [15, 16], we model knowledge using a possible werccount adapted
to the situation calculu¥K (s, s) is used to denote that in situatienthe agent thinks
that she could be in situatiosi. Using K, the knowledge of an agent is defined?as:

def

Know(®, s) = V. K(s, ) D &(5), i.e. the agent knowe in sif @ holds in all of her
K-accessible situations is K is constrained to be reflexive, transitive, and Euclidean
in the initial situation to capture the fact that agents’ wiexige is true, and that agents
have positive and negative introspection. As shown in [ftse constraints then con-
tinue to hold after any sequence of actions since they asepred by the successor
state axiom folK. We also assume that all actions are public, i.e. whenevercton
(including exogenous events) occurs, the agent learnstthas happened. Note that,
we work with knowledge rather than belief. Although much of formalization should
extend to the latter, we leave this for future work.

3 Paths in the Situation Calculus

To support modeling temporally extended goals, we intredunew sort opaths, with
(possibly supsuper-scripted) variablgs ranging over paths. A path is essentially an
infinite sequence of situations, where each successotisitualong the path can be
reached by performing sonagecutable action in the preceding situation. We introduce
a predicate OnPath( s), meaning that the situatiais on the patip. Also, Startsp, s)
means thas is the starting situation of path A path p starts with the situatiosiff s

is the earliest situation op:®

Axiom 1
Startsf, s) = OnPathf, s) A VS. OnPathf,s) > s< s.

In the standard situation calculus, paths are implicitlgréh and a path can be
viewed as a pairg F) consisting of a situatios representing the starting situation of
the path, and a functiof from situations to actions (calleittion Selection Functions

1 We will be quantifying over formulae, and thus we assubgg;. includes axioms for encoding
formulae as first order terms, as in [13]. We will also be udisig of integers, and assume that
Drasic includes axiomatizations of integers and lists.

2 A state formulad(s) takes a single situation as argument and is evaluated esfbect to that
situation.® may contain a placeholder constarw that stands for the situation in which
@ must hold.®(s) is the formula that results from replacimgw by s. Where the intended
meaning is clear, we sometimes suppress the placeholder.

3 In the following, s < s means thas can be reached frora by performing a sequence of
executable actions < s is an abbreviation fos< s vs=¢g.



(ASF) or strategies in [5]), such that from the startingaiton s, F defines an infinite
sequence of situations by specifying an action for evengasion starting frons. Thus,
one way of axiomatizing paths is by making them corresporsditi pairs §, F):

Axiom 2

¥p. Startsg, s) D (IF. Executabléf, s) A VS. OnPathf, §) = OnPathASHE, s, 5)),
YF, s. Executabléef, s) o dp. Starts, s) A ¥s. OnPathASHE, s, §') = OnPathp, s).

This says that for every path there is an executable ASF tioaluges exactly the se-
quence of situations on the path from its starting situatilao, for every executable
ASF and situation, there is a path that corresponds to theeseg of situations pro-
duced by the ASF starting from that situation.

def

OnPathASHE, s, s) =s< g AVa s s<do(a s)<s D>F(s) =4

def

ExecutableF, s) = ¥s'. OnPathASHE, s, §') D PossF(S), S).
Here, OnPathASIF, s, §) [6] means that the situation sequence definedshiF) in-
cludes the situatiog . Also, the situation sequence encoded by a straffegyd a start-
ing situationsis executableff for all situationss’ on this sequence, the action selected
by F in s is executable irs'.

In our framework, we will use both state and path formulaetaesformula is a
formula that has a free situation variable in it, whereasth framula is one that has
a free path variable. State formulae are used in the confdxtawledge while path
formulae are used in that of goals. We uB€s), ?(9), - -- and¢(p), ¥(p), - - - possibly
with decorations to represent state and path formulaeeotisply. Note that, by incor-
porating infinite paths in our framework, we can evaluategoger these and handle
arbitrary temporally extended goals; thus, unlike someiofiituation calculus based
accounts where goal formulae are evaluated w.r.t. finite@.g. [7]), we can handle
for example unbounded maintenance goals.

We next define some useful constructs. A state fornduéaentually holds over the
pathp if @ holds in some situation that is gni.e. o@(p) £3g. OnPathp, ') A &(S).
Other Temporal Logic operators can be defined similarly, &ways®: od(p).

An agentknowsin sthat¢ has becomenevitableif ¢ holds over all paths that starts
with a K-accessible situation i

Kinevitableg, ) £ Vp. Startsp, ) A K(S, 5) O ¢(p).
An agent knows irs that ¢ is impossible if she knows thatg is inevitable ins, i.e.
Kimpossibleg, s) £ KlnevitableGg, ).

Thirdly, we define what it means for a pgthto be a sffix of another pattp w.r.t.

a situations:

def

Suffix(p’, p, ) = OnPathp, ) A Startsg’, s)
AVYS.s< ¢ > O0nPathp, §) = OnPathf’, s).

That is, a pathpy’ is a sufix of another pattp w.r.t. a situations iff sis onp, andp’,
which starts withs, is exactly the same as the subpatipdhat starts witls.



Fourthly, SameHistorg, ;) means that the situatiorss and s, share the same
history of actions, but perhaps starting fronffeient initial situations:

Axiom 3

SameHistory§, s2) = (Init(s;) A Init(s))
vV (Jda s, s, 51 =do(a s)) As, =do(a, S,) A SameHistoryg,, S,)).

Thus, if s; can be reached from some initial situation by performinggueece of ac-
tionso, thens, can be reached from a (possiblyfdrent) initial situation by executing
g.

Finally, we say thap has becomenevitablein sif ¢ holds over all paths that starts
with a situation that has the same action historg.as

def

Inevitableg, s) = Vp, S. Startsp, ') A SameHistory§, s) > ¢(p).

4 Prioritized Goals

Most work on formalizing goals only deals with static goaimsmtics and not their
dynamics. There are two main categories of motivationdlats, namely goal [1,17]
(AKA choice [2], wish [10] or preference), and intention. W¢hgoals are sometimes
allowed to be inconsistent [10], intentions are mostly regplito be consistent. Another
difference is that agents are committed to their intentionsnbuhecessarily to their
goals [10]. Intention is sometimes primitive [17, 3] and stimes a defined concept,
specified in terms of goals [1, 2, 4]. In this section, we folirmeagoals or desires with
different priorities, which we cafirioritized goals (p-goals, henceforth). These p-goals
are not required to be mutually consistent and need not beebcpursued by the
agent. In terms of these, we define the consistent setiazen goals or intentions (c-
goals, henceforth) that the agent is committed to. In the segtion, we formalize
goal dynamics by providing a SSA for p-goals. The agent'®algare automatically
updated when her p-goals change. We deal with subgoals aindlyimamics in Section
6.

Not all of the agent’s goals are equally important to her. § huis useful to sup-
port a priority ordering over goals. This information canused to decide which of the
agent’s c-goals should no longer be actively pursued in tasebecome mutually in-
consistent. Following [6], we specify each p-goal by its aeressibility relatioffluent
G. A pathpis G-accessible at priority levelin situations (denoted byG(p, n, 9)) if all
the goals of the agent at lewehre satisfied over this path and if it starts with a situation
that has the same history (in terms of the actions perforroddry ass. The latter re-
quirement ensures that the agent’s p-goal-accessibls peflbct the actions that have
been performed so far. A smallarrepresents higher priority, and the highest priority
level is 0. Thus in this framework, we assume that the setgdgls are totally ordered
according to priority. We say that an agent has the p-goaltladleveln in situations
iff ¢ holds over all paths that af@accessible atin s

PGoalf, n, s) = Vp. G(p, n, s) D ¢(p).



To be able to refer to all the p-goals of the agent at some giviemity level, we
also defineonly p-goals.

def

OPGoalp, n, s) = PGoalg, n, s) A (Yp. #(p) > G(p,n, 9)).

An agent has thenly p-goal that¢ at levelnin situationsiff ¢ is a p-goal ahin s, and
any path over whickp holds isG-accessible at in s.

A domain theory for our framework includes the axioms of a theoBpagc as
in the previous section, the axiomatization of paths i.éoras 1-3, domain dependent
initial goal axioms (see below), the domain independerdrasi4-7 and the definitions
that appear in this section and the next. The modeler mustdganitial goal axioms
of the following form:

INITIAL GoAL Axioms
(@) Init(s) o ((G(p, 0, s) = Startsp, S') A Init(s) A ¢o(p))
A (G(p, 1, s) = Startsp, S) A Init(s) A g2(p)) A - -
A (G(p, k-1, ) = Startsp, S) A Init(s) A ¢k_1(p))),
(b) ¥n, p, s. Init(s) An > k> (G(p, n, s) = Startsp, s) A Init(s)),
(c) Init(s) > NPGoals(s) = k.

The p-goalspo, ¢1, - - -, pk-1 (from highest to lowest priority) of the agent in the initial
situations are specified by the Initial Goal Axiom (a); eattihem defines a set of initial
goal paths for a given priority level, and must be consistéfg assume that the agent
has a finite numbék of initial p-goals. Fon > k, we makeG(p, n, s) true for every path
p that starts with an initial situation in (b). Thus at levels k, the agent has the trivial
p-goal that she be in an initial situation. We also have ardjsished functional fluent
NPGoal §(s) that represents the number of prioritized goals that tlemebas (i.e. the
location of the first empty slot after the last p-goal). lalitt NPGoalsis set tok in (c).
Later, we will specify the dynamics of p-goals by giving SS8sG andNPGoals.

We use the following as a running example. We have an agentimitiglly has
the following three p-goalspy = oBeRich,¢; = ¢GetPhD, ands, = oBeHappy
at level Q1, and 2, respectively (see second column of Table 1). Asshatewhile

G-Level So, Si Sy S, S3
4 TRUE TRUE oBeRichA oWorkHardA oBeEnergetic  TRUE
3 TRUE oBeRichA oWorkHard oBeRichA oWorkHard TRUE
2  oBeHappy oBeHappy oBeHappy oBeHappy
1 ©&GetPhD ©GetPhD ©GetPhD ©GetPhD
0 oBeRich oBeRich oBeRich oBeRich

Table 1. Example of an Agent's PGoals and their Dynamics

initially the agent knows that all of her p-goals are indivadly achievable, she knows
that her p-goakbGetPhD is inconsistent with her highest priority p-ga#leRich as



well as with her p-goabBeHappy while the latter are consistent with each other. It is
straightforward to specify a domain action theory such thamtails this. Thus in our
example, we have OPGoaj(p) A Startsp, s) A Init(s),i, Sp), fori = 0,1, 2. Also, for
anyn > 3, we have OPGoal(Starfs(s) A Init(s), n, Sp).

While p-goals or desires are allowed to be known to be impéss$d achieve, an
agent’s c-goals or intentions must be realistic. Not alltef G-accessible paths are
realistic in the sense that they start witKeaccessible situation. To filter these out, we
definerealistic p-goal accessible paths:

Gr(p,n, 9 £ G(p,n, 9 A Startsp, ) AK(S, 9),

i.e., a pathp is Gg-accessible at leved in situationsif it is G-accessible at in s, and
if p starts with a situation that i§-accessible irs. ThusGg prunes out the paths from
G that are known to be impossible, and since we define c-goaésrims of realistic p-
goals, this ensures that c-goals are realistic. We say theg@nt has theealistic p-goal
thate at leveln in situationsiff ¢ holds over all paths that aféz-accessible atin s

RPGoalf, n, s) = ¥p. Gr(p,n, s) 2 ¢(p).

Using realistic p-goals, we next define c-goals. The ideacwf iwve compute c-
goal-accessible paths is as follows: the sdbgfaccessibility relations represents a set
of prioritized temporal propositions that are candidatestiie agent’s c-goals. Given
Gr, in each situation we want to compute the agent’s c-goals that it is themaximal
consistent set of higher priority realistic p-goals. We do this itevaty starting with the
set of all possible paths (i.e. paths that starts witk-accessible situation). At each
iteration we compute the intersection of this set with thetréghest priority set of
Ggr-accessible paths. If the intersection is not empty, we ¢itntigin a new chosen set of
paths at level. We call a p-goal chosen by this processaative p-goal. If on the other
hand, the intersection is empty, then it must be the casdtibgi-goal represented by
this level is either in conflict with another active highergpity p-goaja combination
of two or more active higher priority p-goals, or is known ®impossible. In that case,
that p-goal is ignored (i.e. marked as inactive), and thesehet of paths at level
is the same as at level- 1. We repeat this until we readh= NPGoals. Axiom 4
“computes” this intersectiof:

Axiom 4

Gn(p,n,s) =if (n=0)then
if Ap’. Gr(p’, n, s) then Gg(p, n, 9)
elseStartsp, s) A K(S, 9)
else
if Ap".(Gr(p’,N—1,9AG-(p',n-1,9)
then (Gr(p,Nn—1,9 A Gx(p,n—1,9))
elseGh(p,n-1,9).

4 if ¢ then ¢, elsey, is an abbreviation forg( > y1) A (~¢ D ).



C-goal accessible paths are the result of this interseetfi@n all priority levels have
been considered:

def

Ge(p, 5) = Ga(p, NPGoals(s) — 1, 9).

We define an agent’s c-goals in terms of Gg-accessible paths:

CGoalg, s) £ Vp. Ge(p, ) O ¢(p),

i.e., the agent has the c-goal tlgait ¢ holds over all of hefGc-accessible paths.
We also define what it means for an agent to have a c-goal at lswei®:

CGoalg,n, s) = Vp. Ga(p, N, S) > ¢(p),

i.e. an agent has the c-goal at levethat ¢ if ¢ holds over all paths that are in the
prioritized intersection of the set @r-accessible paths up to lewel

In our example, the agent’s realistic p-goalsmBeRich ¢GetPhD andoBeHappy
in order of priority. TheG-accessible paths at level 08y are the ones that start with
a K-accessible situation and when8eRich holds. Th&-accessible paths at level 1
in Sp are the same as at level 0, since there ar&faxcessible paths over which both
©GetPhD andiBeRich hold. Finally, th€&-accessible paths at level 2%3 and hence
theG¢-accessible paths are those that start wikhaccessible situation and over which
oBeRichA oBeHappy holds. Also, it can be shown that initially our exderagent has
the c-goals thatBeRich andaBeHappy, but not>GetPhD.

Note that by our definition of c-goals, the agent can have aat-tipaty in situation
s for various reasons: 1) is known to be inevitable irs; 2) ¢ is an active p-goal at
some levehin s; 3) ¢ is a consequence of two or more active p-goalsf@¢dint levels
in s. To be able to refer to c-goals for which the agent has a prienihotivation, i.e. c-
goals that result from a single active p-goal at some pyideitel n, in contrast to those
that hold as a consequence of two or more active p-goalsfatelit priority levels, we
defineprimary c-goals:

def

PrimCGoalf, s) = An. PGoalp, n, s) A Ap. G(p, n, s) A Ga(p, N, 9).

That is, an agent has the primary c-goal thah situations, if ¢ is a p-goal at some
levelnin s, and if there is &-accessible patp atnin sthat is also in the prioritized
intersection ofGgr-accessible paths uptoin s. The last two conjucts are required to
ensure thah is an active level. Thus if an agent has a primary c-goal gh#then she
also has the c-goal that but not necessarily vice-versa. It can be shown that Ihjitia
our example agent has the primary c-goals tiB¢Rich andaBeHappy, but not their
conjunction. This shows that (strictly speaking) primargaals are not closed under
logical consequence.

5 Goal Dynamics

An agent’s goals change when her knowledge changes as tafie occurrence of an
action (including exogenous events), or when she adoptsopsc goal. We formalize



this by specifying how p-goals change. C-goals are then co@apusing realistic p-
goals in every new situation as explained above.

We introduce two actions for adopting and dropping a p-gapt(¢) anddrop(¢),
and a third for adopting a subgoalw.r.t. a supergoap, adopt(y, ¢). The action pre-
condition axioms for these are as follows:

Axiom 5

Possédopt(¢), s) = -dn. PGoalg,n, s),
Poss@dopt(y, ¢), s) = =3dn. PGoal(, n, s) A An". PGoalg, n’, s),
Poss@rop(¢), s) = An. PGoalg, n, s).

That s, an agent can adopt the p-goal that she does not already hayes her p-goal
at some level. An agent can adopt a subgoalr.t. the parent goal that if she does
not already have the p-goal thatat some level, and if at some level she currently has
the parent goal that. Thedrop(¢) action is possible isif ¢ is a p-goal at some level
nins.

In the following, we specify the dynamics of p-goals by giyithe SSA forG and
then discuss each case, one at a time:

Axiom 6 (SSA for G)

G(p,n,do(a, 9)) =
Yo,y (a # adopt(p) A a # adopt(y, ¢) A a # drop(¢) A Progressed, n, a, s))
v J¢. (a = adopt(¢p) A Adoptedf, n, a, s, ¢))
Vv ¢, y. (a = adopt(y, ¢) A SubGoalAdoptedt, n, a, S, ¢, ¢)

Vv J¢. (a = drop(¢) A Droppedg, n, a, s, ¢)).

The overall idea of the SSA fd® is as follows. First of all, to handle the occurrence
of a non-adoptrop (i.e. regular) action, we progress al-accessible paths to reflect
the fact that this action has just happened; this is doneyubim Progresseg(n, a, s)
construct, which replaces ea@accessible patlp’ with starting situations’, by its
suffix p provided that it starts witdo(a, ):

def

Progressedqi, n,a, s) = Ap’. G(p’, n, s) A Starts@’, ') A Sufix(p, p’, do(a, 5)).

Any path over which the next action performed is a@ eliminated from the respective
G accessibility level.

Secondly, to handle adoption of a p-g@alwe add a new proposition containing
the p-goal to the agent’s goal hierarchy. We assume thatethyradopted p-goat has
the lowest priority. Thus in addition to progressing theaccessible paths at all levels
as above, we eliminate the paths over whictioes not hold from th&lPGoal 5(s)-th
G-accessibility level, and the agent acquires the p-goalttaa leveINPGoal (s):

def

Adoptedf, n,a, s, ¢) = if (= NPGoal5(s)) then (Progressed, n, a, s) A ¢(p))
elseProgressed, n, a, ).



The third case of subgoal adoption is discussed in the netibse
Finally, to handle dropping of a p-goal we replace the propositions that imply the
dropped goal in the agent’s goal hierarchy by the “trivialdposition that the history
of actions in the current situation has occurred. Thus iriteoidto progressing alz-
accessible paths as above, we add back all paths that shaatie history witko(a, s)
to the existings-accessibility levels where the agent has the p-goalileatd thus these
G-accessibility levels now amount to the “trivial” p-goabthCorrectHist§, path).>
Droppedp. n, a, s ¢) <
if PGoal@, n, s) then 3s’. Startsg, ') A SameHistory§, do(a, s))

elseProgressedi, n, a, ).

The SSA forNPGoal §(s) is as follows:
Axiom 7 (SSA for NPGoal §(9))

NPGoals(do(a, s)) = k =
—=(d¢. a = adopt(p)) A —=(Ay, ¢. a = adopt(y, ¢)) A NPGoals(s) = k v
d¢. a = adopt(¢) A NPGoals(s) + 1 =k Vv
Ay, ¢. a = adopt(y, ¢) A AdjustSubGoalAdopd, s) = k.

Thatis, when the agent adopts a p-goal, her culddoal sis incremented by one. We
discuss the adjustment dfPGoals required for subgoal adoption in the next section.
Finally, NPGoalsis not dfected by any other action.

Returning to our example, recall that our agent has the ts@oéive p-goals irSg
that oBeRich andoBeHappy, but not>GetPhD, since the latter is inconsistent with
her higher priority p-goatiBeRich. Assume that, after the actigoBankrupt happens
in So, the p-goaloBeRich becomes impossible. Then® = do(goBankrupt, So),
the agent has the c-goal thaGetPhD, but notiBeRich noroBeHappy;oBeRich is
excluded from the set of c-goals since it has become implesitachieve (i.e. unre-
alistic). Also, since her higher priority p-go&iGetPhD is inconsistent with her p-goal
oBeHappy, the agent will makeBeHappy inactive.

Note that, while it might be reasonable to drop a p-goal (¢@etPhD) that is in
conflict with another higher priority active p-goal (emBeRich), in our framework we
keep such p-goals around. The reason for this is that althaBgRich is currently
inconsistent withbcGetPhD, the agent might later learn tim8eRich has become im-
possible to bring about (e.g. aftgoBankrupt occurs), and then might want to pursue
OGetPhD. Thus, it is useful to keep these inactive p-goatsedinis allows the agent to
maximize her utility (that of her chosen goals) by takingaatage of such opportuni-
ties. As mentioned earlier, c-goals are our analogue tafimes. Recall that Bratman’s
model of intentions limits the agent’s practical reasoninagents do not always opti-
mize their utility and don’t always reconsider all availalgiptions in order to allocate
their reasoning fort wisely. In contrast to this, our c-goals are defined imeof the

5 CorrectHist§, path) is defined as Startpéith, ) A SameHistory§, s); here path is a place-
holder that stands for a path aadepresents the current situation.



p-goals, and at every step, we ensure that the agent’s s-gaalimizes her utility so
that these are the set of highest priority goals that areistems given the agent’s knowl-
edge. Thus, our notion of c-goals is not as persistent asrBras notion of intention
[10]. For instance as mentioned above, after the agaBankrupt happens irSg, the
agent will lose the c-goal thaBeHappy, although she did not drop it and it did not
become impossible or achieved. In this sense, our modehtoftan idealized agent.
There is a tradeb between optimizing the agent’s chosen set of prioritizealgand
being committed to chosen goals. In our framework, choseatsgoehave like inten-
tions with an automatic filter-override mechanism [10] toates the agent to drop her
chosen goals when opportunities to commit to other highieripr goals arise. In the
future, it would be interesting to develop a logical modelttbaptures the pragmatics
of intention reconsideration by supporting control over it

We now show that our formalization of prioritized goals hame desirable prop-
erties. Some of these (e.g. Proposition 3a) are analoguhe 8iGM postulates; others
(e.g. adopting logically equivalent goals has the samdtreta.) were left out for space
reasons. First we show that c-goals are consistent:

Proposition 1 (Consistency)
D E Vs —CGoal(Falsegs).

Thus, the agent cannot have batland —¢ as c-goals in a situatios and there is a
path that isGc-accessible irs. Even if all of the agent’s p-goals become known to be
impossible, the set dbc-accessible paths will be precisely those that starts wih a
accessible situation, and thus the agent will only choos@thpositions that are known
to be inevitable.

We also have the property of realism [1], i.e. if an agent kaithat something has
become inevitable, then she has this as a c-goal:

Proposition 2 (Realism)
D E V¢, s. Kinevitableg, s) > CGoalg, 9).

Note that this is not necessarily true for p-goals and prntagoals — an agent may
know that something has become inevitable and not have ieapgoalprimary c-
goal, which is intuitive. In fact, this is the reason why wdide p-goals in terms of
G-accessible paths rather th@p. While the property of realism is often criticized, one
should view these inevitable goals as something that haltissl worlds that the agent
intends to bring about, rather than something that the dgeatively pursuing.

A consequence of Proposition 1 and 2 is that an agent doesawethc-goal that is
known to be impossible, i.® E V¢, s. CGoal@, s) > =KImpossibleg, s).

We next discuss some properties of the framework w.r.t. gbahge. Proposition
3 says that (a) an agent acquires the p-goal ghat some leveh after she adopts it,
and (b) that she acquires the primary c-goal (and c-god)tladter she adopts it is,
provided that she does not have the c-god that—¢ next.

Proposition 3 (Adoption)
(8) D E dn. PGoalg, n, do(adopt(¢), 9)),



(b) D E =CGoal-3s, p'. Starts€') A Suffix(p’, do(adopt(e), S)) A ¢(p’), 9)
> PrimCGoalf, do(adopt(¢), 9)).

We can also show that after dropping the p-goal thatt n in s, an agent does
not have the p-goal (and thus the primary c-goal) that thgnession ofp at n, i.e.
ProgressionO#, drop(¢), s), provided that Progression@f(drop(¢), s) is notinevitable
in do(drop(¢), 9).

Proposition 4 (Drop)

D  PGoalg,n, 9)
A =Inevitable(ProgressionQf(drop(¢), s), do(drop(¢), s))
> =PGoal(ProgressionQf(drop(¢), s), n, do(drop(¢), s)),

where,

def

ProgressionO#, a, s) = Ap’, §. Starts’, ') A Suffix(p’, do(a, §)) A ¢(p').

Note that, this does not hold for CGoal,@sould still be a consequence of two or more
of her remaining primary c-goals.

The next few properties concern the persistence of theseatiohal attitudes.
First, we have a persistence property for achievemenstigfi-goals:

Proposition 5 (Persistence of Achievement RPGoals)
D E RPGoalp®, n, s) A Know(—=®, s) A Y. a # drop(y) > RPGoal@®, n, do(a, 9)).

This says that if an agent has a realistic p-goal #hé@tin s, then she will retain this
realisitc p-goal after some actianhas been performed ig) provided that she knows
that @ has not yet been achieved, aads not the action of dropping a p-goal. Note
that, we do not need to ensure tlkap is still known to be possible or consistent with
higher priority active p-goals, since the SSA fardoes not automatically drop such
incompatible p-goals from the goal hierarchy.

For achievement chosen goals we have the following:

Proposition 6 (Persistence of Achievement Chosen Goals)

D = OPGoalp® A CorrectHistf), n, s) A CGoal@®, s)
A Know(=@, s) A Y. a # drop(y) A ~CGoalcod, n— 1, do(a, 9))
> CGoal®, n,do(a, 9)).

Thus, in situatiors, if an agent has the only p-goal at levethat & @ and the correct
history of actions ins has been performed, anddf® is also a chosen goal is(and
thus she has the primary c-goal tkaP), then she will retain the c-goal thai at level
n after some actioa has been performed &) provided that:

— she knows irs that® has not yet been achieved,
— thatais not the action of dropping a p-goal,



— and that at leveh — 1 the agent does not have the c-goallafa, s) that—-<¢ @, i.e.
O@ is consistent with higher priority c-goals aftehas been performed &

Note that this property also follows if we replace the consaq with CGoal{ @, do(a,

9)), and thus it deals with the persistence of c-goals. Notegver that, it does not hold

if we replace the OPGoal in the antecedent with PGoal; theoreéor this is that the
agent might have a p-goal at leveln sthat¢ and the c-goal irs that¢, but not have

¢ as a primary c-goal irs, e.g.n might be an inactive level because another p-goal at
n has become impossible, apctould be a c-goal irs because it is a consequence of
two other primary c-goals. Thus everH is not a c-goal aftea has been performed

in s, there is no guarantee that the lexelill be active indo(a, s) or that all the active
p-goals that contributed t»in sare still active.

We believe that the dropping of an unrelated p-goal will e persistence, and
hence it should be possible to strengthen Proposition 5 aidis6, in the future we
would like to generalize these two propositions to deal vaithitrary temporally ex-
tended goals.

6 Handling Subgoals

In this section, we deal with the dynamics of subgoals. Astioeed earlier, a sub-
goal must be dropped when the parent goal is dropped or beconp@ssible. When
adopting a subgoat with respect to a supergog] in addition to recording the newly
adopted goal, we need to model the fact thatis a subgoal of. This information can
later be used to drop the subgoal when the parent goal is ddo@me way of modeling
this is to ensure that the adoption of a subgbul.r.t. a parent goap adds new p-goals
that containboth this subgoal and this parent goal i.e. & A ¢ at a lower priority than
the parent goal ¢. This ensures that when the parent goal is dropped, the alisgso
dropped. To see this, recall that to handle the dropping aizddy we drop the p-goals
at all G-accessibility levels that imply. Thus, if we drop the parent gog] it will also
drop all of its subgoals including, since theG-accessibility levels where the parent
goal¢ holds include thé&-accessibility levels where the subgaaholds. Note that, if
there are more than one level where the superg@ah p-goal, then we copy all these
levels, i.e. for each level whereg is a p-goal, we add a (lower priority) level to the
goal hierarchy. As we will see, this ensures that the sulgsals and sub-sub-subgoals
etc. are also properly dropped when the supergoal is dropgded, this means that
dropping a subgoal does not necessarily drop the supergoal.

Before going over the formal details, let us mention soméulib@okkeeping tools
that we will use: Lengthf returns the number of elements in lisiNth(l, i) returns the
i-th elementin list, and -1 ifi > Length(); Sort() returns a sorted version of listThe
part of the SSA folG that handles subgoal adoption is defined as follows:

def

SubGoalAdopteqt, n, a, S, i, ¢) = (n < NPGoal (s) A Progressed, n, a, 9))) v
(NPGoals(s) < n < NPGoal§(s) + Length(AddListg, s))
A di,m. (n= NPGoal§(s) + i A m= Nth(AddList(g, ), i)
A Progresseg, m, a, ) A ¥(p))) vV
(n = NPGoals(s) + Length(AddListg, s)) A Progressedi, n, a, s)).



That is, if the action involves the adoption of a subgpal.r.t. a supergoat, we adjust
G to incorporate (possibly several) new p-goals. We will dggeach case in turn. First,
note that the existing p-goals are just carried over by msgjng them; this is handled
by the first disjunct.

Secondly, we adjus starting at leveNPGoal §(s). We add a number of new levels
that include the conjunction of the only p-goal and the sabgo a lower priority for
all the current only p-goals that imply the parent ggaFor example, say at level
we have an OPGoal that and it implies the parent goal that then we add at a
lower priority the conjoined goal of the progressed versiém; and the subgoal.
Our formalization of this uses the abbreviation AddLdst) which is a sorted list of
levels such that the parent goal is implied by the only p-gdahis level. AddList is
defined as: AddList, s) = Sort(jn | PGoalg, n, s)]). The length of this list indicates
the number of lower priority goals that needs to be added. idsudsed above, this
ensures that the agent will drop the subgoal when the pacaitigdropped (but not
necessarily vice-versa). Note that if this process addsammore new p-goals to the
agent’s goal hierarchy, we maintain the original orderiagj. suppose that the agent
adoptedy w.r.t. ¢, that there are twé-accessibility levelsn andn such that the agent
has the only p-goal that, atmandg, atn, that¢,, implies¢ andg, implies¢, and that
n > m. In that case, the SSA f@ will add the p-goabm, A ¢ at leveNPGoal 5(s) and
the p-goalp, A ¢ at levelNPGoal §(s) + 1.

Finally, all the remaining levels involving trivially trugoals are just carried over
by progressing them.

The part of the SSA foNPGoal s that handles subgoal adoption is defined as fol-
lows:

def

AdjustSubGoalAdop#t, s) = NPGoal 5(s) + Length(AddListg, 9)).

That is, when the agent adopts a subgoal w.r.t. a parent lgeaturrentNPGoals is
incremented by the number of new p-goals adopted in thisgsoc

Let us go back to our example. Suppose that the agent knotsrteavay of always
being rich is to always work hard, which in turns can be fdfilby always being ener-
getic. Assume that with this in mind, our agent adopts thegsabthatoWorkHard
w.r.t. the p-goal thattBeRich, and then adopts the sub-subgoal thBeEnergetic
w.r.t. the subgoal thattWorkHard starting inSp. Then the agent’s goal hierarchy in
S; = do(adopt(oWorkHard oBeRich) Sp) should include the p-goal thatWorkHard
and inS; = do(adopt(oBeEnergeticaWorkHard) S;) should also include the p-goal
thatoBeEnergetic. According to the SSA f@, our agent’s goal hierarchy i8; and
in S, will be as in Table £ In Sy, the supergoahBeRich holds at level 0 and thus
AddList(@mBeRich Sp) = [0]. Similarly in S;, the supergoatWorkHard holds at level
3 and thus AddListfWorkHard S1) = [3]. Now, suppose that i6, the agent wants to
drop the p-goal thatWorkHard. Then irS; = do(drop(aWorkHard) S,), she should
no longer haveaBeEnergetic as a p-goal, but should retain the supergaahBeRich.
After the agent drops the p-goal thaVorkHard, by the SSA fo6 we can see that all
theG-accessible levels wherdNorkHard holds will be replaced by the only p-goal that

6 For simplicity in Table 1, we only show the agent’s relevaijgals rather than its only p-goals
(which in addition reflect the actions that have been peréatso far, i.e. CorrectHisg)).



CorrectHistg,, path) (seeS3 in Table 1). This shows that droppimyVorkHard results
in the dropping of all of its subgoals (in this casBeEnergetic), but that its parent goal
oBeRich is retained.

We define the SubGoal relation as follows:

def

SubGoalf, ¢, s) = An. PGoal, n, s) A -PGoal{, n, s)
AYn. PGoal{, n, s) > PGoalg, n, s).

This says thay is a subgoal o in situations iff there exists aG-accessibility level
nin ssuch thatp is a p-goal ah while i is not, and for aliG-accessibility levels irs
wherey is a p-goalg is also a p-goal. Note that, while our formalization of subigo
dynamics allows a subgoal to have multiple parents, in thfsndion we assume that
a subgoal can’t have more than one parent. In the future, Wevaik on relaxing this
constraint.

We now discuss some properties concerning the dynamicsbgfosis and the de-
pendencies between a subgoal and its parent goal. Praposistates that (a) an agent
acquires the p-goal thatafter she adopts it as a subgoal of another gaals, provided
that she has the p-goal at some levesithat¢, and (b) she also acquires the primary
c-goal thaty after she adopts it as a subgoalsdh s, provided that she has the primary
c-goal insthatg¢, and that she does not have the c-goad ihat—y next.

Proposition 7 (Subgoal Adoption)

(8) D E dm. PGoalg, m, s) o An. PGoal(y, n, do(adopt(y, ¢), 9)),
(b) D E PrimCGoalg, s)
A =CGoal3s, p'. Starts€) A Suffix(p’, do(adopt(y, ¢), S)) A ¥ (p'), s)
> PrimCGoal(, do(adopt(y, ¢), 9)).
The next property says that after dropping the p-goalghats, an agent does not

have the p-goal (and thus the primary c-goal) that the pesiwe ofy, provided thaty
is a subgoal of in s, and that the progression gfis not inevitable irdo(drop(¢), 9).

Proposition 8 (Supergoal Drop)

D [ SubGoal{, ¢, s) A —Inevitable(ProgressionQf( drop(¢), ), do(drop(¢), )
> —dn. PGoal(ProgressionGf( drop(¢), S), n, do(drop(¢), S)).

As with Proposition 4, this does not hold if we replace PGoahie consequence with
CGoal sincer could be a consequence of a combination of other active [sgoa
The next two properties say that dropping a subgoal doedfieutt¢he parent goal.

Proposition 9 (Subgoal Drop)

(@) D E SubGoal{, ¢, 9)

> dn. PGoal(ProgressionQf(drop(y), ), n, do(drop(y), 9)),
(b) D  SubGoalf, ¢, s) A PrimCGoalg, s)

> PrimCGoal(ProgressionQf(drop(y), s), do(drop(y), 9)).



Thatis, (a) an agent retains the p-goal that the progres$ipafter she drops a subgoal
¥ of ¢, and (b) she also retains the primary c-goal that the pregre®f¢ after she
drops a subgoaf of ¢ in s, provided that she has the primary c-goal that s.

Finally, it can be shown that the SubGoal relation is trawesii.e. ify; is a subgoal
of ¢ in' s, and ify, is a subgoal of; in s, theny, must also be a subgoal ¢fin s.

7 Discussion and Future Work

In this paper, we presented a formalization of prioritizexhlg, subgoals, and their
dynamics. Our formalization ensures that an agent’s chgsals are always consistent
and that goals and subgoals properly evolve as a result afaregctions as well as
of adopting and dropping goals. Although we made some sfyipdj assumptions, in
this paper we have focused on developing an expressive Warkehat captures an
idealized form of rationality without worrying about tratiflity. In would be desirable
to study restricted fragments of the logic where reasonénggactable. Also, before
defining more limited forms of rationality, one should havdear specification of what
ideal rationality really is so that one understands whatmamises are being made.

While in our account chosen goals are closed under logicaemuence, primary
c-goals are not. Thus, our formalization of primary c-gaesi®lated to the non-normal
modal formalizations of intentions found in the literati8¢, and as such it does not
sufer from the side-@ect problem [1]. For instance, in our framework an agent can
have the primary c-goal to get her teeth fixed and know thatalways involves pain,
but not have the primary c-goal to have pain.

Also, since we are using the situation calculus, we canyessiresent procedural
goalgplans, e.g. the goal to di and thera, can be written as: PGoal§, s;. Startsé;)
A OnPath§) A s = do(ap, do(as, 1)), 0, Sp). Golog [12] can be used to represent com-
plex plangprograms. So we can model the adoption of plans as subgoals.

Recently, there have been a few proposals that deal withohaalge. Shapiret al.
[18] present a situation calculus based framework whereggantaadopts a goal when
she is requested to do so, and remains committed to this gtedlsithe requester can-
cels this request; a goal is retained even if the agent |¢lang has become impossible,
and in this case the agent’s goals become inconsistentirSlzaq Brewka [7] modify
this framework to ensure that goals are dropped when thedyedieved to be impossible
or when they are achieved. Their account is similar to outhénsense that they also
assume a priority ordering over the set of (in their caseyestpd) goals, and in every
situation they compute chosen goals by computing a maxioraistent goal set that
is also compatible with the agent’s beliefs. However, theddel has some unintuitive
properties: the agent’s chosen goalslafa, s) may be quite dierent from her chosen
goals ins, althougha did not make any of her goals simpossible or inconsistent with
higher priority goals, because inconsistencies betweafsga the same priority level
are resolved dierently. In their framework, this can happen because goelsray par-
tially ordered. Note that, while one might argue that a phxrder over goals might
be more general, allowing this means that additional cbmtformation is required to
obtain a single goal state after the agent’s goals chang®e, Ale provide a more ex-
pressive formalization of prioritized goals — we model goading infinite paths, and



thus can model many types of goals that they cannot. Finadly model prioritized
goals by treating the agent’s p-goals as an arbitrary sefroporal formulae, and then
defining the set of c-goals as a subset of the p-goals. Butassilple world semantics
has some advantages over this: it clearly defines when goalsoasistent with each
other and with what is known. One can easily specify how gcladsmge when an action
aoccurs, e.g. the goal to donext and then db becomes the goal to donext, the goal
thato® v O ¥ becomes the goal that? if a makes achieving impossible, etc.

There has been much work on agent programming languages&gtarative goals
where the dynamics of goals and intentions and the depeiedebetween goals and
subgoals are modeled (e.g. [19, 20, 9] and the referencesirtheHowever, most of
these are not based on a formal theory of agency, and to thebear knowledge,
none maintains the consistency of (chosen) goals (e.g. atiepting a plan to achieve
a goal, these frameworks do not ensure that this plan is stem$iwith the agent’s other
concurrentgoalplans). Also, most of these do not deal with temporally egtéehgoals,
and as a result they often need to accommodate inconsistafibgses to allow the
agent to achieve conflicting states affelient time points (e.g. the default logic based
framework in [21]); chosen goals are required to be consiste [22], the authors
formalized two semantics for representing conflicting gpaking propositional and
default logic; they argued that even logically consistemalg can be conflicting, e.qg.
when multiple goalplans are chosen to fulfill the same (super)goal. Unlike wesver,
they do not address how an agent chooses the goals that $hetwily pursue. In [6],
the authors present a situation calculus based agent pnagjrey language where the
agent executes a program while maximizing the achievemfeatset of prioritized
goals. However, they do not formalize goal dynamics.

One limitation of our account is that we assume that the &gprgoals are totally
ordered in terms of priority. Also, newly adopted p-goals assigned the lowest pri-
ority. A consequence of this is that an agent’s c-goals deéperthe adoption order of
her p-goals. For instance, given a fixed starting situatimragent can end up with two
different sets of c-goals by adoptindollowed by, and by adopting followed by ¢.
This has very dierent results whes andy conflict with each other. We would like to
address this by incorporating the priority of the p-goalmsi@ument to theadopt ac-
tion, and handling this in the framework. Finally, one coatdue that our agent wastes
resources trying to optimize her c-goals at every step.driuture, we would like to de-
velop an account where the agent is strongly committed talh@sen goals, and where
the filter override mechanism is only triggered under speciinditions.
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