
Prioritized Goals and Subgoals in a Logical Account of
Goal Change – A Preliminary Report

Shakil M. Khan and Yves Lespérance

Department of Computer Science and Engineering
York University, Toronto, ON, Canada
{skhan, lesperan}@cse.yorku.ca

Abstract. Most previous logical accounts of goal change do not deal with pri-
oritized goals and do not handle subgoals and their dynamicsproperly. Many
are restricted to achievement goals. In this paper, we develop a logical account
of goal change that addresses these deficiencies. In our account, we do not drop
lower priority goals permanently when they become inconsistent with other goals
and the agent’s knowledge; rather, we make such goals inactive. We ensure that
the agent’s chosen goals/intentions are consistent with each other and the agent’s
knowledge. When the world changes, the agent recomputes herchosen goals and
some inactive goals may become active again. This ensures that our agent max-
imizes her utility. We also propose an approach for handlingsubgoals and their
dynamics. We prove that the proposed account has some intuitively desirable
properties.

1 Introduction

There has been much work on modeling agent’s mental states, beliefs, goals, and inten-
tions, and how they interact and lead to rational decisions about action. As well, there
has been a lot of work on modeling belief change. But the dynamics of motivational
attitudes has received much less attention. Most formal models of goal and goal change
[1–6] assume that all goals are equally important and many only deal with achievement
goals (one exception to this is the model of prioritized goals in [7]). Moreover, most
of these frameworks do not guarantee that an agent’s goals will properly evolve when
an action/event occurs, e.g. when the agent’s beliefs/knowledge changes or a goal is
adopted or dropped. Also, they do not model the dependenciesbetween goals and the
subgoals and plans adopted to achieve these goals. For instance, subgoals and plans
adopted to bring about a goal should be dropped when the parent goal becomes impos-
sible, is achieved, or is dropped. Dealing with these issuesis important for developing
effective models of rational agency. It is also important for work on BDI agent pro-
gramming languages, where handling declarative goals is anactive research topic [8,
9].

In this paper, we present a formal model of prioritized goalsand their dynamics
that addresses some of these issues. Specifically, we propose a framework, where an
agent can have multiple goals at different priority levels, possibly inconsistent with
each other. We define intentions as the maximal set of highestpriority goals that is
consistent given the agent’s knowledge. Our model supportsthe specification of general



temporally extended goals, not just achievement goals, andhandles subgoals and their
dynamics.

We start with a (possibly inconsistent) initial set ofprioritized goals or desires that
are totally ordered according to priority, and specify how these goals evolve when ac-
tions/events occur and the agent’s knowledge changes. We define theagent’schosen
goals or intentions in terms of this goal hierarchy. Our agents maximize their utility;
they will abandon a chosen goalφ if an opportunity to commit to a higher priority but
inconsistent withφ goal arises. To this end, we keep all prioritized goals in thegoal
base unless they are explicitly dropped. At every step, we compute an optimal set of
chosen goals given the hierarchy of prioritized goals, preferring higher priority goals,
such that chosen goals are consistent with each other and with the agent’s knowledge.
Thus at any given time, some goals in the hierarchy are active, i.e. chosen, while oth-
ers are inactive. Some of these inactive goals may later become active, e.g. if a higher
priority active goal that is currently blocking an inactivegoal becomes impossible. We
also show how the dependencies between goals and subgoals can be modeled. Finally,
we prove some interesting properties about the dynamics of chosen goals.

As mentioned above, our formalization of prioritized goalsensures that the agent
always tries to maximize her utility, and as such a limitation of our framework is that
it displays an idealized form of rationality. In Section 5, we discuss how this relates
to Bratman’s theory of practical reasoning [10]. We use an action theory based on the
situation calculus [11] along with our formalization of paths in the situation calculus as
our base formalism.

The paper is organized as follows: in the next section, we outline our base frame-
work. In Section 3, we formalizepaths in the situation calculus to support modeling
temporally extended goals. In Section 4, we present our model of prioritized goals. In
section 5, we present our formalization of goal dynamics anddiscuss some of its prop-
erties. In Section 6, we discuss what it means for an agent to have a subgoal and how
subgoals change as a result of changes to their parent goals.Then in the last section, we
summarize our results, discuss previous work in this area, and point to possible future
work.

2 Action and Knowledge

Our base framework for modeling goal change is the situationcalculus [11] as formal-
ized in [12]. In this framework, a possible state of the domain is represented by a situa-
tion. There is a set of initial situations corresponding to the ways the agents believe the
domain might be initially, i.e. situations in which no actions have yet occurred. Init(s)
means thats is an initial situation. The actual initial state is represented by a special
constantS 0. There is a distinguished binary function symboldo wheredo(a, s) denotes
the successor situation tos resulting from performing the actiona. Thus the situations
can be viewed as a set of trees, where the root of each tree is aninitial situation and the
arcs represent actions. Relations (and functions) whose truth values vary from situation
to situation, are called relational (functional, resp.) fluents, and are denoted by predi-
cate (function, resp.) symbols taking a situation term as their last argument. There is a
special predicate Poss(a, s) used to state that actiona is executable in situations.



Our framework uses a theoryDbasic that includes the following set of axioms:1 (1)
action precondition axioms, one per actiona characterizing Poss(a, s), (2) successor
state axioms (SSA), one per fluent, that succinctly encode both effect and frame axioms
and specify exactly when the fluent changes [12], (3) initialstate axioms describing
what is true initially including the mental states of the agents, (4) unique name axioms
for actions, and (5) domain-independent foundational axioms describing the structure
of situations [14].

Following [15, 16], we model knowledge using a possible worlds account adapted
to the situation calculus.K(s′, s) is used to denote that in situations, the agent thinks
that she could be in situations′. Using K, the knowledge of an agent is defined as:2

Know(Φ, s)
def
= ∀s′. K(s′, s) ⊃ Φ(s′), i.e. the agent knowsΦ in s if Φ holds in all of her

K-accessible situations ins. K is constrained to be reflexive, transitive, and Euclidean
in the initial situation to capture the fact that agents’ knowledge is true, and that agents
have positive and negative introspection. As shown in [16],these constraints then con-
tinue to hold after any sequence of actions since they are preserved by the successor
state axiom forK. We also assume that all actions are public, i.e. whenever anaction
(including exogenous events) occurs, the agent learns thatit has happened. Note that,
we work with knowledge rather than belief. Although much of our formalization should
extend to the latter, we leave this for future work.

3 Paths in the Situation Calculus

To support modeling temporally extended goals, we introduce a new sort ofpaths, with
(possibly sub/super-scripted) variablesp ranging over paths. A path is essentially an
infinite sequence of situations, where each successor situation along the path can be
reached by performing someexecutable action in the preceding situation. We introduce
a predicate OnPath(p, s), meaning that the situations is on the pathp. Also, Starts(p, s)
means thats is the starting situation of pathp. A path p starts with the situations iff s
is the earliest situation onp:3

Axiom 1

Starts(p, s) ≡ OnPath(p, s) ∧ ∀s′. OnPath(p, s′) ⊃ s ≤ s′.

In the standard situation calculus, paths are implicitly there, and a path can be
viewed as a pair (s, F) consisting of a situations representing the starting situation of
the path, and a functionF from situations to actions (calledAction Selection Functions

1 We will be quantifying over formulae, and thus we assumeDbasic includes axioms for encoding
formulae as first order terms, as in [13]. We will also be usinglists of integers, and assume that
Dbasic includes axiomatizations of integers and lists.

2 A state formulaΦ(s) takes a single situation as argument and is evaluated with respect to that
situation.Φ may contain a placeholder constantnow that stands for the situation in which
Φ must hold.Φ(s) is the formula that results from replacingnow by s. Where the intended
meaning is clear, we sometimes suppress the placeholder.

3 In the following, s < s′ means thats′ can be reached froms by performing a sequence of
executable actions.s ≤ s′ is an abbreviation fors < s′ ∨ s = s′.



(ASF) or strategies in [5]), such that from the starting situation s, F defines an infinite
sequence of situations by specifying an action for every situation starting froms. Thus,
one way of axiomatizing paths is by making them correspond tosuch pairs (s, F):

Axiom 2

∀p. Starts(p, s) ⊃ (∃F. Executable(F, s) ∧ ∀s′. OnPath(p, s′) ≡ OnPathASF(F, s, s′)),

∀F, s. Executable(F, s) ⊃ ∃p. Starts(p, s) ∧ ∀s′. OnPathASF(F, s, s′) ≡ OnPath(p, s′).

This says that for every path there is an executable ASF that produces exactly the se-
quence of situations on the path from its starting situation. Also, for every executable
ASF and situation, there is a path that corresponds to the sequence of situations pro-
duced by the ASF starting from that situation.

OnPathASF(F, s, s′)
def
= s ≤ s′ ∧ ∀a, s∗. s < do(a, s∗) ≤ s′ ⊃ F(s∗) = a,

Executable(F, s)
def
= ∀s′. OnPathASF(F, s, s′) ⊃ Poss(F(s′), s′).

Here, OnPathASF(F, s, s′) [6] means that the situation sequence defined by (s, F) in-
cludes the situations′. Also, the situation sequence encoded by a strategyF and a start-
ing situations is executable iff for all situationss′ on this sequence, the action selected
by F in s′ is executable ins′.

In our framework, we will use both state and path formulae. A state formula is a
formula that has a free situation variable in it, whereas a path formula is one that has
a free path variable. State formulae are used in the context of knowledge while path
formulae are used in that of goals. We useΦ(s), Ψ (s), · · · andφ(p), ψ(p), · · · possibly
with decorations to represent state and path formulae, respectively. Note that, by incor-
porating infinite paths in our framework, we can evaluate goals over these and handle
arbitrary temporally extended goals; thus, unlike some other situation calculus based
accounts where goal formulae are evaluated w.r.t. finite paths (e.g. [7]), we can handle
for example unbounded maintenance goals.

We next define some useful constructs. A state formulaΦ eventually holds over the
pathp if Φ holds in some situation that is onp, i.e.^Φ(p)

def
= ∃s′. OnPath(p, s′)∧Φ(s′).

Other Temporal Logic operators can be defined similarly, e.g. alwaysΦ: �Φ(p).
An agentknows in s thatφ has becomeinevitable if φ holds over all paths that starts

with a K-accessible situation ins:

KInevitable(φ, s)
def
= ∀p. Starts(p, s′) ∧ K(s′, s) ⊃ φ(p).

An agent knows ins thatφ is impossible if she knows that¬φ is inevitable ins, i.e.
KImpossible(φ, s)

def
= KInevitable(¬φ, s).

Thirdly, we define what it means for a pathp′ to be a suffix of another pathp w.r.t.
a situations:

Suffix(p′, p, s)
def
= OnPath(p, s) ∧ Starts(p′, s)

∧ ∀s′. s ≤ s′ ⊃ OnPath(p, s′) ≡ OnPath(p′, s′).

That is, a pathp′ is a suffix of another pathp w.r.t. a situations iff s is on p, andp′,
which starts withs, is exactly the same as the subpath ofp that starts withs.



Fourthly, SameHistory(s1, s2) means that the situationss1 and s2 share the same
history of actions, but perhaps starting from different initial situations:

Axiom 3

SameHistory(s1, s2) ≡ (Init(s1) ∧ Init(s2))

∨ (∃a, s′1, s′2. s1 = do(a, s′1) ∧ s2 = do(a, s′2) ∧ SameHistory(s′1, s′2)).

Thus, if s1 can be reached from some initial situation by performing a sequence of ac-
tionsσ, thens2 can be reached from a (possibly different) initial situation by executing
σ.

Finally, we say thatφ has becomeinevitable in s if φ holds over all paths that starts
with a situation that has the same action history ass:

Inevitable(φ, s)
def
= ∀p, s′. Starts(p, s′) ∧ SameHistory(s′, s) ⊃ φ(p).

4 Prioritized Goals

Most work on formalizing goals only deals with static goal semantics and not their
dynamics. There are two main categories of motivational attitudes, namely goal [1, 17]
(AKA choice [2], wish [10] or preference), and intention. While goals are sometimes
allowed to be inconsistent [10], intentions are mostly required to be consistent. Another
difference is that agents are committed to their intentions, butnot necessarily to their
goals [10]. Intention is sometimes primitive [17, 3] and sometimes a defined concept,
specified in terms of goals [1, 2, 4]. In this section, we formalize goals or desires with
different priorities, which we callprioritized goals (p-goals, henceforth). These p-goals
are not required to be mutually consistent and need not be actively pursued by the
agent. In terms of these, we define the consistent set ofchosen goals or intentions (c-
goals, henceforth) that the agent is committed to. In the next section, we formalize
goal dynamics by providing a SSA for p-goals. The agent’s c-goals are automatically
updated when her p-goals change. We deal with subgoals and their dynamics in Section
6.

Not all of the agent’s goals are equally important to her. Thus, it is useful to sup-
port a priority ordering over goals. This information can beused to decide which of the
agent’s c-goals should no longer be actively pursued in casethey become mutually in-
consistent. Following [6], we specify each p-goal by its ownaccessibility relation/fluent
G. A pathp is G-accessible at priority leveln in situations (denoted byG(p, n, s)) if all
the goals of the agent at leveln are satisfied over this path and if it starts with a situation
that has the same history (in terms of the actions performed so far) ass. The latter re-
quirement ensures that the agent’s p-goal-accessible paths reflect the actions that have
been performed so far. A smallern represents higher priority, and the highest priority
level is 0. Thus in this framework, we assume that the set of p-goals are totally ordered
according to priority. We say that an agent has the p-goal that φ at leveln in situations
iff φ holds over all paths that areG-accessible atn in s:

PGoal(φ, n, s)
def
= ∀p. G(p, n, s) ⊃ φ(p).



To be able to refer to all the p-goals of the agent at some givenpriority level, we
also defineonly p-goals.

OPGoal(φ, n, s)
def
= PGoal(φ, n, s) ∧ (∀p. φ(p) ⊃ G(p, n, s)).

An agent has theonly p-goal thatφ at leveln in situations iff φ is a p-goal atn in s, and
any path over whichφ holds isG-accessible atn in s.

A domain theory for our frameworkD includes the axioms of a theoryDbasic as
in the previous section, the axiomatization of paths i.e. axioms 1-3, domain dependent
initial goal axioms (see below), the domain independent axioms 4-7 and the definitions
that appear in this section and the next. The modeler must provide initial goal axioms
of the following form:

INITIAL GOAL AXIOMS

(a) Init(s) ⊃ ((G(p, 0, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φ0(p))

∧ (G(p, 1, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φ1(p)) ∧ · · ·

∧ (G(p, k − 1, s) ≡ Starts(p, s′) ∧ Init(s′) ∧ φk−1(p))),

(b) ∀n, p, s. Init(s) ∧ n ≥ k ⊃ (G(p, n, s) ≡ Starts(p, s′) ∧ Init(s′)),

(c) Init(s) ⊃ NPGoals(s) = k.

The p-goalsφ0, φ1, · · · , φk−1 (from highest to lowest priority) of the agent in the initial
situations are specified by the Initial Goal Axiom (a); each of them defines a set of initial
goal paths for a given priority level, and must be consistent. We assume that the agent
has a finite numberk of initial p-goals. Forn ≥ k, we makeG(p, n, s) true for every path
p that starts with an initial situation in (b). Thus at levelsn ≥ k, the agent has the trivial
p-goal that she be in an initial situation. We also have a distinguished functional fluent
NPGoals(s) that represents the number of prioritized goals that the agent has (i.e. the
location of the first empty slot after the last p-goal). Initially NPGoals is set tok in (c).
Later, we will specify the dynamics of p-goals by giving SSAsfor G andNPGoals.

We use the following as a running example. We have an agent whoinitially has
the following three p-goals:φ0 = �BeRich,φ1 = ^GetPhD, andφ2 = �BeHappy
at level 0, 1, and 2, respectively (see second column of Table 1). Assumethat while

G-Level S 0, S ′1 S 1 S 2 S 3

4 TRUE TRUE �BeRich∧ �WorkHard∧ �BeEnergetic TRUE
3 TRUE �BeRich∧ �WorkHard �BeRich∧ �WorkHard TRUE
2 �BeHappy �BeHappy �BeHappy �BeHappy
1 ^GetPhD ^GetPhD ^GetPhD ^GetPhD
0 �BeRich �BeRich �BeRich �BeRich

Table 1.Example of an Agent’s PGoals and their Dynamics

initially the agent knows that all of her p-goals are individually achievable, she knows
that her p-goal̂ GetPhD is inconsistent with her highest priority p-goal�BeRich as



well as with her p-goal�BeHappy, while the latter are consistent with each other. It is
straightforward to specify a domain action theory such thatit entails this. Thus in our
example, we have OPGoal(φi(p) ∧ Starts(p, s) ∧ Init(s), i, S 0), for i = 0, 1, 2. Also, for
anyn ≥ 3, we have OPGoal(Starts(p, s) ∧ Init(s), n, S 0).

While p-goals or desires are allowed to be known to be impossible to achieve, an
agent’s c-goals or intentions must be realistic. Not all of the G-accessible paths are
realistic in the sense that they start with aK-accessible situation. To filter these out, we
definerealistic p-goal accessible paths:

GR(p, n, s)
def
= G(p, n, s) ∧ Starts(p, s′) ∧ K(s′, s),

i.e., a pathp is GR-accessible at leveln in situations if it is G-accessible atn in s, and
if p starts with a situation that isK-accessible ins. ThusGR prunes out the paths from
G that are known to be impossible, and since we define c-goals interms of realistic p-
goals, this ensures that c-goals are realistic. We say that an agent has therealistic p-goal
thatφ at leveln in situations iff φ holds over all paths that areGR-accessible atn in s:

RPGoal(φ, n, s)
def
= ∀p. GR(p, n, s) ⊃ φ(p).

Using realistic p-goals, we next define c-goals. The idea of how we compute c-
goal-accessible paths is as follows: the set ofGR-accessibility relations represents a set
of prioritized temporal propositions that are candidates for the agent’s c-goals. Given
GR, in each situation we want to compute the agent’s c-goals such that it is themaximal
consistent set of higher priority realistic p-goals. We do this iteratively starting with the
set of all possible paths (i.e. paths that starts with aK-accessible situation). At each
iteration we compute the intersection of this set with the next highest priority set of
GR-accessible paths. If the intersection is not empty, we thusobtain a new chosen set of
paths at leveli. We call a p-goal chosen by this process anactive p-goal. If on the other
hand, the intersection is empty, then it must be the case thatthe p-goal represented by
this level is either in conflict with another active higher priority p-goal/a combination
of two or more active higher priority p-goals, or is known to be impossible. In that case,
that p-goal is ignored (i.e. marked as inactive), and the chosen set of paths at leveli
is the same as at leveli − 1. We repeat this until we reachi = NPGoals. Axiom 4
“computes” this intersection:4

Axiom 4

G∩(p, n, s) ≡ if (n = 0) then

if ∃p′. GR(p′, n, s) then GR(p, n, s)

elseStarts(p, s′) ∧ K(s′, s)

else

if ∃p′.(GR(p′, n − 1, s) ∧G∩(p′, n − 1, s))

then (GR(p, n − 1, s) ∧G∩(p, n − 1, s))

elseG∩(p, n − 1, s).

4 if φ then ψ1 elseψ2 is an abbreviation for (φ ⊃ ψ1) ∧ (¬φ ⊃ ψ2).



C-goal accessible paths are the result of this intersectionafter all priority levels have
been considered:

GC(p, s)
def
= G∩(p,NPGoals(s) − 1, s).

We define an agent’s c-goals in terms of theGC-accessible paths:

CGoal(φ, s)
def
= ∀p. GC(p, s) ⊃ φ(p),

i.e., the agent has the c-goal thatφ if φ holds over all of herGC-accessible paths.
We also define what it means for an agent to have a c-goal at someleveln:

CGoal(φ, n, s)
def
= ∀p. G∩(p, n, s) ⊃ φ(p),

i.e. an agent has the c-goal at leveln that φ if φ holds over all paths that are in the
prioritized intersection of the set ofGR-accessible paths up to leveln.

In our example, the agent’s realistic p-goals are�BeRich,^GetPhD, and�BeHappy
in order of priority. TheG∩-accessible paths at level 0 inS 0 are the ones that start with
a K-accessible situation and where�BeRich holds. TheG∩-accessible paths at level 1
in S 0 are the same as at level 0, since there are noK-accessible paths over which both
^GetPhD and�BeRich hold. Finally, theG∩-accessible paths at level 2 inS 0 and hence
theGC-accessible paths are those that start with aK-accessible situation and over which
�BeRich∧�BeHappy holds. Also, it can be shown that initially our example agent has
the c-goals that�BeRich and�BeHappy, but not̂ GetPhD.

Note that by our definition of c-goals, the agent can have a c-goal thatφ in situation
s for various reasons: 1)φ is known to be inevitable ins; 2) φ is an active p-goal at
some leveln in s; 3) φ is a consequence of two or more active p-goals at different levels
in s. To be able to refer to c-goals for which the agent has a primitive motivation, i.e. c-
goals that result from a single active p-goal at some priority leveln, in contrast to those
that hold as a consequence of two or more active p-goals at different priority levels, we
defineprimary c-goals:

PrimCGoal(φ, s)
def
= ∃n. PGoal(φ, n, s) ∧ ∃p. G(p, n, s) ∧G∩(p, n, s).

That is, an agent has the primary c-goal thatφ in situations, if φ is a p-goal at some
level n in s, and if there is aG-accessible pathp at n in s that is also in the prioritized
intersection ofGR-accessible paths upton in s. The last two conjucts are required to
ensure thatn is an active level. Thus if an agent has a primary c-goal thatφ, then she
also has the c-goal thatφ, but not necessarily vice-versa. It can be shown that initially
our example agent has the primary c-goals that�BeRich and�BeHappy, but not their
conjunction. This shows that (strictly speaking) primary c-goals are not closed under
logical consequence.

5 Goal Dynamics

An agent’s goals change when her knowledge changes as a result of the occurrence of an
action (including exogenous events), or when she adopts or drops a goal. We formalize



this by specifying how p-goals change. C-goals are then computed using realistic p-
goals in every new situation as explained above.

We introduce two actions for adopting and dropping a p-goal,adopt(φ) anddrop(φ),
and a third for adopting a subgoalψ w.r.t. a supergoalφ, adopt(ψ, φ). The action pre-
condition axioms for these are as follows:

Axiom 5

Poss(adopt(φ), s) ≡ ¬∃n. PGoal(φ, n, s),

Poss(adopt(ψ, φ), s) ≡ ¬∃n. PGoal(ψ, n, s) ∧ ∃n′. PGoal(φ, n′, s),

Poss(drop(φ), s) ≡ ∃n. PGoal(φ, n, s).

That is, an agent can adopt the p-goal thatφ, if she does not already haveφ as her p-goal
at some level. An agent can adopt a subgoalψ w.r.t. the parent goal thatφ if she does
not already have the p-goal thatψ at some level, and if at some level she currently has
the parent goal thatφ. Thedrop(φ) action is possible ins if φ is a p-goal at some level
n in s.

In the following, we specify the dynamics of p-goals by giving the SSA forG and
then discuss each case, one at a time:

Axiom 6 (SSA for G)

G(p, n, do(a, s)) ≡

∀φ, ψ. (a , adopt(φ) ∧ a , adopt(ψ, φ) ∧ a , drop(φ) ∧ Progressed(p, n, a, s))

∨ ∃φ. (a = adopt(φ) ∧ Adopted(p, n, a, s, φ))

∨ ∃φ, ψ. (a = adopt(ψ, φ) ∧ SubGoalAdopted(p, n, a, s, ψ, φ)

∨ ∃φ. (a = drop(φ) ∧ Dropped(p, n, a, s, φ)).

The overall idea of the SSA forG is as follows. First of all, to handle the occurrence
of a non-adopt/drop (i.e. regular) actiona, we progress allG-accessible paths to reflect
the fact that this action has just happened; this is done using the Progressed(p, n, a, s)
construct, which replaces eachG-accessible pathp′ with starting situations′, by its
suffix p provided that it starts withdo(a, s′):

Progressed(p, n, a, s)
def
= ∃p′. G(p′, n, s) ∧ Starts(p′, s′) ∧ Suffix(p, p′, do(a, s′)).

Any path over which the next action performed is nota is eliminated from the respective
G accessibility level.

Secondly, to handle adoption of a p-goalφ, we add a new proposition containing
the p-goal to the agent’s goal hierarchy. We assume that the newly adopted p-goalφ has
the lowest priority. Thus in addition to progressing theG-accessible paths at all levels
as above, we eliminate the paths over whichφ does not hold from theNPGoals(s)-th
G-accessibility level, and the agent acquires the p-goal that φ at levelNPGoals(s):

Adopted(p, n, a, s, φ)
def
= if (n = NPGoals(s)) then (Progressed(p, n, a, s) ∧ φ(p))

elseProgressed(p, n, a, s).



The third case of subgoal adoption is discussed in the next section.
Finally, to handle dropping of a p-goalφ, we replace the propositions that imply the

dropped goal in the agent’s goal hierarchy by the “trivial” proposition that the history
of actions in the current situation has occurred. Thus in addition to progressing allG-
accessible paths as above, we add back all paths that share the same history withdo(a, s)
to the existingG-accessibility levels where the agent has the p-goal thatφ, and thus these
G-accessibility levels now amount to the “trivial” p-goal that CorrectHist(s, path).5

Dropped(p, n, a, s, φ)
def
=

if PGoal(φ, n, s) then ∃s′. Starts(p, s′) ∧ SameHistory(s′, do(a, s))

elseProgressed(p, n, a, s).

The SSA forNPGoals(s) is as follows:

Axiom 7 (SSA for NPGoals(s))

NPGoals(do(a, s)) = k ≡

¬(∃φ. a = adopt(φ)) ∧ ¬(∃ψ, φ. a = adopt(ψ, φ)) ∧ NPGoals(s) = k ∨

∃φ. a = adopt(φ) ∧ NPGoals(s) + 1 = k ∨

∃ψ, φ. a = adopt(ψ, φ) ∧ AdjustSubGoalAdopt(φ, s) = k.

That is, when the agent adopts a p-goal, her currentNPGoals is incremented by one. We
discuss the adjustment ofNPGoals required for subgoal adoption in the next section.
Finally, NPGoals is not affected by any other action.

Returning to our example, recall that our agent has the c-goals/active p-goals inS 0

that�BeRich and�BeHappy, but not̂ GetPhD, since the latter is inconsistent with
her higher priority p-goal�BeRich. Assume that, after the actiongoBankrupt happens
in S 0, the p-goal�BeRich becomes impossible. Then inS ′1 = do(goBankrupt, S 0),
the agent has the c-goal that^GetPhD, but not�BeRich nor�BeHappy;�BeRich is
excluded from the set of c-goals since it has become impossible to achieve (i.e. unre-
alistic). Also, since her higher priority p-goal̂GetPhD is inconsistent with her p-goal
�BeHappy, the agent will make�BeHappy inactive.

Note that, while it might be reasonable to drop a p-goal (e.g.^GetPhD) that is in
conflict with another higher priority active p-goal (e.g.�BeRich), in our framework we
keep such p-goals around. The reason for this is that although �BeRich is currently
inconsistent witĥ GetPhD, the agent might later learn that�BeRich has become im-
possible to bring about (e.g. aftergoBankrupt occurs), and then might want to pursue
^GetPhD. Thus, it is useful to keep these inactive p-goals since this allows the agent to
maximize her utility (that of her chosen goals) by taking advantage of such opportuni-
ties. As mentioned earlier, c-goals are our analogue to intentions. Recall that Bratman’s
model of intentions limits the agent’s practical reasoning– agents do not always opti-
mize their utility and don’t always reconsider all available options in order to allocate
their reasoning effort wisely. In contrast to this, our c-goals are defined in terms of the

5 CorrectHist(s, path) is defined as Starts(path, s′) ∧ SameHistory(s′, s); herepath is a place-
holder that stands for a path ands represents the current situation.



p-goals, and at every step, we ensure that the agent’s c-goals maximizes her utility so
that these are the set of highest priority goals that are consistent given the agent’s knowl-
edge. Thus, our notion of c-goals is not as persistent as Bratman’s notion of intention
[10]. For instance as mentioned above, after the actiongoBankrupt happens inS 0, the
agent will lose the c-goal that�BeHappy, although she did not drop it and it did not
become impossible or achieved. In this sense, our model is that of an idealized agent.
There is a tradeoff between optimizing the agent’s chosen set of prioritized goals and
being committed to chosen goals. In our framework, chosen goals behave like inten-
tions with an automatic filter-override mechanism [10] thatforces the agent to drop her
chosen goals when opportunities to commit to other higher priority goals arise. In the
future, it would be interesting to develop a logical model that captures the pragmatics
of intention reconsideration by supporting control over it.

We now show that our formalization of prioritized goals has some desirable prop-
erties. Some of these (e.g. Proposition 3a) are analogues ofthe AGM postulates; others
(e.g. adopting logically equivalent goals has the same result, etc.) were left out for space
reasons. First we show that c-goals are consistent:

Proposition 1 (Consistency)

D |= ∀s. ¬CGoal(False, s).

Thus, the agent cannot have bothφ and¬φ as c-goals in a situations and there is a
path that isGC-accessible ins. Even if all of the agent’s p-goals become known to be
impossible, the set ofGC-accessible paths will be precisely those that starts with aK-
accessible situation, and thus the agent will only choose the propositions that are known
to be inevitable.

We also have the property of realism [1], i.e. if an agent knows that something has
become inevitable, then she has this as a c-goal:

Proposition 2 (Realism)

D |= ∀φ, s. KInevitable(φ, s) ⊃ CGoal(φ, s).

Note that this is not necessarily true for p-goals and primary c-goals – an agent may
know that something has become inevitable and not have it as her p-goal/primary c-
goal, which is intuitive. In fact, this is the reason why we define p-goals in terms of
G-accessible paths rather thanGR. While the property of realism is often criticized, one
should view these inevitable goals as something that holds in the worlds that the agent
intends to bring about, rather than something that the agentis actively pursuing.

A consequence of Proposition 1 and 2 is that an agent does not have a c-goal that is
known to be impossible, i.e.D |= ∀φ, s. CGoal(φ, s) ⊃ ¬KImpossible(φ, s).

We next discuss some properties of the framework w.r.t. goalchange. Proposition
3 says that (a) an agent acquires the p-goal thatφ at some leveln after she adopts it,
and (b) that she acquires the primary c-goal (and c-goal) that φ after she adopts it ins,
provided that she does not have the c-goal ins that¬φ next.

Proposition 3 (Adoption)

(a) D |= ∃n. PGoal(φ, n, do(adopt(φ), s)),



(b) D |= ¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adopt(φ), s′)) ∧ φ(p′), s)

⊃ PrimCGoal(φ, do(adopt(φ), s)).

We can also show that after dropping the p-goal thatφ at n in s, an agent does
not have the p-goal (and thus the primary c-goal) that the progression ofφ at n, i.e.
ProgressionOf(φ, drop(φ), s), provided that ProgressionOf(φ, drop(φ), s) is not inevitable
in do(drop(φ), s).

Proposition 4 (Drop)

D |= PGoal(φ, n, s)

∧ ¬Inevitable(ProgressionOf(φ, drop(φ), s), do(drop(φ), s))

⊃ ¬PGoal(ProgressionOf(φ, drop(φ), s), n, do(drop(φ), s)),

where,

ProgressionOf(φ, a, s)
def
= ∃p′, s′. Starts(p′, s′) ∧ Suffix(p′, do(a, s′)) ∧ φ(p′).

Note that, this does not hold for CGoal, asφ could still be a consequence of two or more
of her remaining primary c-goals.

The next few properties concern the persistence of these motivational attitudes.
First, we have a persistence property for achievement realistic p-goals:

Proposition 5 (Persistence of Achievement RPGoals)

D |= RPGoal(̂ Φ, n, s) ∧ Know(¬Φ, s) ∧ ∀ψ. a , drop(ψ) ⊃ RPGoal(̂ Φ, n, do(a, s)).

This says that if an agent has a realistic p-goal that^Φ in s, then she will retain this
realisitc p-goal after some actiona has been performed ins, provided that she knows
thatΦ has not yet been achieved, anda is not the action of dropping a p-goal. Note
that, we do not need to ensure that^Φ is still known to be possible or consistent with
higher priority active p-goals, since the SSA forG does not automatically drop such
incompatible p-goals from the goal hierarchy.

For achievement chosen goals we have the following:

Proposition 6 (Persistence of Achievement Chosen Goals)

D |= OPGoal(̂ Φ ∧ CorrectHist(s), n, s) ∧ CGoal(̂ Φ, s)

∧ Know(¬Φ, s) ∧ ∀ψ. a , drop(ψ) ∧ ¬CGoal(¬^Φ, n − 1, do(a, s))

⊃ CGoal(̂ Φ, n, do(a, s)).

Thus, in situations, if an agent has the only p-goal at leveln that^Φ and the correct
history of actions ins has been performed, and if̂Φ is also a chosen goal ins (and
thus she has the primary c-goal that^Φ), then she will retain the c-goal that̂Φ at level
n after some actiona has been performed ins, provided that:

– she knows ins thatΦ has not yet been achieved,
– thata is not the action of dropping a p-goal,



– and that at leveln − 1 the agent does not have the c-goal indo(a, s) that¬^Φ, i.e.
^Φ is consistent with higher priority c-goals aftera has been performed ins.

Note that this property also follows if we replace the consequent with CGoal(̂ Φ, do(a,
s)), and thus it deals with the persistence of c-goals. Note however that, it does not hold
if we replace the OPGoal in the antecedent with PGoal; the reason for this is that the
agent might have a p-goal at leveln in s thatφ and the c-goal ins thatφ, but not have
φ as a primary c-goal ins, e.g.n might be an inactive level because another p-goal at
n has become impossible, andφ could be a c-goal ins because it is a consequence of
two other primary c-goals. Thus even if¬φ is not a c-goal aftera has been performed
in s, there is no guarantee that the leveln will be active indo(a, s) or that all the active
p-goals that contributed toφ in s are still active.

We believe that the dropping of an unrelated p-goal will not affect persistence, and
hence it should be possible to strengthen Proposition 5 and 6. Also, in the future we
would like to generalize these two propositions to deal witharbitrary temporally ex-
tended goals.

6 Handling Subgoals

In this section, we deal with the dynamics of subgoals. As mentioned earlier, a sub-
goal must be dropped when the parent goal is dropped or becomes impossible. When
adopting a subgoalψ with respect to a supergoalφ, in addition to recording the newly
adopted goalψ, we need to model the fact thatψ is a subgoal ofφ. This information can
later be used to drop the subgoal when the parent goal is dropped. One way of modeling
this is to ensure that the adoption of a subgoalψ w.r.t. a parent goalφ adds new p-goals
that containboth this subgoal and this parent goal i.e. ψ ∧ φ at a lower priority than
the parent goal φ. This ensures that when the parent goal is dropped, the subgoal is also
dropped. To see this, recall that to handle the dropping of a goalφ, we drop the p-goals
at allG-accessibility levels that implyφ. Thus, if we drop the parent goalφ, it will also
drop all of its subgoals includingψ, since theG-accessibility levels where the parent
goalφ holds include theG-accessibility levels where the subgoalψ holds. Note that, if
there are more than one level where the supergoalφ is a p-goal, then we copy all these
levels, i.e. for each leveln whereφ is a p-goal, we add a (lower priority) level to the
goal hierarchy. As we will see, this ensures that the sub-subgoals and sub-sub-subgoals
etc. are also properly dropped when the supergoal is dropped. Also, this means that
dropping a subgoal does not necessarily drop the supergoal.

Before going over the formal details, let us mention some useful bookkeeping tools
that we will use: Length(l) returns the number of elements in listl; Nth(l, i) returns the
i-th element in listl, and -1 ifi > Length(l); Sort(l) returns a sorted version of listl. The
part of the SSA forG that handles subgoal adoption is defined as follows:

SubGoalAdopted(p, n, a, s, ψ, φ)
def
= (n < NPGoals(s) ∧ Progressed(p, n, a, s)))∨

(NPGoals(s) ≤ n < NPGoals(s) + Length(AddList(φ, s))

∧ ∃i,m. (n = NPGoals(s) + i ∧ m = Nth(AddList(φ, s), i)

∧ Progressed(p,m, a, s) ∧ ψ(p))) ∨

(n ≥ NPGoals(s) + Length(AddList(φ, s)) ∧ Progressed(p, n, a, s)).



That is, if the action involves the adoption of a subgoalψ w.r.t. a supergoalφ, we adjust
G to incorporate (possibly several) new p-goals. We will discuss each case in turn. First,
note that the existing p-goals are just carried over by progressing them; this is handled
by the first disjunct.

Secondly, we adjustG starting at levelNPGoals(s). We add a number of new levels
that include the conjunction of the only p-goal and the subgoal at a lower priority for
all the current only p-goals that imply the parent goalφ. For example, say at leveli
we have an OPGoal thatφi and it implies the parent goal thatφ; then we add at a
lower priority the conjoined goal of the progressed versionof φi and the subgoalψ.
Our formalization of this uses the abbreviation AddList(φ, s) which is a sorted list of
levels such that the parent goal is implied by the only p-goalat this level. AddList is
defined as: AddList(φ, s)

def
= Sort([n | PGoal(φ, n, s)]). The length of this list indicates

the number of lower priority goals that needs to be added. As discussed above, this
ensures that the agent will drop the subgoal when the parent goal is dropped (but not
necessarily vice-versa). Note that if this process adds twoor more new p-goals to the
agent’s goal hierarchy, we maintain the original ordering;e.g. suppose that the agent
adoptedψ w.r.t. φ, that there are twoG-accessibility levelsm andn such that the agent
has the only p-goal thatφm atm andφn atn, thatφm impliesφ andφn impliesφ, and that
n > m. In that case, the SSA forG will add the p-goalφm ∧ φ at levelNPGoals(s) and
the p-goalφn ∧ φ at levelNPGoals(s) + 1.

Finally, all the remaining levels involving trivially truegoals are just carried over
by progressing them.

The part of the SSA forNPGoals that handles subgoal adoption is defined as fol-
lows:

AdjustSubGoalAdopt(φ, s)
def
= NPGoals(s) + Length(AddList(φ, s)).

That is, when the agent adopts a subgoal w.r.t. a parent goal,her currentNPGoals is
incremented by the number of new p-goals adopted in this process.

Let us go back to our example. Suppose that the agent knows that one way of always
being rich is to always work hard, which in turns can be fulfilled by always being ener-
getic. Assume that with this in mind, our agent adopts the subgoal that�WorkHard
w.r.t. the p-goal that�BeRich, and then adopts the sub-subgoal that�BeEnergetic
w.r.t. the subgoal that�WorkHard starting inS 0. Then the agent’s goal hierarchy in
S 1 = do(adopt(�WorkHard,�BeRich), S 0) should include the p-goal that�WorkHard
and inS 2 = do(adopt(�BeEnergetic, �WorkHard), S 1) should also include the p-goal
that�BeEnergetic. According to the SSA forG, our agent’s goal hierarchy inS 1 and
in S 2 will be as in Table 1.6 In S 0, the supergoal�BeRich holds at level 0 and thus
AddList(�BeRich, S 0) = [0]. Similarly in S 1, the supergoal�WorkHard holds at level
3 and thus AddList(�WorkHard, S 1) = [3]. Now, suppose that inS 2 the agent wants to
drop the p-goal that�WorkHard. Then inS 3 = do(drop(�WorkHard), S 2), she should
no longer have�BeEnergetic as a p-goal, but should retain the supergoal that �BeRich.
After the agent drops the p-goal that�WorkHard, by the SSA forG we can see that all
theG-accessible levels where�WorkHard holds will be replaced by the only p-goal that

6 For simplicity in Table 1, we only show the agent’s relevant p-goals rather than its only p-goals
(which in addition reflect the actions that have been performed so far, i.e. CorrectHist(s)).



CorrectHist(S 2, path) (seeS 3 in Table 1). This shows that dropping�WorkHard results
in the dropping of all of its subgoals (in this case�BeEnergetic), but that its parent goal
�BeRich is retained.

We define the SubGoal relation as follows:

SubGoal(ψ, φ, s)
def
= ∃n. PGoal(φ, n, s) ∧ ¬PGoal(ψ, n, s)

∧ ∀n. PGoal(ψ, n, s) ⊃ PGoal(φ, n, s).

This says thatψ is a subgoal ofφ in situations iff there exists anG-accessibility level
n in s such thatφ is a p-goal atn while ψ is not, and for allG-accessibility levels ins
whereψ is a p-goal,φ is also a p-goal. Note that, while our formalization of subgoal
dynamics allows a subgoal to have multiple parents, in this definition we assume that
a subgoal can’t have more than one parent. In the future, we will work on relaxing this
constraint.

We now discuss some properties concerning the dynamics of subgoals and the de-
pendencies between a subgoal and its parent goal. Proposition 7 states that (a) an agent
acquires the p-goal thatψ after she adopts it as a subgoal of another goalφ in s, provided
that she has the p-goal at some level ins thatφ, and (b) she also acquires the primary
c-goal thatψ after she adopts it as a subgoal ofφ in s, provided that she has the primary
c-goal ins thatφ, and that she does not have the c-goal ins that¬ψ next.

Proposition 7 (Subgoal Adoption)

(a) D |= ∃m. PGoal(φ,m, s) ⊃ ∃n. PGoal(ψ, n, do(adopt(ψ, φ), s)),

(b) D |= PrimCGoal(φ, s)

∧ ¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adopt(ψ, φ), s′)) ∧ ψ(p′), s)

⊃ PrimCGoal(ψ, do(adopt(ψ, φ), s)).

The next property says that after dropping the p-goal thatφ in s, an agent does not
have the p-goal (and thus the primary c-goal) that the progression ofψ, provided thatψ
is a subgoal ofφ in s, and that the progression ofψ is not inevitable indo(drop(φ), s).

Proposition 8 (Supergoal Drop)

D |= SubGoal(ψ, φ, s) ∧ ¬Inevitable(ProgressionOf(ψ, drop(φ), s), do(drop(φ), s))

⊃ ¬∃n. PGoal(ProgressionOf(ψ, drop(φ), s), n, do(drop(φ), s)).

As with Proposition 4, this does not hold if we replace PGoal in the consequence with
CGoal sinceψ could be a consequence of a combination of other active p-goals.

The next two properties say that dropping a subgoal does not effect the parent goal.

Proposition 9 (Subgoal Drop)

(a) D |= SubGoal(ψ, φ, s)

⊃ ∃n. PGoal(ProgressionOf(φ, drop(ψ), s), n, do(drop(ψ), s)),

(b) D |= SubGoal(ψ, φ, s) ∧ PrimCGoal(φ, s)

⊃ PrimCGoal(ProgressionOf(φ, drop(ψ), s), do(drop(ψ), s)).



That is, (a) an agent retains the p-goal that the progressionof φ after she drops a subgoal
ψ of φ, and (b) she also retains the primary c-goal that the progression ofφ after she
drops a subgoalψ of φ in s, provided that she has the primary c-goal thatφ in s.

Finally, it can be shown that the SubGoal relation is transitive, i.e. ifψ1 is a subgoal
of φ in s, and ifψ2 is a subgoal ofψ1 in s, thenψ2 must also be a subgoal ofφ in s.

7 Discussion and Future Work

In this paper, we presented a formalization of prioritized goals, subgoals, and their
dynamics. Our formalization ensures that an agent’s chosengoals are always consistent
and that goals and subgoals properly evolve as a result of regular actions as well as
of adopting and dropping goals. Although we made some simplifying assumptions, in
this paper we have focused on developing an expressive framework that captures an
idealized form of rationality without worrying about tractability. In would be desirable
to study restricted fragments of the logic where reasoning is tractable. Also, before
defining more limited forms of rationality, one should have aclear specification of what
ideal rationality really is so that one understands what compromises are being made.

While in our account chosen goals are closed under logical consequence, primary
c-goals are not. Thus, our formalization of primary c-goalsis related to the non-normal
modal formalizations of intentions found in the literature[3], and as such it does not
suffer from the side-effect problem [1]. For instance, in our framework an agent can
have the primary c-goal to get her teeth fixed and know that this always involves pain,
but not have the primary c-goal to have pain.

Also, since we are using the situation calculus, we can easily represent procedural
goals/plans, e.g. the goal to doa1 and thena2 can be written as: PGoal(∃s, s1. Starts(s1)
∧ OnPath(s) ∧ s = do(a2, do(a1, s1)), 0, S 0). Golog [12] can be used to represent com-
plex plans/programs. So we can model the adoption of plans as subgoals.

Recently, there have been a few proposals that deal with goalchange. Shapiroet al.
[18] present a situation calculus based framework where an agent adopts a goal when
she is requested to do so, and remains committed to this goal unless the requester can-
cels this request; a goal is retained even if the agent learnsthat it has become impossible,
and in this case the agent’s goals become inconsistent. Shapiro and Brewka [7] modify
this framework to ensure that goals are dropped when they arebelieved to be impossible
or when they are achieved. Their account is similar to ours inthe sense that they also
assume a priority ordering over the set of (in their case, requested) goals, and in every
situation they compute chosen goals by computing a maximal consistent goal set that
is also compatible with the agent’s beliefs. However, theirmodel has some unintuitive
properties: the agent’s chosen goals indo(a, s) may be quite different from her chosen
goals ins, althougha did not make any of her goals ins impossible or inconsistent with
higher priority goals, because inconsistencies between goals at the same priority level
are resolved differently. In their framework, this can happen because goals are only par-
tially ordered. Note that, while one might argue that a partial order over goals might
be more general, allowing this means that additional control information is required to
obtain a single goal state after the agent’s goals change. Also, we provide a more ex-
pressive formalization of prioritized goals – we model goals using infinite paths, and



thus can model many types of goals that they cannot. Finally they model prioritized
goals by treating the agent’s p-goals as an arbitrary set of temporal formulae, and then
defining the set of c-goals as a subset of the p-goals. But our possible world semantics
has some advantages over this: it clearly defines when goals are consistent with each
other and with what is known. One can easily specify how goalschange when an action
a occurs, e.g. the goal to doa next and then dob becomes the goal to dob next, the goal
that^Φ ∨ ^Ψ becomes the goal that̂Ψ if a makes achievingΦ impossible, etc.

There has been much work on agent programming languages withdeclarative goals
where the dynamics of goals and intentions and the dependencies between goals and
subgoals are modeled (e.g. [19, 20, 9] and the references therein). However, most of
these are not based on a formal theory of agency, and to the best of our knowledge,
none maintains the consistency of (chosen) goals (e.g. whenadopting a plan to achieve
a goal, these frameworks do not ensure that this plan is consistent with the agent’s other
concurrent goals/plans). Also, most of these do not deal with temporally extended goals,
and as a result they often need to accommodate inconsistent goal-bases to allow the
agent to achieve conflicting states at different time points (e.g. the default logic based
framework in [21]); chosen goals are required to be consistent. In [22], the authors
formalized two semantics for representing conflicting goals, using propositional and
default logic; they argued that even logically consistent goals can be conflicting, e.g.
when multiple goals/plans are chosen to fulfill the same (super)goal. Unlike us however,
they do not address how an agent chooses the goals that she will actively pursue. In [6],
the authors present a situation calculus based agent programming language where the
agent executes a program while maximizing the achievement of a set of prioritized
goals. However, they do not formalize goal dynamics.

One limitation of our account is that we assume that the agent’s p-goals are totally
ordered in terms of priority. Also, newly adopted p-goals are assigned the lowest pri-
ority. A consequence of this is that an agent’s c-goals depend on the adoption order of
her p-goals. For instance, given a fixed starting situation,an agent can end up with two
different sets of c-goals by adoptingφ followed byψ, and by adoptingψ followed byφ.
This has very different results whenφ andψ conflict with each other. We would like to
address this by incorporating the priority of the p-goal as an argument to theadopt ac-
tion, and handling this in the framework. Finally, one couldargue that our agent wastes
resources trying to optimize her c-goals at every step. In the future, we would like to de-
velop an account where the agent is strongly committed to herchosen goals, and where
the filter override mechanism is only triggered under specific conditions.

References

1. Cohen, P.R., Levesque, H.J.: Intention is Choice with Commitment. Artificial Intelligence
42(2–3) (1990) 213–361

2. Sadek, M.D.: A Study in the Logic of Intention. In: Third Intl. Conf. on Principles of
Knowledge Representation and Reasoning (KR&R-92), Cambridge, MA (1992) 462–473

3. Konolige, K., Pollack, M.E.: A Representationalist Theory of Intention. In: Thirteenth Intl.
J. Conf. on Artificial Intelligence (IJCAI-93), Chambéry,France (1993) 390–395

4. Singh, M.P.: Multiagent Systems: A Theoretical Framework for Intentions, Know-How, and
Communications. Volume 799 of LNAI. Springer-Verlag, Germany (1994)



5. Shapiro, S., Lespérance, Y., Levesque, H.J.: Goals and Rational Action in the Situation Cal-
culus - A Preliminary Report. In: Working Notes of the AAAI Fall Symposium on Rational
Agency: Concepts, Theories, Models, and Applications, Cambridge, MA (November 1995)
117–122

6. Sardina, S., Shapiro, S.: Rational Action in Agent Programs with Prioritized Goals. In: Sec-
ond Intl. J. Conf. on Autonomous Agents and Multi-Agent Sys.(AAMAS-03), Melbourne,
Australia (2003) 417–424

7. Shapiro, S., Brewka, G.: Dynamic Interactions Between Goals and Beliefs. In: Twentieth
Intl. J. Conf. on Artificial Intelligence (IJCAI-07), India(2007) 2625–2630

8. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and Procedural Goals
in Intelligent Agent Systems. In: Eighth Intl. Conf. on Principles and Knowledge Represen-
tation and Reasoning (KR&R-02), Toulouse, France (2002) 470–481

9. Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E., eds.: Multi-Agent Program-
ming: Languages, Platforms and Applications. Springer (2005)

10. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press, Cam-
bridge, MA (1987)

11. McCarthy, J., Hayes, P.J.: Some Philosophical Problemsfrom the Standpoint of Artificial
Intelligence. Machine Intelligence4 (1969) 463–502

12. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press, Cambridge, MA (2001)

13. DeGiacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a Concurrent Programming
Language Based on the Situation Calculus. Artificial Intelligence121(2000) 109–169

14. Levesque, H.J., Pirri, F., Reiter, R.: Foundations for aCalculus of Situations. Electronic
Transactions of AI (ETAI)2(3–4) (1998) 159–178

15. Moore, R.C.: A Formal Theory of Knowledge and Action. In Hobbs, J.R., Moore, R.C.,
eds.: Formal Theories of the Commonsense World. Ablex (1985) 319–358

16. Scherl, R., Levesque, H.: Knowledge, Action, and the Frame Problem. Artificial Intelligence
144(1–2) (2003) 1–39

17. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents with a BDI-Architecture. In Fikes,
R., Sandewall, E., eds.: Second Intl. Conf. on Principles ofKnowledge Representation and
Reasoning (KR&R-91), San Mateo, CA, Morgan Kaufmann Publishers (1991) 473–484

18. Shapiro, S., Lespérance, Y., Levesque, H.J.: Goal Change in the Situation Calculus. J. of
Logic and Computation17(5) (2007) 983–1018

19. Sardina, S., deSilva, L., Padgham, L.: Hierarchical Planning in BDI Agent Programming
Languages: A Formal Approach. In: Fifth Intl. J. Conf. on Autonomous Agents and Multi-
Agent Systems (AAMAS-06), Hakodate, Japan (2006) 1001–1008

20. van Riemsdijk, M.B., Dastani, M., Dignum, F., Meyer, J.J.Ch.: Dynamics of Declarative
Goals in Agent Programming. In: Second Intl. Workshop on Declarative Agent Languages
and Technologies (DALT-04). Volume 3476 of LNCS., New York,NY, USA, Springer-
Verlag (2004) 1–18

21. van Riemsdijk, M.B., Dastani, M., Meyer, J.J.Ch.: Semantics of Declarative Goals in
Agent Programming. In: Fourth Int’l J. Conf. on Autonomous Agents and Multiagent Sys.
(AAMAS-05). (2005) 133–140

22. van Riemsdijk, M.B., Dastani, M., Meyer, J.J.Ch.: Goalsin Conflict : Semantic Foundations
of Goals in Agent Programming. International Journal of Autonomous Agents and Multi-
Agent Systems (JAAMAS)18(3) (2009) 471–500


