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Abstract and Overview. In this paper we describe the motivation, design and
implementation of a system to visually guide a locomoting robot towards a
target and around obstacles. The work was inspired by a recent suggestion that
walking humans rely on perceived egocentric direction rather than optic flow to
guide locomotion to a target. We briefly summarise the human experimental
work and then illustrate how direction based heuristics can be used in the visual
guidance of locomotion. We also identify perceptual variables that could be
used in the detection of obstacles and a control law for the regulation of
obstacle avoidance. We describe simulations that demonstrate the utility of the
approach and the implementation of these control laws on a Nomad mobile
robot. We conclude that our simple biologicaly inspired solution produces
robust behaviour and proves avery promising approach.

1 Theoretical Background: Human L ocomotion and Egocentric
Direction

For the past 50 years it has been assumed that humans rely on optic flow for the visual
guidance of locomotion. This assumption has underpinned psychophysical studies,
neurophysiology, imaging and computational modelling (see [1] for a review).
Recently this assumption has been challenged.

Rushton et a [2] reported an experimental result seemingly at odds with the use of
optic flow. Rushton et al proposed instead a simple heuristic that better described the
behaviour they observed. The proposal is that visual guidance of locomotion is
achieved by keeping a target at a fixed direction, or eccentricity, relative to the body,
rather than regulating behaviour so as to maintain a certain pattern of flow on the
retina (the optic flow solution). In short, if the current direction of a target object is
known, and the observer walks so as to keep the direction constant then they will
reach the target. If the target is kept straight-ahead then a straight-line course to the
target will result. If the target is maintained at some other direction then the path will
be an equi-angular spiral.

The finding of Rushton et al has now been replicated by many others [3-7], and a
concise summary of the original study is provided below. In a later section we
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illustrate how this simple heuristic can be extended into a general model of the visual
guidance of locomotion. We then describe a control law to avoid obstacles.

1.1 ThePrism Study, Rushton et al. (1998)

The Rushton et al. [2] study involved observers wearing prism glasses. Observers
were asked to walk briskly towards a target held out by an experimenter positioned
about 10m to 15m away. The glasses contained either paired base-left or base-right
wedge prisms. Prisms deflect the image and so shifted the perceived location of
objects (relative to the body) approximately 15° to the right or left. Wearing prism
glasses had a dramatic effect on the trajectory taken by observers when asked to walk
towards the target. Observers veered whilst attempting to walk ‘straight towards’ the
target. A typical veering tragjectory is shown in the left panel of Figure 1.
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Fig. 1. Left panel: A representative trajectory of an observer, wearing a pair of wedge prisms
that deflect right, approaching a target. The plot shows raw digitised data with axes x’ and Z'
showing distances in world co-ordinates. Right panel: Simulated trgjectory and direction error
when wearing prisms by a model using target direction. Right Plan view of the predicted
trgjectory of a prism-wearing participant walking in the perceived direction of the target (which
is offset from actual position by the simulated 16° angular deflection of the prisms). x and z are
distances paralel and perpendicular, respectively, to the starting position of the participant
(facing along the z-axis). left angle, a, between the instantaneous direction of the target and the
direction of locomotion (tangent to the curve), which remains constant.
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Fig. 2. Left panel: Egocentric directions, ‘eccentricity’, a, measured angle in cardinal plane.
Right panel: Flow-field during forward trandlation (magnitude indicates image speed) toward
target tower (solid black rectangle) at 16m. Thin vertical line indicates direction of travel.
Arrow indicates egocentric straight ahead. Left: normal view, the ‘focus of expansion’ (FOE) is
coincident with the tower, which indicates the observer is travelling directly towards tower.
Arrow above tower indicates the perceived ‘straight-ahead’ direction, note it coincides with the
tower. Right: displacement of whole image by prism. Note FoE is still directly over tower, thus
flow indicates the observer is travelling directly towards tower. However, the perceived
straight-ahead (denoted by the arrow above) no longer coincides with the tower.

1.1.1 A Flow Explanation?

Can use of optic flow account for such a trgjectory? Flow based strategies rely on
keeping the flow specified direction of heading (DoH) and the target coincident.
More generally, they are concerned with relative positions or patterns within the flow-
field. As can be seen from figure 2, although prisms displace the scene and change the
perceived location of objects, the critical relations in the flow field are not perturbed.
Specifically, the relative positions of the DoH and the target remain unchanged.
Therefore, perception of direction of locomotion should remain unchanged and
veridical if flow is used, and observers should end up on a straight trajectory towards
tothetarget. The left panel of Figure 1 shows a markedly curved trgjectory indicating
that the observer did not use a DoH-target strategy. A model based on using the flow
field specified DoH is therefore incompatible with the experimental results.

1.1.2 Egocentric Direction Account

A simple model, the perceived direction model [2], is compatible with the data. The
model predicts that observers take a curved path because they attempt to keep the
target perceptually straight-ahead of them. They veer because prisms change the
perceived target direction. When wearing prisms, the perceived position of the whole
scene, relative to the observer's body, is changed by the angular deflection of the
prism — so if the prisms shifts the scene by 15 to the left, an object at 0° relative to the
trunk will be seen at approximately 15° to the left. Thus, keeping the target
perceptually straight-ahead requires the observer to keep the target at a fixed
eccentricity (relative to the body) of approximately 15° to the right of the trunk mid-
line. If this strategy is used then it should lead to a veering tragjectory to the target.
The trajectories walked by observers were very similar to those predicted by this
simple perceived-direction model (compare the left and right panels of figure 1).
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1.1.3 Recent Results

The direction of an object relative to the body trunk can be determined from a variety
of sources of information. Classicaly it is assumed that trunk-centric direction is
determined by combining non-visual information about the orientation of the eye and
head (derived from ‘extra-retinal information’ — sensors that measure orientation, or
copies of motor commands) with retinal target location. However it can be
demonstrated theoretically that the eye orientation or head-centric target direction
could be determined directly from the binocular disparity field. Visual motion, or slip,
of a target as a result of a gaze or body movement could also be used in the
determination of trunk-centric direction. Recent findings [3-7] on the visual guidance
of locomotion can be interpreted as supporting this less simplistic model of the human
perception of egocentric directions (see TICS note [8]). The use of disparity and
motion information in refining or calibrating estimation of egocentric direction might
usefully be revisited should it be desirable to implement the following algorithms on a
robot with a mobile gaze system or stereoscopic vision.

2 TheTest Rig

During the next section we complement theoretical predictions with empirical results
so we first describe some details of our test rig.

The testing and development proceeded in two parallel stages. In the first stage,
locomotion control agorithms were developed through simulations (using Matlab 6).
During this stage, evaluation was done by both informal case-based testing and
objective measures (derived by analysing the results of batches of simulations). In the
second stage, simple image processing and maotor output modules were added as front
and backends to the locomotion module and experiments were performed on the
actual robot. Unfortunately space constraints limited the complexity and length of the
robot trajectories.

2.1 Robot

A Nomad Super Scout (Nomadic Technologies Inc.) robot was used for testing.
Although the Nomad had a Pentium class CPU, the robot was tele-operated for
convenience. A wireless network link was used to send motor commands to the
robot. We used only two commands to drive the robot: r ot at e() and nove().
Therefore, the solutions involved discrete steps. Simulations show that substituting
radius of curvature and speed should produce approximately the same trajectories but
represent a slightly more elegant solution.

An NTSC resolution camera was connected, via a cable to the image capture card
of a Sun Blade 100 workstation. Images were captured on demand, at a resolution of
640x480 pixels. The horizontal field of view of the camera was approximately 60°,
and the camera was pitched downwards by approximately 20°.
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2.2 Visual Scene

Because the focus of this work was on visual guidance of locomotion and control
laws we simplified the image processing requirements. Targets and obstacles were
colour-coded, the former being coloured red, the latter blue.

3 From a Single Caseto a General Account

The experiments described in section 1 are concerned with a single task, visually
guiding locomotion to a static target. Rushton & Harris [9] explored the theoretical
sufficiency of the egocentric direction proposal by attempting to extend it to a broader
range of locomotion actions. Their ideas are the basis for the algorithms and
implementation.

3.1 A List of Fundamental L ocomotor Actions

Several authors have attempted to enumerate a list of fundamental locomotor
behaviours [10-12]. The most important of these can be summarised as follows: 1)
intercepting static and moving targets, 2) following a path, and 3) avoiding obstacles.
Below we examine how the first two behaviours could be implemented within an
egocentric direction framework. In section 4 we describe in detail our approach to
obstacle avoidance.

3.2 Intercepting Static and Moving Tar gets

Interception of atarget is achieved if during locomotion the target is (i) kept at a fixed
direction relative to the robot, and (ii) the target gets closer on each step. The
direction at which the target is kept will determine the exact trgjectory taken. The
resultant trajectories are low angle equi-angular spiras. The top left panel of figure 3
illustrates a family of trajectories that intercept a static target. If the target is moving
then the same constant direction strategy works. The top middle panel demonstrates a
family of constant direction trajectories that intercept a target moving with a constant
velocity. The top right panel shows interception with an accelerating target. The
lower panels show three constant angle trajectories taken by our robot to a static
target.
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Fig. 3. Upper Panels: All panels display a plan view, with the robot starting at (0,0). Left: plan
view of trgjectories that would result from holding atarget at a fixed eccentricity, a, of 0°, 5°,
10°, 20° and 40° (from left to right). Robot starts at (0,0), target is at (0, 6). Holding the target
‘straight ahead', i.e. at 0° would produce a straight trajectory leading directly to the target. Any
other trajectory based upon holding the target at an eccentricity other than zero results in the
robot ‘veering' to one side before finally reaching the target. Middle: Intercepting a moving
target. Target starts at (0, 6), and moves rightwards, robot starts at (0,0). Four fixed
eccentricity trgjectories shown, -10°, 0°, 10°, 20°. Right: Intercepting an accelerating target.
Target starts at (0, 40), and moves rightwards and downwards with increasing speed (constant
acceleration), robot starts at (0,0). Fixed eccentricity trajectories shown are -10°, 0°, 10°, 20°".
Lower Panels. Fixed eccentricity approaches to a target. Plan view of robot, travelling from
bottom to top of the image. Left: eccentricity of 6°. Middle: eccentricity of 12°. Right:

eccentricity of 18°.
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3.3 Calibration of Straight-Ahead (0°) through Target Drift, or Visually
Guiding Uncalibrated Systems

The agorithm described so far relies on a calibrated system. If straight-ahead (0°) is
not known, or has drifted then an observer or robot could not take a straight-line
course to atarget if they wished to. How might the system be calibrated? Held [13]
proposed that the focus of expansion of the optic flow field sasmpled by an observer
could be used for calibration (humans normally walk either straight, or on a curving
trajectory, seldom do they walk diagonally, therefore if the position of the focus of
expansion was averaged over several minutes of locomotion it would provide a good
estimate of straight-ahead or 0°). A faster, on-line alternative, more in keeping with
the proposal outlined so far would be to use target drift.

Llewellyn [14] proposed a heuristic for visual guidance of locomotion that is
related to the constant eccentricity heuristic described above. Llewellyn suggested
that an observer could reach a target by simply cancelling target drift, that is the
visual movement of the target. So if atarget drifts 1° to the left after one step then if
the observer rotates |eft by 1° (so returning the target to its original eccentricity) and
takes another step they will eventualy reach their target. It should be obvious that the
course will be the same equi-angular spirals produced by the constant eccentricity
strategy. The use of amotion signal instead of a direction signal has one disadvantage
and one related advantage. First off it is not possible to explicitly choose a trajectory.
A sharply curving 50° equi-angular trajectory cannot be selected in advance or
distinguished from a 0° trajectory. However the problem of selecting a O° trajectory
can be avoided. During a non-zero approach, the target will drift on each step. By
“overcompensating” for this drift the trajectory can be straightened into a 0°
trajectory. So if the target drifts 1° left on a given step, if instead of rotating 1° left to
compensate (100% compensation) the observer rotates 2° left (200% compensation)
then they will end up reducing the eccentricity of their trajectory, and thus
straightening the trajectory, until it reaches zero. Thisisillustrated in the left panel of
figure 4 below.

The right and middle panels of figure 4 illustrate robot trajectories. It can be seen
that in the set up here, the system calibrates rapidly. If target drift is to be used for
calibration then once the target drift has settled below a preset limit, straight-ahead
can be taken from the windowed average of target image position.

3.4 Path Following

Many models have been proposed to account for steering a car round a bend. Land &
Lee [15] proposed that the curvature of a bend can be determined using a function of
the direction of the ‘tangent’ (or ‘reversal’) point and its distance. The curvature can
then be used to set the steering angle. Murray et a [16] proposed a similar rule for
determining curvature and demonstrated that it could be used to guide a robot around
atrack.

Here we propose a simpler (but related) solution. Rather than estimate the
curvature of the bend it is sufficient simply to keep a portion of the road a fixed
distance ahead (and distance can be determined simply from either relative or
absolute height in the visual field), or the tangent point, at a constant direction.
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Fig. 4. Left Panel: Robot heads towards the target (0, 10). Initial target-heading direction, or
eccentricity, is 25°. Trajectory a shows the course taken by cancelling target drift on each step
(100% compensation) resulting in a constant direction trajectory. Trajectory b shows the course
taken when the observer “over-compensates’ for the target drift by a factor of 2 (200%
compensation). Trajectory ¢ “over-compensation” is 400%, trajectory d is 800%. Middle and
Right Panels. Overhead view of robot travels from right to left. Initial heading angle is
approximately 18 °. Middle Panel: Compensation of 200%. Right Panel: Compensation of
600%

Infigure 5, in the panel A, the inside edge of the road a fixed distance ahead is kept
at a constant direction. In panel B the outside edge is used. Logicaly if there was a
centre line then this could be used instead. One disadvantage of using a fixed distance
ahead strategy is that it only works if the observer does not use a portion of the road
too far ahead. The maximum distance ahead is proportional to the radius of curvature
of the bend. A strategy that automatically compensates for the curvature of the bend is
to use the tangent point. The result of such a strategy is shownin fig. 5C.

An intuitive solution would be to scale the distance of the road edge that is used to
control steering (control point) as a function of speed — to look a fixed time ahead.
The distance of the control point could then be bound by the distance of the tangent
point. If the control point would lie beyond the tangent point the observer could either
use the tangent point (and so look less time ahead making visual control more
difficult), or sow down so as to bring the control point back to the tangent point and
the look-ahead distance back to an optimal value.
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Fig. 5. A. Fixed distance, fixed direction inside of bend. B. Fixed distance, fixed direction
outside of bend. C. Tangent point, fixed direction (30° threshold)

The maintain-eccentricity solution described above is unlikely to be used in
isolation. If we consider a classic model of steering by Donges [17] we note that it
relies on two control variables, a far point and lateral lane position. The lateral
position is monitored to ensure that the car has not drifted. It is likely that walking
observers would, and moving robots should, also respond to changes in lateral
position. However it might be sufficient to monitor lateral position only intermittently
and to correct any drift with an approximate ballistic/open-loop change in lateral
position. Land [18] and Wann & Land [19] provide useful reviews of behavioural
data and models and provide some alternative perceptual control solutions.

4 Detecting and Avoiding Obstacles

4.1 Detecting Obstacles

If during approach an object remains at a constant direction as you move then you are
on a collision course. If the obstacles and the robot had zero horizontal extent then
this would be sufficient for obstacle avoidance.

An observer could search for any imminent collisions, and if a collision is detected,
change the eccentricity of their approach to the target. So they might go from a 0°
eccentricity (straight) trgjectory to a 10° trajectory. Note, this does not require that the
observer change their immediate goal and navigate around an obstacle, but rather that
they simply change the parameters of their current target approach trajectory. So even
if an observer ended up changing direction by alarge angle (eg 40°) to avoid a target
they would gtill be on a course to their target. However, both the observer or robot,
and obstacle have some non-zero horizontal extent, so identifying only objects that
remain at a constant direction as obstaclesis not sufficient.

So how might an obstacle be detected? It would be possible to use aratio of the x
(lateral) and z (depth) distances of an obstacle to generate a change of tragjectory
response.

Another solution would be to use other variables to which the human visual system
is sensitive. One such variable is crossing distance [20-21]. Crossing distance is the
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lateral distance measured in the Cyclopean plane that passes through the eyes, at
which a projectile will pass. It was first proposed by Bootsma [20], who showed that:

XDIST _a (6
2R 6

where XDIST is the crossing distance, R the object radius, & is the rate of changing
direction, and @ isthe rate of changing size.

4.1.1 Calculation of XDIST
A variant of eguation 1 based upon changing binocular disparity instead of changing
sizeis:
XDIST _a 2
e

where | istheinter-camera separation, and @ is changing disparity [22].

We use neither of these variants, the problem with the first being that it returns
XDIST as a multiple of obstacle width and therefore requires prior knowledge of
obstacle dimensions. The second returns a more useful measure, XDIST, as a multiple
of inter-ocular or inter-camera distance. However, use of this formulation would
require a binocular viewing system and associated stereo matching algorithms.

Instead while acknowledging the utility of these sources of XDIST information, we
elected to keep our implementation (hardware and software) as simple as possible and
instead take advantage of one of the constraints in our setup. The robot always moves
over a flat ground plane, and obstacles rest on the ground plane. Therefore we can
modify the second XDIST equation and use change in height-in-the-image, 0, in
place of change of disparity. We elected to use the changing direction of the inside or

closest edge, [ :

XDIST _ ©)
H P

where H is the known height of the camera. In our system the camera is pitched
downwards so we must multiply 0 by sec(pitch).

The inside edge of the obstacle is the edge that is closest to the straight-ahead
direction of the camera, or the edge that is moving most slowly. The use of the nearest
edge ssmplifies the algorithm as it avoids the need to explicitly calculate and take into
account object width. Use of object edge also fits well with a recent suggestion that
the human perceptuo-motor system works on the position of object edges rather than
the object’ s centroid and width [23].

4.1.2 Detecting Callision

We can define a safe crossing distance, SAFEDIST, which is ‘body-scaled’ [24] to
the robot. If the lateral distance at which an obstacle will pass the robot, XDIST is
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less than a minimum distance (SAFEDIST) then it is on a collision course. Therefore
an observer or robot can continuously examine the obstacles in the scene and look for
any on acollision course.

4.1.3 Knowing How Quickly to Turn

Once an aobstacle is detected, how quickly does a change in trajectory need to occur?
We can define “temporal distance” as the amount of time remaining before we will
collide with the robot. The temporal distance can then be used to assess how urgent a
change of courseis.

4.1.4 Calculation of Temporal Distance

TTC (time to contact), the time remaining before an obstacle collides with the eye or
camera can be determined (to a first order approximation) indirectly by the ratio of
the obstacle distance to the obstacle’s closing speed. It can be determined “directly”

[25] from 9/9 where @ isthe size of the image of the obstacle at the eye or camera.

It is aso given by qo/qo where ¢ is the binocular subtense of the obstacle viewed

from eyes or a stereo-head. Rushton & Wann [26] recently proposed a computational
solution that combines both these estimates and demonstrates robust behaviour in the
case of cue-drop out, cue-conflict and optimal weighting of information from size and
disparity as a function of object size.

TIC=(0+9)/(6+9) (4

Our implementation involved only a single camera so eq 4. cannot be used, however,
the principle behind it can be used to optimise estimation of TTC from the monocular
information:

TTC =(6,+6,)/(6,+6,) ®)

where 8, is the horizontal extent of the image of the obstacle, &, is the vertical

extent.

The above equation will lead to the expansion of horizontal image size having the
most influence with a short and wide obstacle, and vertical extent with a thin and tall
obstacle. Therefore, it makes optimal use of the information available without the
additional computational cost or the difficulty of determining priors or variance on the
fly associated with Bayesian approaches.

4.2 Change of Path Equation

Our first constraint in deriving an obstacle avoidance algorithm is that we shouldn’t
lose track of our target, therefore any avoidance behaviour taken will simply change
the parameters of the approach to the target rather than spawn an obstacle avoidance
sub-goal. Therefore we only change the eccentricity parameter in our target approach
algorithm.
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If we set a safe crossing distance, SAFEDIST, then when XDIST < SAFEDIST,
we can calculate a change in eccentricity or aturnrate, {0 , to avoid the obstacle while
proceeding to the target:

_ . (SAFEDIST - XDIST) (6)
w =k.
TTC

This equation is of the same form as that proposed by Peper et al [27] to describe
projectile interception by human observers. Recent work indicates that human
catching behaviour may be better described by models that include a prediction of
lateral position [28], however work on human locomotion suggests that prediction is
not used [2]. Therefore for now, we do not include a predictive term for future
XDIST.

We change the eccentricity of the approach to the target as follows:

a.,,=a,+w ()

t+1

Where @, isthe eccentricity of approach to the target at timet. Equation 6 leadsto a

response to obstacles as shown in figure 6.

On the basis of our interpretation of behavioura data [29] we only modify the
eccentricity of approach on the basis of the closest obstacle. This decision contrasts
with decisions made by others to include other obstaclestoo [30-31]. Closest obstacle
could be decided on the basis of distance, TTC (time before collison with the
observation point) or TTP (time before the obstacle will pass the robot). Distance is
less useful when the environment is not static, therefore we used TTC.

4.3 Left vs. Right Decision Rules

Consider a robot approaching an obstacle. The robot could change the eccentricity of
its target approach so as to pass to the left or the right of the obstacle. How should it
decide?
* Ourfirst rule saysthat it should take the route that requires the smallest changein
eccentricity of approach.
»  Our second rule says it should take the route that reduces the eccentricity of the
current approach (getsit closest to zero or straight-ahead).
When the change in eccentricity associated with turning left vs. right is
approximately the same we defer to the second rule. By varying the definition of
“approximately the same” we can trade off the two rules.

5 Absolute Performance
We performed extensive testing through simulation. The system demonstrated robust

performance in a range of environments (size, shape, number of obstacles, moving or
stationary). It is difficult to capture the absolute performance of a system in a few
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turn rate

Fig. 6. Graphical representation of equation 6. X islateral position, Z is distance in depth. Turn
rate as afunction of (X, z) position of an obstacle relative to the observer/robot.

dtatistics, as it is necessary to qualify results with an extensive description of the
testing conditions, and to rigorously document any implementation specific functions,
defaults or assumptions. We intend to report such details and results elsewhere.

5.1 Limitationsof the Algorithm

The agorithm was designed to steer around obstacles, thus it does not deal with
situations such as dead-ends or obstacles placed too close at beginning. We envisage
that other processes would recognise and deal with these situations.

One implementation specific cause of failure was an inability to correctly segment
obstacles when they overlapped in the projective view. This is not due to a
shortcoming of our approach, but rather simply results from implementation decisions
made (all obstacles were rendered flat-shaded in pure blue), and would not normally
be a problem when features such as distance, texture, colour and so on could be used
in the segmentation process.

One solution to this problem is to add predictive object tracking. Such an addition
proves very useful asit removes other errors associated with mistaking object identity
(and thus incorrectly calculating TTC etc). Every different implementation will bring
its own specific problems, but it appears that predictive object tracking might be solve
a whole raft of implementation specific problems and so it might be judicious to
include an object tracking system by default.

A general problem that applies to any implementation of the algorithms described
in this paper or any others is the problem of spatial scale. Our system can deal well
with obstacles of varying width, but would run into problems when obstacles become
so tall that the top of the obstacle falls out of the field of view. It is instructive
consider what a human might do under such circumstances. They would be likely to
switch to determining TTC, XDIST etc from local texture patches. In other words
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they use a different spatial scale. Trying to reformulate algorithms so that they are
spatial scaleinvariant is an important and interesting problem.

6 Rdative Performance

Although we have not done any formal testing of relative performance we can make
the following comparisons to alternative approaches. Compared to potential field [31]
and dynamical system [30] approaches, we have the following advantages. (i)
simplicity; (ii) ability to deal with obstacles of varying size and shape (unlike the
current formulation of the dynamical model [30]); (iii) based upon human perceptual
variables.

Duchon et a [32] review the literature on the use of optic flow for obstacle
avoidance and describe their own approach. From our understanding, the solution we
propose is markedly simpler than the optic flow solutions, not least because we do not
need to do optic flow processing over the visual field.

7 Some Examples

The following figures show some sample trajectories from our current model.

YN

=
RSAa
mw L

=
(7T

ey
LAY

l'b
<<<<<

Fa

Fig. 7. Two example simulations of robot proceeding to target and avoiding obstacles along the
way. Plan view with robot travelling from (0,0) to (20,20).

8 Summary and Conclusion

We have implemented a robot guidance system built on the regulation of object
direction. This solution avoids the complexities associated with optic flow
(computational cost, and the problems of a non-static environments). Our solution is
inspired by research that suggests that humans navigate through the use of regulation
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of object direction. Fgjen, et al [30] have recently modelled the locomotion of humans
around obstacles and towards targets using a system of attractors (target) and repellors
(obstacles). The work of Fajen et al is similar to the artificial potential field method
and related methods of robot navigation [30-32]. These methods have the
disadvantage of being computationally demanding. The work was constrained to only
use simple visual variables to which humans have a documented sensitivity. Our
approach leads to a system that is very ssimple, produces robust behaviour and utilises
abiologically plausible strategy.
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