Problem A - Spiral Tap

Time Limit: 1 second

The game of Spiral Tap is played on a square grid. Pieces are placed on a grid and the moves are realized according to the position of the pieces on the grid. However, the coordinate system in the game of Spiral Tap are a bit different that those find in traditional board games, such as chess.

The cell numbering scheme follow a spiral, starting from the center of the grid in an anti-clockwise fashion. The following figure illustrates the cell numbering scheme.

The goal is, given the spiral tap coordinates of a cell, find its cartesian coordinates (line 1 is at the bottom, and column $\mathbf{1}$ is the leftmost).

Input

The input is a series of lines. Each line is composed of two numbers: SZ and P. SZ is the size of the border of the grid and is an odd number no larger than 100000. P is the spiral position of a cell in this grid. The line such that $\mathbf{S Z}=\mathbf{P}=\mathbf{0}$ marks the end of the input (and is not part of the data set).

Output

For each line in the data set of the input, your program must echo a line "Line = \mathbf{X}, column = \mathbf{Y}.", where \mathbf{X} and \mathbf{Y} are the cartesian coordinates of the corresponding cell.

Sample Input

31
33
39
59
510
00

Sample Output

```
Line =2, column = 2.
Line = 3, column = 1.
Line = 3, column = 3.
Line = 4, column = 4.
Line = 5, column = 4.
```

Problem setter: David Deharbe, Copyright 2005 UFRN. All rights reserved.

