F•Visible Lattice Points

A lattice point $(\boldsymbol{x}, \boldsymbol{y})$ in the first quadrant (\boldsymbol{x} and \boldsymbol{y} are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from $(0,0)$ to $(\boldsymbol{x}, \boldsymbol{y})$ does not pass through any other lattice point. For example, the point $(4,2)$ is not visible since the line from the origin passes through $(2,1)$. The figure below shows the points $(\boldsymbol{x}, \boldsymbol{y})$ with $0 \leq \boldsymbol{x}, \boldsymbol{y} \leq 5$ with lines from the origin to the visible points.

Write a program which, given a value for the size, \mathbf{N}, computes the number of visible points $(\boldsymbol{x}, \boldsymbol{y})$ with $0 \leq \boldsymbol{x}, \boldsymbol{y} \leq \mathbf{N}$.

Input

The first line of input contains a single integer $\mathbf{C},(1 \leq \mathbf{C} \leq 10000)$ which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer $\mathbf{N},(1 \leq \mathbf{N} \leq 10000)$, which is the size.

Output

For each dataset, there is to be one line of output consisting of: the dataset number starting at 1 , a single space, the size, a single space and the number of visible points for that size.

Sample Input	Sample Output	
4	1	
2	2	
2	4	
13		
3	3	
5	21	
5	4	
231	32549	
231		

