
Page 1 of 16

RVS (RISC-V Visual Simulator)

User Manual v0.07

1. Outline

The Risk-V Visual Simulator (RVS) provides a convenient Graphical User Interface

(GUI) for input, editing, assembly, and execution tracing of RISC-V assembly

programs. RVS supports the subset of RISC-V instructions in the book “Computer

Organization and Design: The Hardware/Software Interface, RISC-V Edition” by

Patterson and Hennessey. The GUI consists of six windows as shown below.

The minimal width and height of the main window is restricted to ensure that all

controls (buttons, check boxes, labels, etc.) are visible. The area of each window is

freely adjustable by moving the five handles shown in red in the above snapshot as

indicated by the arrows superimposed on them. Note that there are no explicit

controls to selectively hide/show individual windows because this can be easily done

with the red handles.

In the following snapshots we show the initial window as it looks at startup.

Page 2 of 16

Page 3 of 16

Some window arrangements done through the red handles that might be useful at

different staged of the code development are shown below.

Above, only the Source and the Listing windows are visible. Might be suitable for

repeated source editing and recompiling until all syntax errors are corrected.

If only data in registers is used, the Memory window could be hidden as above.

Page 4 of 16

2. Source code

To start, type in the Source window the following simple RISC-V assembly

instruction:

 addi x5, x0, 1

The resulting Source window is shown in the following snapshot.

Note that the Fname: string next to the File menu has turned red. This change in

color indicates that you have unsaved changes of the text in the Source window. You

can save the text from the Source window into a file by clicking on the File menu as

shown below.

Then select SaveAs to obtain the following dialog.

To save the Source text in a file, type the file name with its extension (e.g. test.asm)

and then click on the Save button.

Page 5 of 16

If you want to select a different folder before saving the file, you can click on Browse

Folders and the above dialog will change as shown in the following snapshot.

The above dialog allows you to change the current directory and see the files in it.

Note that only files with extensions shown in the Save as type: field, namely .a, .s,

and .asm will be visible. To see other files change the Save as Type: selection as

shown below.

You can see above that a file named addi.asm is already present in the current

directory. If you try to save your Source text under the same name the following

warning message will appear.

Page 6 of 16

Clicking on the Yes button will overwrite the content of the existing file with your

Source text.

Once you save your Source text in a file, the name of the current file will show after

the Fname: string.

You can save the Source text in the current file at any time by selecting Save from

the File menu. (Note that the Fname: string is currently shown in black indicating

no unsaved changes.)

The File menu also includes two options for loading in the Source window existing

assembly programs from files. The Load option will overwrite the current Source

text with the new one from the file (a warning will be issued in case of unsaved

changes.) The Append option on the other hand will add the new program text from

the file after the last character of the current Source text. Note that after using

Append the file name will be cleared and the unsaved changes flag will be raised.

The last option of the File menu is Exit which just terminates the RVS program (a

warning will be issued in case of unsaved changes.)

For editing the source text, the standard Windows keyboard shortcuts can be used:

CTRL+a (select all), CTRL+x (cut), CTRL+c (copy), CTRL+v (paste), CTRL+z (undo),

CTRL+y (redo).

Page 7 of 16

3. Compilation

In this section we will show some compilation examples. Let us begin with entering

the following code into the Source window:

I1: DD 4

I2: DD 12, 22

 ld x1, I1(x0)

 ld x2, I2(x0)

 ld x3, I2+8(x0)

 add x4, x3, z2

The first 2 lines in the above program employ Define Double (DD) assembler

commands to store in the memory the three integer constants 4, 12, and 22. The 3

lines that follow employ Load Double (ld) RISC-V instructions to load the above

values in the registers x1, x2 and x3 respectively.

After entering the above code, the Source window should appear as follows:

Compile the above source by pressing the Compile button. The result in the Listing

window should be as follows:

Page 8 of 16

The red line in the listing window indicates an error detected in the last line of the

entered assembly code. The error message "rs2 NOT A REGISTER" indicates that

the third register (denoted by rs2) in the last instruction (add x4, x3, z2) is wrong.

Indeed, we have used z2 as a register name which is not acceptable. Change z2 to

x2 and recompile the code. The result should be as follows:

Check the SYMBOL TABLE in the bottom of the Listing window. It shows the values

of the 2 labels I1 and I2. The value of I1 is 0 which is the memory address where

the constant 4 was stored. The value of I2 is 8 which is the memory address where

the constant 12 was stored.

The memory addresses and the corresponding stored constants are shown in the

Mem window above. Note that the third constant 22 is stored at address 16, right

after the second constant 12.

The first ld instruction ld x1,I1(x0) computes the address of the constant to load

in register x1 by summing the value of the label I1 (0 in our case) with the value of

the register x0 (which is always 0). The resulting address is thus 0 which refers to

the first constant 4. In a similar way the second ld instruction ld x2,I2(x0)

computes the address 8 of the second constant 12.

In the third ld instruction ld x3,I2+8(x0) we specify the address of the third

constant 22 by adding 8 to the value of the label I2, since there is no label that

holds that value.

Page 9 of 16

The check boxes BIN, HEX, INT, and TXT next to the Compile button in Source

window control what columns are shown in the Listing window after the

compilation. Here is a complete view of the Listing window when all boxes are

checked:

A brief explanation of the corresponding column fields in the ASSEMBLY LISTING

is given below.

ADDRESS:

This is the first field from the left and it shows the address of the compiled

instruction or data. It shows the memory location address for each source line,

for example location 0 holds the integer 4 which is the compiled first source line

I1: DD 4. Consequently 0xC (decimal 12) is stored in location 8, and 0x16

(decimal 22) is stored in location 0x10 (decimal 16) which is the compiled

second source line I2: DD 12,22 . The third source line ld x1,I1(x0) is

compiled at location 0x18 (decimal 24). It contains the code of the first compiled

machine instruction which is an ld (load double) instruction. The address of the

first compiled machine instruction is used as a starting address of the program.

It is stored in the PC initialization field on the right of the InitPC button in the

bottom of the Listing window.

BIN/HEX CODE (Controlled by the BIN checkbox):

This is the second field from the left and it shows either the binary

representation of the compiled machine instruction or the hexadecimal value of

the stored data. Consider the memory location 0x18 where the third instruction,

namely ld x1,I1(x0) is stored. Its binary representation is shown as follows:

Page 10 of 16

 I 000000000000 00000 011 00001 0000011

In the above field I indicates the instruction type (immediate). It is followed by

the binary representation of the instruction itself. For convenience, the

different components of the instruction are separated by spaces.

HEX OPERANDS (Controlled by the HEX checkbox):

This is the third field from the left and it shows the canonical form of the

instruction (spaces instead of commas and no parentheses) with all operands in

hexadecimal. For the third instruction, namely ld x1,I1(x0) this field shows:

 ld x1 x0 0x000

INT OPERANDS (Controlled by the INT checkbox):

This is the forth field from the left and it shows the standard form of the

instruction (with commas and parentheses) with all operands in decimal. For

the third instruction, namely ld x1,I1(x0) this field shows:

 ld x1,0(x0)

TEXT SOURCE (Controlled by the TXT checkbox):

This is the fifth field from the left and it shows instruction text as entered in the

Source window. For the third instruction, namely ld x1,I1(x0) this field

shows:

 ld x1,I1(x0)

The inclusion of the above columns in the ASSEMBLY LISTING is controlled by the

check-boxes in the bottom of the Source window. Only the columns corresponding to

the checked boxes will appear in the ASSEMBLY LISTING when the Compile

button is pressed. Note that in order to change the columns you will have to

re-compile the source.

The ASSEMBLY LISTING is followed be a SYMBOL TABLE that contains the

values of all the labels used in the program. A brief explanation of the corresponding

column fields in the SYMBOL TABLE is given below.

Page 11 of 16

SYMBOL TABLE:

This table has two columns. The labels are shown in the right column and their

hexadecimal values are shown in the left column. Note that the rows in the

table are shown in the lexicographical order of their corresponding labels. For

example, the table for our sample code shows the label I1 and its value 0x0 in

the first row, the label I2 and its value 0x8 in the second row, and the label

START and its value 0x18 in the third row. Note that the label START, which

denotes the starting address of the program, was automatically created by the

assembler when the first instruction of the code was compiled. The starting

address of the program can be explicitly set to another instruction by inserting

the START label in front of it.

The following controls are placed in the bottom of the Listing window:

 InitPC button with an entry field

The entry field contains the current value of the Program Counter (PC).

The PC can be changed by directly typing into this field. Pressing the

InitPC button will reset the PC value to the value of the START label

(0x0000000000000018 in our case).

 START button

Pressing this button will reset the PC to the START value and will run the

program.

 Stop button

Pressing this button will stop the program at the current instruction (the

address of the current instruction will be shown in the PC entry field)

 Run button

Pressing this button will run the program starting from the current

instruction (the one pointed by the current value of the PC)

 Next button

Pressing this button will execute the current instruction (the one pointed by

the current value of the PC) and then stops. The PC is automatically

adjusted to point to the next instruction. Use this button for stepwise

execution of your code.

 TXT check-box

This checkbox controls the inclusion of the source code in the Execution

tracing

Page 12 of 16

4. Execution

The compiled program is executed by clicking on the START button in the bottom of

the Listing window. The resulting RVS window should be as follows:

The execution results are shown in the three bottom row windows as shown on the

above snapshot. The information content is as follows.

 The Regs window (the leftmost one) shows the state of the registers after the

execution. In our case the three register x1, x2, and x3 contain the loaded

values 4, 12, and 22 respectively. The value in register x4 is 34 which was

obtained by summing the values in x2 and x3, namely 12+22.

 The Mem window (the middle one) shows the values in the memory. The

memory addresses 0, 8, and 16 contain the constants values of 4, 12, and 22

respectively. These values were placed there by the assembler when the first

two DD command in the code were compiled.

 The Exec window (the rightmost one) shows the sequence of the executed

instructions. The three ld instructions were executed in a sequence, followed

by the add instruction. The last line in red indicates the end of the program

execution. Note that there is no record of executing any instructions

corresponding to the first two DD commands in the code. Indeed, the DD

commands only instruct the assembler to place the corresponding constants

in the memory at compile time. No machine instructions for execution at

runtime are therefore generated when the DD commands are compiled.

Page 13 of 16

5. Debugging

When debugging programs, it is often desirable to step through the code and

execute it one instruction at a time. Such step-by-step execution is frequently used

for code debugging and tracing of intermediate values in registers and in memory.

To illustrate this we will use the following simple program that calculates the

factorial of 4:

;calculates 4!=4*3*2*1=24

 addi x5, x0, 4

 addi x6, x0, 1

loop: mul x6, x6, x5

 addi x5, x5, -1

 ebreak x0, x0, 0

 blt x0, x5, loop

Enter the above program in the Source window of the RVS and press the Compile

button. Then press the Next button once, to step through the code and execute the

first instruction. The execution trace in the Exec window will appear as follows:

NEXT

0x0000000000000000 addi x5 x0 0x004 addi x5, x0, 4

The value of the register x5 in the Regs window will appear as follows:

x5 t0 0x0000000000000004 4

Now press the Next button again, to step through the code and execute the second

instruction. The following trace will appear in the Exec window:

NEXT

0x0000000000000004 addi x6 x0 0x001 addi x6, x0, 1

The value of the register x6 in the Regs window will appear as follows:

x6 t1 0x0000000000000001 1

By further pressing the Next button one can continue stepping through the code

and observing how the values in the registers change throughout the first iteration

Page 14 of 16

of the loop. The debugging of the instructions in the loop will be complete at the end

of the first loop iteration, so the step-by-step execution could be abolished at this

point.

The consequent iterations of the loop can be debugged by halting the execution and

checking the respective values just once per iteration. Halting the execution of the

program in RVS is implemented by creating a breakpoint through the ebreak

instruction. In our sample program an ebreak instruction has been inserted before

the last line of the code. Recompile the code by pressing the Compile button. Then

press the START button to execute the program. The following execution trace will

appear in the Exec window:

START

0x0000000000000000 addi x5 x0 0x004 addi x5, x0, 4

0x0000000000000004 addi x6 x0 0x001 addi x6, x0, 1

0x0000000000000008 mul x6 x6 x5 loop: mul x6, x6, x5

0x000000000000000c addi x5 x5 0xfff addi x5, x5, -1

0x0000000000000010 ebreak x0 x0 0x000 ebreak x0, x0, 0

ebreak

The values of the registers will be:

x5 t0 0x0000000000000003 3

x6 t1 0x0000000000000004 4

Page 15 of 16

Note that the initialization and the first iteration of the factorial loop have been

completed before the execution has halted at the ebreak instruction.

Now press the Run button. The following execution trace will appear in the Exec

window:

RUN

0x0000000000000014 blt x0 x5 0xffa blt x0, x5, loop

0x0000000000000008 mul x6 x6 x5 loop: mul x6, x6, x5

0x000000000000000c addi x5 x5 0xfff addi x5, x5, -1

0x0000000000000010 ebreak x0 x0 0x000 ebreak x0, x0, 0

ebreak

The values of the registers will be:

x5 t0 0x0000000000000002 2

x6 t1 0x000000000000000c 12

The second iteration of the factorial loop has been completed before the execution

has halted at the ebreak instruction.

Page 16 of 16

6. Internals

The RVS execution of RISC-V programs is based on a Virtual memory (VM) model

implemented through hash-based associative memory. In this way the executed

code can freely refer and use the entire 64-bit addressing space while the allocated

physical memory will be confined only to the necessary minimum. With this model

there is no need for an operating system to manage the stack and heap memory

allocation.

All virtual memory is considered as initialized to 0s so reading from an address

without its prior initialization returns 0s without an error while no physical

memory is actually allocated. Writing to an address, however, will lead to actual

physical memory allocation (if the memory has not been allocated already.) This is

also true for writing 0s, e.g. actual physical memory will be allocated and

maintained for storing 0s. Although less efficient, this is a design decision that

greatly facilitates the tracking of the memory use by the executed code as shown in

the Memory window.

The RVS provides bit-accurate representation of the supported RISC-V machine

instructions although it uses different data structures for simulating the execution

process.

