
1 CSE6390A Oct 08

Prolog Overview

Yves Lespérance
(Some material comes from Peter

 Roosen-Runge)

2 CSE6390A Oct 08

Prolog idea

  programming language based on first
-order Horn theories, SLD resolution

  search strategy is fixed:depth-first, left
 to right, top to bottom

  programmer uses this to order search,
 is responsible for efficiency and
 termination

  good for symbolic computing

3 CSE6390A Oct 08

syntax of terms

  variables begin with upper-case letter or _
  constants and functors (function and predicate

 symbols) begin with lower-case
  E.g. john, john_smith, X, Node, _person,

 ’CSE’, fatherOf(paul), date(25,10,2005)
  compound terms are called structures, e.g.

 course(complexity,time(monday
,9,11),lecturer(patrick,dymond),location(’CSE’
,3311))

4 CSE6390A Oct 08

E.g. program: family
 relations

  rules
parent(Parent, Child) :- mother(Parent, Child).
parent(Parent, Child) :- father(Parent, Child).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

  facts
father('George', 'Elizabeth').
father('George', 'Margaret').
father(’Paul', ’George').
mother('Mary', 'Elizabeth').
mother('Mary', 'Margaret').

5 CSE6390A Oct 08

rules

  rules are definite clauses, or conditional
 statements.

  e.g.
 ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
 i.e. ∀x∀y∀z(Ancestor(z,y) ∧ Parent(x,z) ⊃
 Ancestor(x,y)) or
 [Ancestor(x,y), ¬Ancestor(x,y),
 ¬Ancestor(x,y)].

  , represents conjunction and :- represents
 implication.

6 CSE6390A Oct 08

rules

  variables are universally quantified from
 outside; can think of variables that appear
 only in rule body as existentially quantified.

  a program is a set of rules/definite clauses.
  ; represents disjunction, e.g.

 parent(Parent, Child) :- mother(Parent, Child);
 father(Parent, Child).

7 CSE6390A Oct 08

facts

  facts are a special case of rules, definite
 clauses with no negative literals, i.e.
 atomic formulas.

  e.g. father('George', 'Elizabeth').

8 CSE6390A Oct 08

queries

  a query asks whether a (conjunction of)
 atomic formula is entailed by the program.

  ?- parent(X,’Elizabeth’).
 X = ’Mary’
 Yes

  this asks whether
 Program |= ∃x Parent(x, Elizabeth) or
 Program U {∀x ¬Parent(x, Elizabeth)} |- [].

  variables in queries can be viewed as
 existentially quantified, can be used to
 retrieve information.

9 CSE6390A Oct 08

simpler family relations e.g.

  rules
parent(Parent, Child) :- mother(Parent, Child).
parent(Parent, Child) :- father(Parent, Child).

  facts
father('George', 'Elizabeth'). father('George', 'Margaret').
mother('Mary', 'Elizabeth'). mother('Mary', 'Margaret').

10 CSE6390A Oct 08

unification

  unification is used to match queries with
 facts or the head or rules

  no fixed input or output parameters
  ?- parent(’Mary’,X).
 X = ’Elizabeth’
 Yes

11 CSE6390A Oct 08

finding all solutions
| ?- parent(Parent, Child).
Parent = 'Mary',
Child = 'Elizabeth' ;

Parent = 'Mary',
Child = 'Margaret' ;

Parent = 'George',
Child = 'Elizabeth' ;

Parent = 'George',
Child = 'Margaret' ;

no

12 CSE6390A Oct 08

search strategy/control

  Prolog searches to find a SLD resolution derivation of []
 from the query.

  it works on the literals in the query from left to right.
  it resolves the first literal in the query against the first

 rules that matches, and the instantiated body of the
 rule replaces that literal in the query

  if eventually [] is derived, the query succeeds and the
 instantiation of the variables is returned.

  if at some point in the search no rule matches, the
 current query fails and Prolog backtracks to that last
 rule choice, and tries the next rule that matches.

  amounts to backward chaining, depth-first, left to right
 search.

13 CSE6390A Oct 08

rules as procedures

  rule has form goal :- body
  goal or head is like name of procedure
  terms on the RHS are like the body of

 the procedure, the sub-goals that have
 to be achieved to show that the goal
 holds

  the sub-goals will be attempted left-to
-right

  rule succeeds if all sub-goals succeed

14 CSE6390A Oct 08

how prolog finds solutions

[trace] ?-
 parent(Parent, Child1),
 parent(Parent, Child2),
 not(Child1 = Child2).

 Call: (8) parent(_G313,
 _G314) ? creep

Call: (9) mother(_G313, _G314) ?
 creep

Exit: (9) mother('Mary',
 'Elizabeth') ? creep

Exit: (8) parent('Mary',
 'Elizabeth') ? creep

Call: (8) parent('Mary', _G317) ?
 creep

Call: (9) mother('Mary', _G317) ?
 creep

Exit: (9) mother('Mary',
 'Elizabeth') ? creep

Exit: (8) parent('Mary',
 'Elizabeth') ? creep

Redo: (9) mother('Mary', _G317) ?
 creep

Exit: (9) mother('Mary',
 'Margaret') ? creep

Exit: (8) parent('Mary',
 'Margaret') ? creep

Parent = 'Mary'
Child1 = 'Elizabeth'
Child2 = 'Margaret'

15 CSE6390A Oct 08

search control

  programmer can control search by
 ordering rules and goals in the body of
 rules.

  also can use ! (cut) as explained in
 textbook.

  not (negation as failure) can also be
 used to have a query succeed if
 another fails.

16 CSE6390A Oct 08

arithmetic functions

  Prolog retains arithmetic functions as functions (more
 intuitive):
 ?- X is exp(1). % exp(1) = e1

 X = 2.71828
 Yes
 ?- X is (4 + 2) * 5.
 X = 30
 Yes

  How does is compare with =, assignment?

17 CSE6390A Oct 08

operators

  some functors are represented by infix
 or prefix or postfix operators

  some infix operators: is, =, +, *, /,
 mod, >, >=, “:-”, “,”, etc.

  + and - are both prefix and infix
  :- as prefix is a command, used for

 declarations
  operators have precedence
  can define our own operators

18 CSE6390A Oct 08

arithmetic examples

factorial(0,1).
factorial(N,M):- K is N -1, factorial(K,L),

 M is N * L.

min(X,Y,X):- X =< Y, !.
min(X,Y,Y).

19 CSE6390A Oct 08

lists

  lists are a special kind of term that allows arbitrary
 number of components

  [] is the empty list
  .(a,b) is a dotted pair
  [a, b, c] = .(a,.(b,.(c,[]))) is a list of 3 components.
  the functor . builds binary trees (as in Lisp)
  can use display(X) to print internal representation of X

20 CSE6390A Oct 08

lists

  can refer to the first and rest of a list using the
 notation: [First | Rest]

  e.g. ?- X = [a,b,c], X = [F|R].
 X = [a,b,c]
 F = a
 R = [b,c]

  E.g. X = [b], Y = a, Z = [Y|X].
 X = [b]
 Y = a
 Z = [a,b]

21 CSE6390A Oct 08

e.g. append predicate

append([],L,L).
append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

?- append([a,b],[c],X).
X = [a, b, c]

Yes
?- append(X,[c],[a,b,c]).
X = [a, b]

Yes
?- append([a,b],[c],[a,b,d]).

No

22 CSE6390A Oct 08

more append examples

?- append([a,b],X,Y).
X = _G187
Y = [a, b|_G187]
Yes
?- append(X,Y,Z).
X = []
Y = _G181
Z = _G181 ;

X = [_G262]
Y = _G181
Z = [_G262|_G181] ;

X = [_G262, _G268]
Y = _G181
Z = [_G262, _G268|_G181]

append is an example of a reversible or steadfast predicate (Richard O’Keefe)

23 CSE6390A Oct 08

building a knowledge base

  to be used in a computation, facts and
 rules must be stored in the (dynamic)
 database

  facts and rules get into the database
 through assertion and consultation

  consultation loads facts and rules from
 a file

24 CSE6390A Oct 08

assertion

  ?- assert(human(ulyssus)).
  ?- human(X).
 X = ulyssus
 Yes

  assertion can be done dynamically
  also retract to remove facts and rules

 from the DB
  like assignment, change state; avoid

 when possible

25 CSE6390A Oct 08

consultation

  ?- consult(’family.pl’).
 loads facts and rules from file family.pl

  ?- [family].
 does the same thing

  ?- [user].
 lets you enter facts and rules from the
 keyboard

26 CSE6390A Oct 08

help is sometimes helpful

?- help(reverse).
reverse(+List1, -List2)
 Reverse the order of the elements in List1 and unify the

 result with the elements of List2.

+arg: arg is input and should be instantiated.
-arg: arg is output and can be initially uninstantiated; if the

 query succeeds, the arg is instantiated with the "output" of
 the query.

?arg: arg can be either input or output

27 CSE6390A Oct 08

online help

?- help(lists).
No help available for lists
Yes
?- apropos(lists).
merge/3 Merge two sorted lists
append/3 Concatenate lists
Section 11-1 "lists: List Manipulation"
Section 15-2-1 "lists”
Yes
?- help(append/3).
append(?List1, ?List2, ?List3)

 Succeeds when List3 unifies with the concatenation of List1 and
 List2. The predicate can be used with any instantiation pattern
 (even three variables).

28 CSE6390A Oct 08

e.g. solving a logic puzzle

29 CSE6390A Oct 08

the zebra puzzle

1.  There are 5 houses, occupied by politically-incorrect
 gentlemen of 5 different nationalities, who all have different
 coloured houses, keep different pets, drink different drinks,
 and smoke different (now-extinct) brands of cigarettes.

2.  The Englishman lives in a red house.
3.  The Spaniard keeps a dog.
4.  The owner of the green house drinks coffee.
…
6.  The ivory house is just to the left of the green house.
…
11.  The Chesterfields smoker lives next to a house with a fox.

Who owns the zebra and who drinks water?

30 CSE6390A Oct 08

Prolog implementation

  represent the 5 houses by a structure of
 5 terms
 house(Colour, Nationality, Pet, Drink,
 Cigarettes)

  create a partial structure using
 variables, to be filled by the solution
 process

  specify constraints to instantiate
 variables

31 CSE6390A Oct 08

house building

makehouses(0,[]).

makehouses(N,[house(Col, Nat, Pet, Drk, Cig)|List])
 :- N>0, N1 is N - 1, makehouses(N1,List).

or more cleanly with anonymous variables:

makehouses(N,[house(_, _, _, _, _)|List])
 :- N>0, N1 is N - 1, makehouses(N1,List).

32 CSE6390A Oct 08

the empty houses

?- makehouses(5, List).

List = [house(_G233, _G234, _G235, _G236, _G237),
 house(_G245, _G246, _G247, _G248, _G249),
 house(_G257, _G258, _G259, _G260, _G261),
 house(_G269, _G270, _G271, _G272, _G273),
 house(_G281, _G282, _G283, _G284, _G285)]

33 CSE6390A Oct 08

constraints

  The Englishman lives in a red house.
 house(red, englishman, _, _, _) on List,

  The Spaniard keeps a dog.
 house(_, spaniard, dog, _, _) on List,

  The owner of the green house drinks coffee.
 house(green, _, _, coffee, _) on List

  The ivory house is just to the left of the green house
 sublist2([house(ivory, _, _, _, _)
 ,house(green, _, _, _, _)], List),

  The Chesterfields smoker lives next to a house with a fox.
 nextto(house(_, _, _, _, chesterfields),
 house(_, _, fox, _, _), List),

34 CSE6390A Oct 08

defining the on operator

  on is a user-defined infix operator that
 is a version of member/2

  :- op(100,zfy,on).
 X on List :- member(X,List).
 amounts to
 X on [X|_].
 X on [_|R]:- X on R.

See /cs/dept/course/2005-06/F/3401/zebra.pl

35 CSE6390A Oct 08

predicates for defining
 constraints

  “just to the left of”? “lives next to”?
  define sublist2(S,L)
 sublist2([S1, S2], [S1, S2 | _]) .
 sublist2(S, [_ | T]) :- sublist2(S, T).

  define nextto predicate
 nextto(H1, H2, L) :- sublist2([H1, H2], L).
 nextto(H1, H2 ,L) :- sublist2([H2, H1], L).

36 CSE6390A Oct 08

translating the constraints

  The ivory house is just to the left of the green house
 sublist2([house(ivory, _, _, _, _),

 house(green, _, _, _, _)], List),
  The Chesterfields smoker lives next to a house with a

 fox.
 nextto(house(_, _, _, _, chesterfields),
 house(_, _, fox, _, _), List),

37 CSE6390A Oct 08

looking for the zebra

  Who owns the zebra and who drinks water?
 find(ZebraOwner, WaterDrinker) :-
 makehouses(5, List),
 house(red, englishman, _, _, _) on List,
 … % all other constraints
 house(_, WaterDrinker, _, water, _) on List,

 house(_, ZebraOwner, zebra, _, _) on List.
  solution is generated and queried in the same

 clause
  neither water or zebra are mentioned in the

 constraints

38 CSE6390A Oct 08

solving the puzzle

?- [zebra].
% zebra compiled 0.00 sec, 5,360 bytes

Yes
?- find(ZebraOwner, WaterDrinker).

ZebraOwner = japanese
WaterDrinker = norwegian ;

No

39 CSE6390A Oct 08

how Prolog finds solution

After first 8 constraints:
List = [
house(red, englishman, snail, _G251, old_gold),
house(green, spaniard, dog, coffee, _G264),
house(ivory, ukrainian, _G274, tea, _G276),
house(green, _G285, _G286, _G287, _G288),
house(yellow, _G297, _G298, _G299, kools)]

40 CSE6390A Oct 08

how Prolog solves the puzzle

Then need to satisfy “the owner of the
 third house drinks milk”, i.e.

List = [_, _, house(_, _, _, milk, _),_, _],
Can’t be done with current instantiation of

 List. So Prolog will backtrack and find
 another.

41 CSE6390A Oct 08

how Prolog solves the puzzle

The unique complete solution is
L = [
house(yellow, norwegian, fox, water, kools),
house(blue, ukrainian, horse, tea, chesterfields),
house(red, englishman, snail, milk, old_gold),
house(ivory, spaniard, dog, orange, lucky_strike),
house(green, japanese, zebra, coffee, parliaments)]
See /cs/dept/course/2005-06/F/3401/zebra.pl

