
29 October 2008 CSE-6490B Assignment #1 p. 1 of 5

CSE-6490B
Assignment #1

1. Queries in Datalog. Enroll now in Datalog U.! (5 points)

Consider the following schema.

student(s#, sname, dob, d#)
FK (d#) refs dept // Student’s major

prof(p#, pname, d#)
FK (d#) refs dept // Professor’s home deparmtent

dept(d#, dname, building, p#)
FK (p#) refs prof // Department’s chair

course(d#, no, title)
FK (d#) refs dept // Course offered by this deparmtent

class(d#, no, term, year, section, room, time, p#)
FK (d#, no) refs course // Class is an offering of this course
FK (p#) refs prof // Instructor of class

enroll(s#, d#, no, term, year, section, grade)
FK (s#) refs student // This student is enrolled in
FK (d#, no, term, year, section) refs class // this class

‘FK’ above stands for foreign key. These indicate foreign-key constraints in the schema.

Write the following queries in Datalog (and Datalog¬). You may use auxiliary predicates and
rules. (You may reuse auxiliary predicates and rules in following sub-questions.)

A common convention is to use ‘ ’ as a variable name when the variable is unimportant for
the query; e.g., class (D, N, , , , , , ). By convention, two occurrences of ‘ ’ are different
variables and may take on different values (even though they seem to have the same “name”).
You may find this convention useful.

Be careful that all your rules are safe, including rules that you write that use negation.

a. Which students have taken some course twice?

b. Which students have taken a course with a department chair?
Note that a professor may teach classes outside of his or her department. Also note that
a student may take classes in a department outside of his or her major’s department.

c. Which students have never taken a course in his or her major (dept)?

d. Which students have taken all of the courses offered by a department?

e. (somewhat hard) Which students have taken at least five courses in their major (dept)?
You shall need to use arithmetics (e.g., ‘6=’, ’<’) here. Assume that course numbers (no)
can be compared; e.g., M < N. Use the predicate is to equate numbers; e.g., J is I + 1.



29 October 2008 CSE-6490B Assignment #1 p. 2 of 5

2. Datalog Modeling. As easy as rolling off a log. (5 points)

The puzzle Sū Doku—or just sudoku—is to fill in the blank cells of a 9×9 matrix with the
numerals 1, . . . , 9 such that no row has the same numeral twice, no column has the same
numeral twice, and no block has the same numeral twice. The 9×9 matrix is tiled by nine
3×3 matrices, each called a block.

A typical sudoku puzzle has some of the cells already filled in (the givens) so that there exists
exactly one solution. For example,

5 3 7
6 1 9 5

9 8 6
8 6 3
4 8 3 1
7 2 6

6 2 8
4 1 9 5

8 7 9

⇒

5 3 4 6 7 8 9 1 2
6 7 2 1 9 5 3 4 8
1 9 8 3 4 2 5 6 7
8 5 9 7 6 1 4 2 3
4 2 6 8 5 3 7 9 1
7 1 3 9 2 4 8 5 6
9 6 1 5 3 7 2 8 4
2 8 7 4 1 9 6 3 5
3 4 5 2 8 6 1 7 9

with the solution shown on the right.

Write a Datalog program for sudoku. Let each cell in the sudoku matrix be represented by a
variable:

X0 X1 X2 X3 X4 X5 X6 X7 X8

X9 X10 X11 X12 X13 X14 X15 X16 X17

X18 X19 X20 X21 X22 X23 X24 X25 X26

X27 X28 X29 X30 X31 X32 X33 X34 X35

X36 X37 X38 X39 X40 X41 X42 X43 X44

X45 X46 X47 X48 X49 X50 X51 X52 X53

X54 X55 X56 X57 X58 X59 X60 X61 X62

X63 X64 X65 X66 X67 X68 X69 X70 X71

X72 X73 X74 X75 X76 X77 X78 X79 X80

Do not use negation, arithmetics (e.g., “ 6=”, “<”), or function symbols (which are not in
Datalog proper anyway).

One predicate should be sudoku that takes arguments X0, . . . , X80. For a given puzzle, one
could then query for the solution; e.g.,

← sudoku (5, 3, X2, X3, . . . , 9 ).

Note that your sudoku “program” need not be efficient in any way. It just needs to specify
logically and correctly the problem. So try to keep it quite simple. You may use ellipses (e.g.,

“. . .”, “
...”) where appropriate and when easily understood to make your answer briefer.

Hint: Be clever in defining the permutations of 1, . . . , 9.



29 October 2008 CSE-6490B Assignment #1 p. 3 of 5

3. Query Containment. I can’t contain myself. (5 points)

Consider the following conjunctive queries, Ullman-style. Note that ‘c’ in Q4 is a constant,
not as variable.

Q1: p (X, Y) ← q (X, A), q (A, B), q (B, Y).
Q2: p (X, Y) ← q (X, A), q (A, B), q (B, C), q (C, Y).
Q3: p (X, Y) ← q (X, A), q (B, C), q (D, Y),

q (X, B), q (A, C), q (C, Y).
Q4: p (X, Y) ← q (X, A), q (A, c), q (c, B), q (B, Y).

a. Find all containments and equivalences between Q1, Q2, Q3, and Q4.

b. For each of Q1, Q2, Q3, and Q4, simplify it. This means find the minimal clause that is
equivalent to Q′

i, in each case.
Simplify Q′

1∪Q′
2∪Q′

3∪Q′
4 (where Q′

i is your simplified Qi). This means eliminate any of
the rules contained in any other, because these do not contribute anything additionally
to p (X, Y).

Inequalities.

Q1: p (X, Y) ← e (X, A), e (A, Y), e (X, B),
e (B, Y), X < A, B < Y .

Q2: p (X, Y) ← e (X, Z), e (Z, Y), X < Z, Z < Y .

c. A containment mapping is sufficient and necessary to show containment for Datalog
conjunctive queries without inequalities. It is still necessary but not sufficient to show
containment for Datalog conjunctive queries with inequalities.
What do you need to additionally show in these cases to prove containment?

d. For Q1 and Q2 above, show whether each is contained in the other.

e. Name a reasonable restriction on conjunctive queries (Ullman’s definition) that makes
the query containment problem—that one conjunctive query is contained by another—
decidable in polynomial time. Be very precise about what the restriction is.



29 October 2008 CSE-6490B Assignment #1 p. 4 of 5

4. Integrity Constraints. You can’t say that! (5 points)

Most schema also have integrity constraints. We can extend our Datalog databases to include
integrity constraints (ICs), and our notion of containment to account for ICs.

An integrity constraint can be written as a query, with the mandate that the IC “query”
must evaluate to have no answers. A common convention is to use ‘Leftarrow’ instead of
‘leftarrow’ when writing an IC instead of a query, to distinguish ICs and queries.

a. (2 points) Write an IC to represent the constraint that s# is the primary key of student
(as in the schema in Question 1); that is, a s# value can only appear once.
Write an IC to represent the constraint that d# is a foreign key of student referencing
dept; that is, any d# value in student must be also a value in dept.

b. (2 points) Consider

⇐ e (A, C), e (B, C), A 6= B.
d (A, C) ← e (A, B), e (B, C).
t (A, D) ← e (A, B), e (B, C), e (C, D).

Given d and t as resources, and assuming the IC for both, find the maximal contained
foldings for

← e (X, Y).

c. (1 point) Consider

⇐ e (A, B), e (B, A).
tri (A, B, C) ← e (A, B), e (B, C), e (C, A).
nontrans (A, B, C) ← e (A, B), e (B, C), not e (A, C).

Is tri contained by nontrans, given the IC?
Is nontrans contained by tri, given the IC?



29 October 2008 CSE-6490B Assignment #1 p. 5 of 5

5. Complexity of Containment. Does it have to be so hard? (5 points)

3-SAT is an NP-complete problem. Given a collection of propositional clauses (a disjunction of
propositional variables, some negated), each consisting of exactly three propositional variables,
is the set of clauses mutually satisfiable? That is, is there a model of the set of clauses (an
assignment of true or false to each variable that makes all the clauses true)?

We can represent a 3-SAT-compatible clausal theory as follows. Let C0, . . . , Ck−1 be the set
of clauses over the propositional variables p0, . . . , pn−1. Let each clause be a set of three of
the variables, some negated; e.g., Ci = {p3,¬p5,¬p7}.
Your job is to design a mapping of 3-SAT problems into Datalog in order to establish com-
plexity bounds on the containment problem. You are not allowed recursion, negation, or
arithmetics (e.g., ‘6=’, ’<’).

Predicates that you use in the head of rules and in the body of rules can be zero-ary (that is,
have no arguments). Note that a zero-ary predicate is simply a propositional variable (which
is perfectly fine in the predicate calculus and in Datalog). In fact, you may not need any
variables for this task.

A “database”, given a collection of zero-ary predicates, is a subset of those predicates. If the
predicate appears in the database, it is true; if it is missing, it is false (by the closed world
assumption).

Using 3-SAT, establish that Datalog v Datalog (for Datalog without recursion, negation, or
arithmetics) is co-NP-hard. That is, the class of a Datalog program contained in a Datalog
program.

A problem is NP-hard if one can show a (polynomial) mapping of an NP-complete problem
into it, but we have not necessarily shown the problem to be in NP. So we may not be able to
establish that, given a solution to the problem, we can verify the solution easily (in polynomial
time). If we could also establish the problem to be in NP, the we would have established it
to be NP-complete.

A problem is co-NP-hard (or co-NP-complete) if we can show that the co-problem (or “dual
problem”) is NP-hard (or co-NP-complete). Here, the co-problem of 3-SAT is to identify
those 3-SAT theories that are not satisfiable.

Clearly, given your mapped 3-SAT problem as a Datalog program, verifying the (co-problem)
solution would be in NP. However, for the Datalog-in-Datalog containment problem in general,
it is hard to determine whether this would always be doable. So we just shoot for co-NP-hard.


