CS345 Notes for Lecture 10/16/96

Generalization to Unions of CQ's

 $P_1 \cup P_2 \cup \cdots \cup P_k \subseteq Q_1 \cup Q_2 \cup \cdots \cup Q_n$ iff for all P_i there is some one Q_j such that $P_i \subseteq Q_j$.

Proof (If)

Obvious.

Proof (Only If)

Assume the containment holds.

- Let D be the canonical (frozen) database from $CQ P_i$.
- Since the containment holds, and $P_i(D)$ surely includes the frozen head of P_i , there must be some Q_j such that $Q_j(D)$ includes the frozen head of P_i .
- Thus, $P_i \subseteq Q_i$.

Union Theorem Just Misses Being False

Consider generalized CQ's allowing arithmetic-comparison subgoals.

 P_1 : p(X) :- e(X) & 10 <= X & X <= 20

 $Q_1\colon$ p(X) :- e(X) & 10 <= X & X <= 15

 $Q_2\colon$ p(X) :- e(X) & 15 <= X & X <= 20

• $P_1 \subseteq Q_1 \cup Q_2$, but $P_1 \subseteq Q_1$ and $P_1 \subseteq Q_2$ are both false.

CQ Contained in Recursive Datalog

Test relies on method of canonical DB's; containment mapping approach doesn't work (it's meaningless).

- Make DB D from frozen body of CQ.
- Apply program to *D*. If frozen head of CQ appears in result, then yes (contained), else no.

Example:

```
Q_1: path(X,Y) := arc(X,Z) & arc(Z,W) & arc(W,Y)
```

 Q_2 is the value of path in the following recursive Datalog program:

```
r_1: path(X,Y) :- arc(X,Y)
r_2: path(X,Y) :- path(X,Z) & path(Z,Y)
```

• Freeze Q_1 , say with 0, 1, 2, 3 as constants for X, Z, W, Y, respectively.

$$D = \{arc(0,1), arc(1,2), arc(2,3)\}$$

- Frozen head is path(0,3).
- Easy to infer that path(0,3) is in $Q_2(D)$ use r_1 three times to infer path(0,1), path(1,2), path(2,3), then use r_2 to infer path(0,2), path(0,3).

Harder Cases

- Datalog program ⊆ CQ: doubly exponential complexity. Reference: Chaudhuri, S. and M. Y. Vardi [1992]. "On the equivalence of datalog programs," Proc. Eleventh ACM Symposium on Principles of Database Systems, pp. 55-66.
- Datalog program \subseteq Datalog program: undecidable.

CQ's With Negation

General form of conjunctive query with negation (CQN):

$$H : \mathbf{-} \ G_1 \ \& \ \dots \ \& \ G_n \ \&$$
 NOT $F_1 \ \& \ \dots \ \& \ \mathrm{NOT} \ F_m$

- G's are positive subgoals; F's are negative subgoals.
- Apply CQN Q to DB D by considering all possible substitutions of constants for the variables of Q. If all the positive subgoals become facts in D and none of the negative subgoals do, then infer the substituted head.

- \square Set of inferred facts is Q(D).
- Containment of CQ's doesn't change. $Q_1 \subseteq Q_2$ if for every database $D, Q_1(D) \subseteq Q_2(D)$.

Example:

$$C_1: p(X,Z) := a(X,Y) & a(Y,Z) & NOT a(X,Z)$$
 $C_2: p(A,C) := a(A,B) & a(B,C) & NOT a(A,D)$

- Intuitively, Q_1 looks for paths of length 2 that are not "short-circuited" by a single arc from beginning to end.
- Q_2 looks for paths of length 2 that start from a node A that is not a "universal source"; i.e., there is at least one node D not reachable from A by an arc.
- We thus expect $Q_1 \subseteq Q_2$, but not vice-versa.

Levy-Sagiv Test

To test $Q_1 \subseteq Q_2$:

- 1. Construct the set of basic canonical databases that correspond to all the partitions of the set of variables of Q_1 .
 - ☐ That is, for each partition, assign a unique constant to each block of the partition.
 - □ Create the basic canonical DB by replacing each variable by the constant of its block. The basic canonical DB is the set of resulting *positive* subgoals.
- 2. For each basic canonical DB D constructed in (1), check that:
 - \square If $Q_1(D)$ contains the frozen head of Q_1 , then so does $Q_2(D)$.

Note that unlike ordinary CQ's, it is possible that $Q_1(D)$ does not contain Q_1 's head, because D may make a negated subgoal false (i.e., D contains the frozen subgoal without the NOT).

- 3. If $Q_1(D)$ contains the frozen head of Q_1 , we must then also consider the larger set of (extended) canonical DB's D' formed by adding to D other tuples that are formed from the same symbols as D, but not any of the tuples that are the negated subgoals of Q_1 .
 - Check that if $Q_1(D)$ contains its frozen head, so does $Q_2(D')$.
- 4. If so, $Q_1 \subseteq Q_2$; if not, then not.

Example: Consider C_1 above. The variables are $\{X, Y, Z\}$.

• There are five partitions of the variables, shown in the table below.

	Partition	Basic Canonical DB D
1)	$\{X\}\{Y\}\{Z\}$	$\{a(0,1),a(1,2)\}$
2)	$\{X,Y\}\{Z\}$	$\{a(0,0),a(0,1)\}$
3)	${X}{Y,Z}$	$\{a(0,1),a(1,1)\}$
4)	$\{X,Z\}\{Y\}$	$\{a(0,1),a(1,0)\}$
5)	$\{X,Y,Z\}$	$\{a(0,0)\}$

- In cases (2), (3), and (5), $C_1(D)$ does not contain its own frozen head.
 - E.g., in case (2), the only substitution that makes the positive subgoals of C_1 true is $X \to 0$, $Y \to 0$, and $Z \to 1$. But then, the negative subgoal NOT a(X, Z) becomes false, since a(X, Z) = a(0, 1) and a(0, 1) is indeed in D.
- In cases (1) and (4), $C_1(D)$ contains C_1 's frozen head, but so does $C_2(D)$ and any extended canonical DB $D' \supseteq D$.
 - E.g., in case (4), the frozen head of C_1 is p(0,0). $C_2(D)$ contains p(0,0), as we can see from the substitution $A \to 0, B \to 1$, $C \to 0, D \to 2$.
 - \square Moreover, adding tuples consisting of 0's, 1's and 2's to D cannot change things as long as we don't add a(0,2), the frozen negative subgoal of C_1 . Then, both

 $C_1(D')$ and $C_2(D')$ contain C_1 's frozen head.

Example: Consider a slightly different pair of CQ's:

$$C_1\colon \ {\tt p(X,Z)}\ :=\ {\tt a(X,Y)}\ \&\ {\tt a(Y,Z)}\ \&\ {\tt NOT}\ {\tt a(X,Z)}$$
 $C_2\colon \ {\tt p(A,C)}\ :=\ {\tt a(A,B)}\ \&\ {\tt a(B,C)}\ \&\ {\tt NOT}\ {\tt a(C,C)}$

- C_1 is the same, so the basic canonical DB's are the same.
- However, consider the partition $\{X\}\{Y\}\{Z\}$.
- While for the resulting basic canonical DB $D = \{a(0,1), a(1,2)\}$, both $C_1(D)$ and $C_2(D)$ contain C_1 's frozen head, the same is not true for the extended canonical DB $D' = \{a(0,1), a(1,2), a(2,2)\}$.