
1

1 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

CSE 3402: Intro to Artificial Intelligence 
CSPs & Backtracking Search I

● Readings: Chapter 5.

2 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems

● The search algorithms we discussed so far had
no knowledge of the states representation
(black box). So, we could not take advantage
of domain-specific information.

● CSP are a special class of search problems with
a uniform and simple state representation.

● This allows to design more efficient
algorithms.

2

3 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems

● Many problems can be represented as a search
for a vector of feature values.
■ k-features: variables.
■ Each feature has a value. Domain of values for the

variables.
■ e.g., height = {short, average, tall}, weight = {light,

average, heavy}.
● In these problems the problem is to search for

a set of values for the features (variables) so
that the values satisfy some conditions
(constraints).

4 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems

● Sudoku:
■ 81 variables, the value in each cell.
■ Values: a fixed value for those cells that are already

filled in, the values {1-9} for those cells that are
empty.

■ Solution: a value for each cell satisfying the
constraints:
● no cell in the same column can have the same

value.
● no cell in the same row can have the same value.
● no cell in the same sub-square can have the same

value.

3

5 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems

● Scheduling
■ Want to schedule a time and a space for each final

exam so that
● No student is scheduled to take more than one final

at the same time.
● The space allocated has to be available at the time

set.
● The space has to be large enough to accommodate

all of the students taking the exam.

6 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems

● Variables:
■ T1, …, Tm: Ti is a variable representing the

scheduled time for the i-th final.
● Assume domains are fixed to {MonAm, MonPm, …,

FriAm, FriPm}.
■ S1, …, Sm: Si is the space variable for the i-th final.
● Domain of Si are all rooms big enough to hold the

i-th final.

4

7 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems

● Want to find an assignment of values to each
variable (times, rooms for each final), subject
to the constraints:
■ For all pairs of finals i, j such that there is a student

taking both:
● Ti ≠ Tj

■ For all pairs of finals i, j
● Ti ≠ Tj or Si ≠ Sj
■ either i and j are not scheduled at the same time,

or if they are they are not in the same space.

8 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems (CSP)

● More formally.
● A CSP consists of
■ a set of variables V1, …, Vn
■ for each variable a domain of possible values

Dom[Vi].
■ A set of constraints C1,…, Cm.

5

9 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems

● Each variable be assigned any value from its
domain.
● Vi = d where d ∈ Dom[Vi]

● Each constraint C has
■ A set of variables it is over, called its scope: e.g.,

C(V1,V2,V4).
■  Is a boolean function that maps assignments to these

variables to true/false.
● e.g. C(V1=a,V2=b,V4=c) = True

● this set of assignments satisfies the constraint.
● e.g. C(V1=b,V2=c,V4=c) = False

● this set of assignments falsifies the constraint.

10 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems

● A solution to a CSP is
■ an assignment of a value to all of the variables such

that
● every constraint is satisfied.

6

11 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems
● Sudoku:
■  V11, V12, …, V21, V22, …, V91, …, V99
●  Dom[Vij] = {1-9} for empty cells
●  Dom[Vij] = {k} a fixed value k for filled cells.

■  Row constraints:
●  CR1(V11, V12, V13, …, V19)
●  CR2(V21, V22, V23, …, V29)
● , CR9(V91, V92, …, V99)

■  Column Constraints:
●  CC1(V11, V21, V31, …, V91)
●  CC2(V21, V22, V13, …, V92)
● , CC9(V19, V29, …, V99)

■  Sub-Square Constraints:
●  CSS1(V11, V12, V13, V21, V22, V23, V31, V32, V33)
●  CSS1(V14, V15, V16,…, V34, V35, V36)

12 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems

● Sudoku:
■ Each of these constraints is over 9 variables, and they

are all the same constraint:
● Any assignment to these 9 variables such that each

variable has a unique value satisfies the constraint.
● Any assignment where two or more variables have

the same value falsifies the constraint.
■ Such constraints are often called ALL-DIFF

constraints.

7

13 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems

● Sudoku:
■ Thus Sudoku has 3x9 ALL-Diff constraints, one over

each set of variables in the same row, one over each
set of variables in the same column, and one over
each set of variables in the same sub-square.

■ Note also that an ALL-Diff constraint over k variables
can be equivalently represented by k choose 2 not-
equal constraints over each pair of these variables.
● e.g. CSS1(V11, V12, V13, V21, V22, V23, V31, V32, V33) =

NEQ(V11,V12), NEQ(V11,V13), NEQ(V11,V21) …,
NEQ(V32,V33)
■ NEQ is a not-equal constraint.

14 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems

● Exam Scheduling
■ constraints:
■ For all pairs of finals i, j such that there is a student

taking both:
● NEQ(Ti,Tj)

■ For all pairs of finals i, j
● C(Ti,Tj,Si,Sj)
■ This constraint is satisfied
● by any set of assignments in which Ti ≠ Tj.
● any set of assignments in which Si ≠ Sj.

■ Falsified by any set of assignments in which Ti=Tj
as well as Sj=Sj.

8

15 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Solving CSPs

● CSPs can be solved by a specialized version of
depth first search.

● Key intuitions:
■ We can build up to a solution by searching through

the space of partial assignments.
■ Order in which we assign the variables does not

matter---eventually they all have to be assigned.
■  If during the process of building up a solution we

falsify a constraint, we can immediately reject all
possible ways of extending the current partial
assignment.

16 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Backtracking Search

● These ideas lead to the backtracking search algorithm
Algorithm BT (Backtracking)

BT(Level)

 If all variables assigned
 PRINT Value of each Variable
 RETURN or EXIT (RETURN for more solutions)
 (EXIT for only one solution)
 V := PickUnassignedVariable()
 Variable[Level] := V
 Assigned[V] := TRUE
 for d := each member of Domain(V)
 Value[V] := d
 OK := TRUE
 for each constraint C such that
 V is a variable of C
 and all other variables of C are assigned.
 if C is not satisfied by the current set of assignments
 OK := FALSE
 if(OK)
 BT(Level+1)
 return

9

17 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Solving CSPs
● The algorithm searches a tree of partial

assignments.

Root {}

Vi=a Vi=b Vi=c

Vj=1 Vj=2

The root has the empty set
of assignments

Children of a node are
all possible values of

some (any) unassigned
variable

Subtree

Search stops
descending if the
assignments on
path to the node

violate a constraint

18 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Backtracking Search

● Heuristics are used to determine which variable
to assign next “PickUnassignedVariable”.

● The choice can vary from branch to branch,
e.g.,
■ under the assignment V1=a we might choose to

assign V4 next, while under V1=b we might choose
to assign V5 next.

● This “dynamically” chosen variable ordering has
a tremendous impact on performance.

10

19 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Example.

● N-Queens. Place N Queens on an N X N chess board so
that no Queen can attack any other Queen.
■  Variables, one per row.
●  Value of Qi is the column the Queen in row i is place.

■  Constrants.
●  Vi ≠ Vj for all i ≠ j (can put two Queens in same column)
●  |Vi-Vj| ≠ i-j (Diagonal constraint)
■  (i.e., the difference in the values assigned to Vi and Vj can’t

be equal to the difference between i and j.

20 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Example.

● 4X4 Queens

11

21 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Example.

● 4X4 Queens

22 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Example.

● 4X4 Queens

Solution!

12

23 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

● Unary Constraints (over one variable)
■  e.g. C(X):X=2 C(Y): Y>5

● Binary Constraints (over two variables)
■  e.g. C(X,Y): X+Y<6
■  Can be represented by Constraint Graph
●  Nodes are variables, arcs are show constraints.
●  E.g. 4-Queens:

● Higher-order constraints: over 3 or more variables
■  We can convert any constraint into a set of binary

constraints (may need some auxiliary variables)

Backtracking Search

Q1 Q2

Q3 Q4

24 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Problems with plain backtracking.
1 2 3

4 5 6

7
8
9

13

25 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Satisfaction Problems
●  Sudoku:
■  The 3,3 cell has no possible value. But in the backtracking search we

don’t detect this until all variables of a row/column or sub-square
constraint are assigned. So we have the following situation

Variable has no
possible value,
but we don’t

detect this. Until
we try to assign it

a value

26 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Propagation

● Constraint propagation refers to the technique
of “looking ahead” in the search at the as yet
unassigned variables.

● Try to detect if any obvious failures have
occurred.

● “Obvious” means things we can test/detect
efficiently.

● Even if we don’t detect an obvious failure we
might be able to eliminate some possible part
of the future search.

14

27 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Constraint Propagation

■ Propagation has to be applied during search.
Potentially at every node of the search tree.

■  If propagation is slow, this can slow the search down
to the point where using propagation actually slows
search down!

■ There is always a tradeoff between searching fewer
nodes in the search, and having a higher nodes/
second processing rate.

28 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Forward Checking

● Forward checking is an extension of
backtracking search that employs a “modest”
amount of propagation (lookahead).

● When a variable is instantiated we check all
constraints that have only one uninstantiated
variable remaining.

● For that uninstantiated variable, we check all of
its values, pruning those values that violate the
constraint.

15

29 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Forward Checking

FCCheck(C,x)
// C is a constraint with all
// its variables already
// assigned, except for variable x.
for d := each member of CurDom[x]
 if making x = d together with
 previous assignments to
 variables in scope C falsifies C
 then

 remove d from CurDom[V]
 if CurDom[V] = {} then return DWO (Domain Wipe Out)
 return ok

30 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Forward Checking
FC(Level) (Forward Checking)

    If all variables are assigned
 PRINT Value of each Variable
 RETURN or EXIT (RETURN for more solutions)
 (EXIT for only one solution)
 V := PickAnUnassignedVariable()
 Variable[Level] := V
 Assigned[V] := TRUE
 for d := each member of CurDom(V)
 Value[V] := d
 for each constraint C over V that has one
 unassigned variable in its scope X.
 val := FCCheck(C,X)
 if(val != DWO)
 FC(Level+1)
 RestoreAllValuesPrunedByFCCheck()

 return;

16

31 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

FC Example.
●  4X4 Queens

■  Q1,Q2,Q3,Q4 with domain {1..4}
■  All binary constraints: C(Qi,Qj)

●  FC illustration: color values are
removed from domain of each
row (blue, then yellow, then
green)

Q1=1

Q2=3 Q2=4

Q3=2

Dom(Q1)={1}
Dom(Q2)={1,2,3,4}={3,4}
Dom(Q3)={1,2,3,4}={2,4}
Dom(Q4)={1,2,3,4}={2,3}

DWO happens for Q3
So backtrack, try another
vlaue for Q2

32 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Example.

● 4X4 Queens
continue…

Solution!

17

33 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Restoring Values

● After we backtrack from the current
assignment (in the for loop) we must restore
the values that were pruned as a result of that
assignment.

● Some bookkeeping needs to be done, as we
must remember which values were pruned by
which assignment (FCCheck is called at every
recursive invocation of FC).

34 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Minimum Remaining Values

● FC also gives us for free a very powerful
heuristic
■ Always branch on a variable with the smallest

remaining values (smallest CurDom).
■  If a variable has only one value left, that value is

forced, so we should propagate its consequences
immediately.

■ This heuristic tends to produce skinny trees at the
top. This means that more variables can be
instantiated with fewer nodes searched, and thus
more constraint propagation/DWO failures occur with
less work.

18

35 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Empirically

● FC often is about 100 times faster than BT
● FC with MRV (minimum remaining values) often

10000 times faster.
● But on some problems the speed up can be

much greater
■ Converts problems that are not solvable to problems

that are solvable.

36 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

Arc Consistency (2-consistency)
●  Another form of propagation is to make each arc consistent.

●  C(X,Y) is consistent iff for every value of X there is some value of of
Y that satisfies C.

●  Can remove values from the domain of variables:
■  E.G. C(X,Y): X>Y Dom(X)={1,5,11} Dom(Y)={3,8,15}
■  For X=1 there is no value of Y s.t. 1>Y => remove 1 from domain X
■  For Y=15 there is no value of X s.t. X>15, so remove 15 from domain Y
■  We obtain Dom(X)={5,11} and Dom(Y)={3,8}.

●  Removing a value from a domain may trigger further
inconsistency, so we have to repeat the procedure until
everything is consistent.
■  For efficient implementation, we keep track of inconsistent arcs by

putting them in a Queue (See AC3 algorithm in the book).
●  This is stronger than forward checking. why?

19

37 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance

●  Standard backtracking backtracks to the most recent variable (1 level up).

●  Trying different values for this variable may have no effect:
■  E.g. C(X,Y,Z): X ≠Y & Z>3 and C(W): W mod 2 =0
■  Dom(X)=Dom(Y)={1..5}, Dom(Z)={3,4,5} Dom(W)={10...99}

After assigning X=1,Y=1, and W=10,
 every value of Z fails. So we backtrack to W.
 But trying different values of W is useless,
X and Y are sources of failure!

We should backtrack to Y!

●  More intelligent: Simple Backiumping backtracks to the last variable among the set
of variables that caused the failure, called the conflict set. Conflict set of variable
V is the set of previously assigned variables that share a constraint with V. Can be
shown that FC is stronger than simple backjumping.

●  Even a more efficient approach: Confilct-Directed-Backjumping: a more complex
notion of conflict set is used: When we backjump to Y from Z, we update the
conflict set of Y: conf(Y)=conf(Y) U Conf(Z)-{Z}

Backjumping

Y=1

Z=3 Z=5

X=1

W=10 W=99

Z=4

