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CSE 3402: Intro to Artificial Intelligence 
CSPs & Backtracking Search I 

● Readings: Chapter 5. 

2 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance 

Constraint Satisfaction Problems 

● The search algorithms we discussed so far had 
no knowledge of the states representation 
(black box). So, we could not take advantage 
of domain-specific information. 

● CSP are a special class of search problems with 
a uniform and simple state representation. 

● This allows to design more efficient 
algorithms. 
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Constraint Satisfaction Problems 

● Many problems can be represented as a search 
for a vector of feature values. 
■ k-features: variables. 
■ Each feature has a value. Domain of values for the 

variables. 
■ e.g., height = {short, average, tall}, weight = {light, 

average, heavy}. 
● In these problems the problem is to search for 

a set of values for the features (variables) so 
that the values satisfy some conditions 
(constraints). 
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Constraint Satisfaction Problems 

● Sudoku: 
■ 81 variables, the value in each cell. 
■ Values: a fixed value for those cells that are already 

filled in, the values {1-9} for those cells that are 
empty. 

■ Solution: a value for each cell satisfying the 
constraints: 
● no cell in the same column can have the same 

value. 
● no cell in the same row can have the same value. 
● no cell in the same sub-square can have the same 

value. 
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Constraint Satisfaction Problems 

● Scheduling 
■ Want to schedule a time and a space for each final 

exam so that 
● No student is scheduled to take more than one final 

at the same time. 
● The space allocated has to be available at the time 

set. 
● The space has to be large enough to accommodate 

all of the students taking the exam. 
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Constraint Satisfaction Problems 

● Variables: 
■ T1, …, Tm: Ti is a variable representing the 

scheduled time for the i-th final. 
● Assume domains are fixed to {MonAm, MonPm, …, 

FriAm, FriPm}.  
■ S1, …, Sm: Si is the space variable for the i-th final.  
● Domain of Si are all rooms big enough to hold the 

i-th final.  
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Constraint Satisfaction Problems 

● Want to find an assignment of values to each 
variable (times, rooms for each final), subject 
to the constraints: 
■ For all pairs of finals i, j such that there is a student 

taking both: 
● Ti ≠ Tj 

■ For all pairs of finals i, j 
● Ti ≠ Tj or Si ≠ Sj 
■ either i and j are not scheduled at the same time, 

or if they are they are not in the same space. 
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Constraint Satisfaction Problems (CSP) 

● More formally. 
● A CSP consists of 
■ a set of variables V1, …, Vn 
■ for each variable a domain of possible values 

Dom[Vi]. 
■ A set of constraints C1,…, Cm. 
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Constraint Satisfaction Problems 

● Each variable be assigned any value from its 
domain.  
● Vi = d where d ∈ Dom[Vi] 

● Each constraint C has  
■ A set of variables it is over, called its scope: e.g., 

C(V1,V2,V4). 
■  Is a boolean function that maps assignments to these 

variables to true/false. 
● e.g. C(V1=a,V2=b,V4=c) = True 

● this set of assignments satisfies the constraint. 
● e.g. C(V1=b,V2=c,V4=c) = False 

● this set of assignments falsifies the constraint. 
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Constraint Satisfaction Problems 

● A solution to a CSP is 
■ an assignment of a value to all of the variables such 

that 
● every constraint is satisfied. 
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Constraint Satisfaction Problems 
● Sudoku: 
■  V11, V12, …, V21, V22, …, V91, …, V99 
●  Dom[Vij] = {1-9} for empty cells 
●  Dom[Vij] = {k} a fixed value k for filled cells. 

■  Row constraints: 
●  CR1(V11, V12, V13, …, V19) 
●  CR2(V21, V22, V23, …, V29) 
●  ...., CR9(V91, V92, …, V99) 

■  Column Constraints: 
●  CC1(V11, V21, V31, …, V91) 
●  CC2(V21, V22, V13, …, V92) 
●  ...., CC9(V19, V29, …, V99) 

■  Sub-Square Constraints: 
●  CSS1(V11, V12, V13, V21, V22, V23, V31, V32, V33) 
●  CSS1(V14, V15, V16,…, V34, V35, V36) 
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Constraint Satisfaction Problems 

● Sudoku: 
■ Each of these constraints is over 9 variables, and they 

are all the same constraint: 
● Any assignment to these 9 variables such that each 

variable has a unique value satisfies the constraint. 
● Any assignment where two or more variables have 

the same value falsifies the constraint. 
■ Such constraints are often called ALL-DIFF 

constraints. 
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Constraint Satisfaction Problems 

● Sudoku: 
■ Thus Sudoku has 3x9 ALL-Diff constraints, one over 

each set of variables in the same row, one over each 
set of variables in the same column, and one over 
each set of variables in the same sub-square. 

■ Note also that an ALL-Diff constraint over k variables 
can be equivalently represented by k choose 2 not-
equal constraints over each pair of these variables. 
● e.g. CSS1(V11, V12, V13, V21, V22, V23, V31, V32, V33) = 

NEQ(V11,V12), NEQ(V11,V13), NEQ(V11,V21) …, 
NEQ(V32,V33)  
■ NEQ is a not-equal constraint. 
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Constraint Satisfaction Problems 

● Exam Scheduling 
■ constraints: 
■ For all pairs of finals i, j such that there is a student 

taking both: 
● NEQ(Ti,Tj) 

■ For all pairs of finals i, j 
● C(Ti,Tj,Si,Sj)  
■ This constraint is satisfied  
● by any set of assignments in which Ti  ≠ Tj. 
● any set of assignments in which Si ≠ Sj. 

■ Falsified by any set of assignments in which Ti=Tj 
as well as Sj=Sj. 
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Solving CSPs 

● CSPs can be solved by a specialized version of 
depth first search.  

● Key intuitions: 
■ We can build up to a solution by searching through 

the space of partial assignments.  
■ Order in which we assign the variables does not 

matter---eventually they all have to be assigned. 
■  If during the process of building up a solution we 

falsify a constraint, we can immediately reject all 
possible ways of extending the current partial 
assignment. 
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Backtracking Search 

● These ideas lead to the backtracking search algorithm 
Algorithm BT (Backtracking)  

BT(Level) 

    If all variables assigned 
     PRINT Value of each Variable 
     RETURN or EXIT (RETURN for more solutions)  
         (EXIT for only one solution) 
  V := PickUnassignedVariable() 
  Variable[Level] := V 
  Assigned[V] := TRUE 
  for d := each member of Domain(V) 
     Value[V] := d 
     OK := TRUE 
     for each constraint C such that  
              V is a variable of C 
              and all other variables of C are assigned. 
        if C is not satisfied by the current set of assignments 
            OK := FALSE 
     if(OK) 
         BT(Level+1) 
  return  
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Solving CSPs 
● The algorithm searches a tree of partial 

assignments. 

Root {} 

Vi=a Vi=b Vi=c 

Vj=1 Vj=2 

The root has the empty set 
of assignments 

Children of a node are 
all possible values of 

some (any) unassigned 
variable 

Subtree 

Search stops 
descending if the 
assignments on 
path to the node 

violate a constraint  
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Backtracking Search 

● Heuristics are used to determine which variable 
to assign next “PickUnassignedVariable”. 

● The choice can vary from branch to branch, 
e.g., 
■ under the assignment V1=a we might choose to 

assign V4 next, while under V1=b we might choose 
to assign V5 next. 

● This “dynamically” chosen variable ordering has 
a tremendous impact on performance. 
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Example. 

● N-Queens. Place N Queens on an N X N chess board so 
that no Queen can attack any other Queen. 
■  Variables, one per row. 
●  Value of Qi is the column the Queen in row i is place. 

■  Constrants. 
●  Vi ≠ Vj for all i ≠ j (can put two Queens in same column) 
●  |Vi-Vj| ≠ i-j (Diagonal constraint) 
■  (i.e., the difference in the values assigned to Vi and Vj can’t 

be equal to the difference between i and j. 
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Example. 

● 4X4 Queens 
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Example. 

● 4X4 Queens 
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Example. 

● 4X4 Queens 

Solution! 
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● Unary Constraints (over one variable) 
■   e.g.   C(X):X=2      C(Y): Y>5 

● Binary Constraints (over two variables) 
■   e.g.   C(X,Y): X+Y<6 
■  Can be represented by  Constraint Graph 
●  Nodes are variables, arcs are show constraints.  
●  E.g. 4-Queens: 

● Higher-order constraints: over 3 or more variables 
■  We can convert any constraint into a set of binary 

constraints (may need some auxiliary variables) 

Backtracking Search  

Q1 Q2 

Q3 Q4 
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Problems with plain backtracking. 
1 2 3 

4 5 6 

7 
8 
9 



13 

25 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance 

Constraint Satisfaction Problems 
●  Sudoku: 
■  The 3,3 cell has no possible value.  But in the backtracking search we 

don’t detect this until all variables of a row/column or sub-square 
constraint are assigned. So  we have the following situation 

Variable has no 
possible value, 
but we don’t 

detect this. Until 
we try to assign it 

a value 
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Constraint Propagation 

● Constraint propagation refers to the technique 
of “looking ahead” in the search at the as yet 
unassigned variables. 

● Try to detect if any obvious failures have 
occurred. 

● “Obvious” means things we can test/detect 
efficiently. 

● Even if we don’t detect an obvious failure we 
might be able to eliminate some possible part 
of the future search. 
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Constraint Propagation 

■ Propagation has to be applied during search. 
Potentially at every node of the search tree. 

■  If propagation is slow, this can slow the search down 
to the point where using propagation actually slows 
search down! 

■ There is always a tradeoff between searching fewer 
nodes in the search, and having a higher nodes/
second processing rate. 
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Forward Checking 

● Forward checking is an extension of 
backtracking search that employs a “modest” 
amount of propagation (lookahead). 

● When a variable is instantiated we check all 
constraints that have only one uninstantiated 
variable remaining. 

● For that uninstantiated variable, we check all of 
its values, pruning those values that violate the 
constraint. 
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Forward Checking 

FCCheck(C,x)  
// C is a constraint with all  
// its variables already 
// assigned, except for variable x. 
for d := each member of CurDom[x] 
   if making x = d together with  
      previous assignments to 
      variables in scope C falsifies C 
   then  

       remove d from CurDom[V]    
    if CurDom[V] = {} then return DWO   (Domain Wipe Out) 
 return ok 
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Forward Checking 
FC(Level) (Forward Checking) 

     If all variables are assigned 
     PRINT Value of each Variable 
     RETURN or EXIT (RETURN for more solutions)  
           (EXIT for only one solution) 
  V := PickAnUnassignedVariable() 
  Variable[Level] := V 
  Assigned[V] := TRUE 
  for d := each member of CurDom(V) 
     Value[V] := d 
     for each constraint C over V that has one 
         unassigned variable in its scope X. 
         val := FCCheck(C,X) 
         if(val != DWO) 
           FC(Level+1) 
     RestoreAllValuesPrunedByFCCheck() 

    return;  
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FC Example. 
●  4X4 Queens  

■  Q1,Q2,Q3,Q4 with domain {1..4} 
■  All binary constraints: C(Qi,Qj) 

●  FC illustration: color values are 
removed from domain of each 
row (blue, then yellow, then 
green) 

Q1=1 

Q2=3 Q2=4 

Q3=2 

Dom(Q1)={1} 
Dom(Q2)={1,2,3,4}={3,4} 
Dom(Q3)={1,2,3,4}={2,4} 
Dom(Q4)={1,2,3,4}={2,3} 

DWO happens for Q3 
So backtrack, try another 
vlaue for Q2 
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Example. 

● 4X4 Queens 
continue… 

Solution! 



17 

33 CSE 3402 Winter 09 Fahiem Bacchus & Yves Lesperance 

Restoring Values 

● After we backtrack from the current 
assignment (in the for loop) we must restore 
the values that were pruned as a result of that 
assignment. 

● Some bookkeeping needs to be done, as we 
must remember which values were pruned by 
which assignment (FCCheck is called at every 
recursive invocation of FC). 
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Minimum Remaining Values 

● FC also gives us for free a very powerful 
heuristic 
■ Always branch on a variable with the smallest 

remaining values (smallest CurDom). 
■  If a variable has only one value left, that value is 

forced, so we should propagate its consequences 
immediately.  

■ This heuristic tends to produce skinny trees at the 
top. This means that more variables can be 
instantiated with fewer nodes searched, and thus 
more constraint propagation/DWO failures occur with 
less work.  
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Empirically 

● FC often is about 100 times faster than BT 
● FC with MRV (minimum remaining values) often 

10000 times faster. 
● But on some problems the speed up can be 

much greater  
■ Converts problems that are not solvable to problems 

that are solvable. 
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Arc Consistency  (2-consistency) 
●  Another form of propagation is to make each arc consistent. 

●  C(X,Y) is consistent iff for every value of X there is some value of of 
Y that satisfies C.  

●  Can remove values from the domain of variables: 
■  E.G. C(X,Y): X>Y  Dom(X)={1,5,11} Dom(Y)={3,8,15} 
■  For X=1 there is no value of Y s.t. 1>Y => remove 1 from domain X 
■  For Y=15 there is no value of X s.t. X>15, so remove 15 from domain Y 
■  We obtain Dom(X)={5,11} and Dom(Y)={3,8}. 

●  Removing a value from a domain may trigger further 
inconsistency, so we have to repeat the procedure  until 
everything is consistent. 
■  For efficient implementation, we keep track of inconsistent arcs by 

putting them in a Queue (See AC3 algorithm in the book). 
●  This is stronger than forward checking. why? 
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●  Standard backtracking backtracks to the most recent variable (1 level up).  

●  Trying different values for this variable may have no effect: 
■  E.g. C(X,Y,Z): X ≠Y & Z>3   and C(W): W mod 2 =0  
■  Dom(X)=Dom(Y)={1..5}, Dom(Z)={3,4,5} Dom(W)={10...99} 

After assigning X=1,Y=1, and W=10, 
 every value of Z fails. So we backtrack to W. 
 But trying different values  of W is useless,  
X and Y are sources of failure! 

We should backtrack to Y! 

●  More intelligent: Simple Backiumping backtracks to the last variable among the set 
of variables  that caused the failure, called the conflict set. Conflict set of variable 
V is the set of previously assigned variables that share a constraint with V. Can be 
shown that FC is stronger than simple backjumping. 

●  Even a more efficient approach: Confilct-Directed-Backjumping: a more complex 
notion of conflict set is used: When we backjump to Y from Z, we update the 
conflict set of Y: conf(Y)=conf(Y) U Conf(Z)-{Z} 

Backjumping 

Y=1 

Z=3 Z=5 

X=1 

W=10 W=99 

Z=4 


