15 November 2010 CSE-4411A Assn #2 & #3 p- 1 of 8

CSE-4411A
Assignment #2 & #3

1. (10 points) Indexes, Access Paths, & Algorithms. You take the low road... [EXERCISE]

Table R has an unclustered tree index on A, B, C, D. The index pages contain 99 index records
(encompassing 99 pointers, plus a 100th pointer), on average;' data-entry pages contain 50
data entries each, on average; and data-record pages contain 20 data records each, on average.

A’s values range over 1..10,000; B’s over 1..1,000; C’s over 1..100; and D’s over 1..10.

a. (1 point) Estimate the I/O cost of
select * from R where A > 3000 and B > 500;

using the index as the access path.

b. (2 points) Estimate the I/O cost of
select * from R where A > 9000 and C > 80;

using the index as the access path. Assume a smart query optimizer and processor.

c. (2 points) Is it possible to have a query of the form
select * from R where ... order by C, D;

that accesses R via the index and does the order by on the fly? If yes, show an example
query. Otherwise, explain why not.

1 This accounts for the fill factor. A page could hold more than 99 index records.

15 November 2010 CSE-4411A Assn #2 & #3 p- 2 of 8

d. (2 points) Consider that you have two tables to join, L and S, by an equality condition
on their mutual column A. L is exceedingly large, while S is reasonably small. Both,
however, are larger than the buffer pool. Given a buffer pool allocation of B frames,
assume B2 > |S|, where |S| is the number of pages of table S.

Which would you favour? A (two-pass) sort-merge join (SMJ), or a (two-pass) hash join
(HJ)? Explain.

e. (3 points) If you could have an index to have a better join plan for the join in Question
1d, what would it be?
Under what conditions would it allow for a better join than the SMJ and HJ (again
assuming the buffer pool is large enough that at least one of them is possible as two-
pass).
And what would the join plan be?

15 November 2010 CSE-4411A Assn #2 & #3 p- 3 of 8

2. (10 points) Algorithms for Relational Operators. Trash the hash. [ANALYSIS]

a. (4 points) Consider a merge join of R and S on the mutual attribute J. Let S be the
inner stream and be sorted already on J, K.
Under which conditions is the output sorted on J, K?
Under what conditions is the output not sorted on J, K?

b. (3 points) Could the basic 2-pass hash join benefit from sequential reads and/or writes?

If not, explain why it cannot.
Otherwise, describe what part of the algorithm benefits (e.g., writing the partitions for
the outer in pass 0, etc.).

15 November 2010 CSE-4411A Assn #2 & #3 p.- 4 of 8

c. (3 points) Dr. Bas recently discovered how great index intersection is. He realized that
the same idea can be applied to a single-index access path when the index is unclustered:
e collect together the matching data entries using the index;
e sort the data entries by their rid’s (record identifiers); and
e then retrieve the data records in order.
He claims that this is then just like using a clustered index; the only extra cost is sorting
the data entries.
When he ran an experiment, however, he found this performed no better than using the
unclustered index directly! It still seemed to cost one I/O per data record retrieved.
Why is Dr. Bas wrong about this being just like using a clustered index (except for the
extra sorting step)? Are there situations when it is advantageous?

15 November 2010 CSE-4411A Assn #2 & #3 p- 5 of 8

3. (10 points) System R. Forest for the trees. [SHORT ANSWER]

Consider a nine-relation SELECT query (so involving eight joins). Say that level 1 of the
Selinger algorithm determines the single-relation access paths, level 2 determines the two-
relation plans, and so forth.

a. (2 points) How many left-deep trees are possible?

b. (2 points) At least how many plans are carried forward from level 4 (so that join four
of the relations)?

c. (2 points) At least how many plans are explored in level 47

d. (2 points) What is often an advantage of left-deep trees over other trees that is useful in
query plans?

e. (2 points) What can be a disadvantage of left-deep trees in finding a “best” query plan?

15 November 2010 CSE-4411A Assn #2 & #3 p.- 6 of 8

4. (10 points) Query Planning & Optimization. This is the last time I enrol! [EXERCISE]

Schema:

Student(sid, sname, startdate, major, advisor)
FK (advisor) refs Prof (pid)
Class(cid, dept, number, section, term, year, room, time, pid, ta)
FK (pid) refs Prof
FK (ta) refs Student (sid)
Enrol(sid, cid, date, grade)
FK (sid) refs Student
FK (cid) refs Class
Prof(pid, pname, pdept, office)

Assume no attribute is nullable. The attribute pid in Class refers to the the professor /
instructor for the class. The attribute ta in Class refers to the teaching assistant for the class.
The attribute advisor in Student refers to the student’s academic advisor.

Statistics:

e Student: 50,000 records on 1,000 pages
— advisor: 2,500 distinct values
e Enrol: 2,000,000 records on 20,000 pages

— sid: 50,000 distinct values
— cid: 80,000 distinct values

e Class: 80,000 records on 1,600 pages

— pid: 4,000 distinct values
— ta: 5,000 distinct values

e Prof: 4,000 records on 40 pages
Indexes:

e Student:

— clustered tree index on sid (200 data entries per page)

e Enrol:

— clustered tree index on cid, sid (167 data entries per page)
— unclustered tree index on sid, cid (167 data entries per page)

e Class:

— clustered tree index on cid (200 data entries per page)
e Prof:

— clustered tree index on pid (200 data entries per page)

All indexes are of alternative #2. For each tree index, the index pages are 3 deep, except for
the index on Prof.pid which is 2 deep.

15 November 2010

CSE-4411A Assn #2 & #3

p. 7 of 8

Consider the query

select S.sname, E.cid

from Student S,
where S.sid =
and E.grade

nm

and S.major =

Enrol E

.sid

)A)
)CS);

Assume %10 of students are CS majors, and that there are five possible grades: A, B, C, D,

and FE.

Consider the join algorithms we have discussed in class: block nested loops (BNL), index
nested loops (INL), (two-pass) hash join (HJ), two-pass sort-merge (SMJ), and the general
sort-then-merge join (MJ).

a. (6 points) Find the best query plan (by estimated cost) for the query. Show the query

tree, fully annotated with the chosen algorithms and access paths.

You have an allocation of 50 buffer-pool frames.

15 November 2010 CSE-4411A Assn #2 & #3 p- 8 of 8

b. (1 point) Estimate the cardinality (number of rows produced) of this query.

c. (3 points) Assume that you additionally had an unclustered tree index on Enrol on sid,
grade, cid (133 data entries per page).
Would this allow you to have a less expensive query plan than your plan for Question
4a?

