
CSE-4411: Database Management Systems 1

Tree-Structured Indexes

Chapter 10

CSE-4411: Database Management Systems 2

Introduction

� As for any index, 3 alternatives for data entriesk*:
� Data record with key value k

� <k, rid of data record with search key value k>

� <k, list of rids of data records with search key k>

� Choice is orthogonal to theindexing techniqueused
to locate data entriesk*.

� Tree-structured indexing techniques support both
range searchesandequality searches.

� ISAM: static structure;B+ tree: dynamic, adjusts
gracefully under inserts and deletes.

CSE-4411: Database Management Systems 3

Range Searches

� “Find all students with gpa > 3.0”
� If data is in sorted file, do binary search to find first

such student, then scan to find others.

� Cost of binary search can be quite high.

� Simple idea: Create an 'index' file.

� Can do binary search on (smaller) index file!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1 Index File

CSE-4411: Database Management Systems 4

ISAM

� Index file may still be quite large. But we can apply
the idea repeatedly!

� Leaf pages contain data entries.

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages

Overflow
page

Primary pages

Leaf

CSE-4411: Database Management Systems 5

Comments on ISAM
� File creation: Leaf (data) pages allocated

 sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.

� Index entries: <search key value, page id>; they
'direct' search fordata entries, which are in leaf
pages.

� Search: Start at root; use key comparisons to go
to leaf. Cost is logFN ; F = # entries/index pg,
N = # leaf pgs

� Insert: Find leaf data entry belongs to, and put it
there.

� Delete: Find and remove from leaf; if empty
overflow page, de-allocate.

� Static tree structure: inserts/deletes affect only leaf pages.

Data Pages

Index Pages

Overflow pages

CSE-4411: Database Management Systems 6

Example ISAM Tree

� Each node can hold 2 entries; no need for `next-
leaf-page’ pointers. (Why?)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

CSE-4411: Database Management Systems 7

After Inserting 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

CSE-4411: Database Management Systems 8

... Then Deleting 42*, 51*, 97*

� Note that 51* appears in index levels, but not in leaf!

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

CSE-4411: Database Management Systems 9

B+ Tree: Most Widely Used Index

� Insert/delete at logF N cost; keep treeheight-
balanced. (F = fanout, N = # leaf pages)

� Minimum 50% occupancy (except for root). Each
node containsd <= m <= 2d entries. The parameter
d is called theorderof the tree.

� Supports equality and range-searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)

CSE-4411: Database Management Systems 10

Example B+Tree

� Search begins at root, and key comparisons direct
it to a leaf (as in ISAM).

� Search for 5*, 15*, all data entries >= 24* ...

� Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

CSE-4411: Database Management Systems 11

B+Trees in Practice

� Typical order: 100. Typical fill-factor: 67
� average fanout = 133

� Typical capacities:
� Height 4: 1334 = 312,900,700 records

� Height 3: 1333 = 2,352,637 records

� Can often hold top levels in buffer pool:
� Level 1 = 1 page = 8 Kbytes

� Level 2 = 133 pages = 1 Mbyte

� Level 3 = 17,689 pages = 133 MBytes

CSE-4411: Database Management Systems 12

Inserting a Data Entry into a B+Tree

� Find correct leafL.
� Put data entry ontoL.

� If L has enough space, done!

� Else, must split L (into L and a new node L2)
� Redistribute entries evenly, copy up middle key.

� Insert index entry pointing to L2 into parent of L.

� This can happen recursively
� To split index node, redistribute entries evenly, but

push up middle key. (Contrast with leaf splits.)

� Splits “grow” tree; root split increases height.
� Tree growth: gets wider or one level taller at top.

CSE-4411: Database Management Systems 13

Inserting 8* into Example B+Tree

� Observe how
minimum
occupancy is
guaranteed in
both leaf and
index pg splits.

� Note difference
betweencopy-up
andpush-up; be
sure you
understand the
reasons for this.

2* 3* 5* 7* 8*

5
Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

s copied up and

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

CSE-4411: Database Management Systems 14

Example B+Tree After Inserting 8*

� Notice that root was split, leading to increase in height.

� In this example, we can avoid split by re-distributing
 entries; however, this is usually not done in practice.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

CSE-4411: Database Management Systems 15

Deleting a Data Entry from a B+Tree

� Start at root, find leafL where entry belongs.
� Remove the entry.

� If L is at least half-full, done!

� If L has only d-1 entries,

� Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

� If re-distribution fails, merge L and sibling.

� If merge occurred, must delete entry (pointing toL or
sibling) from parent ofL.

� Merge could propagate to root, decreasing height.

CSE-4411: Database Management Systems 16

Example Tree After (Inserting 8*,
then) Deleting 19* and 20* ...

� Deleting 19* is easy.
� Deleting 20* is done with re-distribution. Notice

how middle key iscopied up.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

CSE-4411: Database Management Systems 17

... And Then Deleting 24*

� Must merge.
� Observè toss’ of index

entry (on right), and
`pull down’ of index
entry (below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17

CSE-4411: Database Management Systems 18

Example of Non-leaf Re-distribution

� Tree is shown belowduring deletionof 24*. (What
could be a possible initial tree?)

� In contrast to previous example, can re-distribute entry
from left child of root to right child.

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

CSE-4411: Database Management Systems 19

After Re-distribution

� Intuitively, entries arere-distributed byp̀ushing
through’ the splitting entry in the parent node.

� It suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22

CSE-4411: Database Management Systems 20

Prefix Key Compression

� Important to increase fan-out. (Why?)
� Key values in index entries only `direct traffic’; can

often compress them.
� E.g., If we have adjacent index entries with search

key values Dannon Yogurt, David Smith and
Devarakonda Murthy, we can abbreviate David Smith
to Dav. (The other keys can be compressed too ...)
� Is this correct? Not quite! What if there is a data entry

Davey Jones? (Can only compress David Smith to Davi)

� In general, while compressing, must leave each index entry
greater than every key value (in any subtree) to its left.

� Insert/delete must be suitably modified.

CSE-4411: Database Management Systems 21

Bulk Loading of a B+Tree

� If we have a large collection of records, and we want
to create a B+ tree on some field, doing so by
repeatedly inserting records is very slow.

� Bulk Loadingcan be done much more efficiently.
� Initialization: Sort all data entries, insert pointer to

first (leaf) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
Root

CSE-4411: Database Management Systems 22

Bulk Loading (Cont.)
� Index entries for

leaf pages always
entered into right-
most index page
just above leaf
level. When this
fills up, it splits.
(Split may go up
right-most path to
the root.)

� Much faster than
repeated inserts,
especially when
one considers
locking!

3* 4* 6* 9* 10*11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages

not yet in B+ tree
3523126

10 20

3* 4* 6* 9* 10* 11* 12* 13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38
not yet in B+ tree
Data entry pages

CSE-4411: Database Management Systems 23

Summary of Bulk Loading

� Option 1: multiple inserts.
� Slow.

� Does not give sequential storage of leaves.

� Option 2:Bulk Loading
� Has advantages for concurrency control.

� Fewer I/Os during build.

� Leaves will be stored sequentially (and linked, of
course).

� Can control “fill facto” on pages.

CSE-4411: Database Management Systems 24

A Note on `Order’

� Order(d) concept replaced by physical space criterion
in practice (àt least half-full’).
� Index pages can typically hold many more entries

than leaf pages.

� Variable sized records and search keys mean differnt
nodes will contain different numbers of entries.

� Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

CSE-4411: Database Management Systems 25

Summary

� Tree-structured indexes are ideal for range-searches,
also good for equality searches.

� ISAM is a static structure.
� Only leaf pages modified; overflow pages needed.

� Overflow chains can degrade performance unless size
of data set and data distribution stay constant.

� B+ tree is a dynamic structure.
� Inserts/deletes leave tree height-balanced; log F N cost.

� High fanout (F) means depth rarely more than 3 or 4.

� Almost always better than maintaining a sorted file.

CSE-4411: Database Management Systems 26

Summary (Cont.)

� B+ Trees:
� Typically, 67% occupancy on average.

� Usually preferable to ISAM, modulo locking
considerations; adjusts to growth gracefully.

� If data entries are data records, splits can change rids!

� Key compression increases fanout, reduces height.
� Bulk loading can be much faster than repeated inserts

for creating a B+ tree on a large data set.
� Most widely used index in database management

systems because of its versatility. One of the most
optimized components of a DBMS.

